MODULAR STRUCTURE OF THE
CROSSED PRODUCT BY A COMPACT GROUP DUAL

Tommaso ISOLA

Dipartimento di Matematica. Universita di Roma “Tor Vergata”.
Via della Ricerca Scientifica. 1-00133, Roma, Italy.

isola@mat.utovrm.it
Revised, October 1993

Abstract. Let M be a properly infinite von Neumann algebra, and a a dominant
action of a separable compact group. Choose a faithful normal state g on the fixed-
point algebra M and lift it to M as ¢ := ¢ - ¢ by means of the canonical expectation
€: M — M*. Then we express the modular objects associated with ¢ in terms of the
modular objects associated with .

1. Introduction.

Let M be a properly infinite von Neumann algebra, and o a dominant action of a
separable compact group G by automorphisms of M. In this paper we shall describe
the modular structure of M, in terms of the modular structure of M, the fixed—point
algebra of M by «a.

To do this we have to use some index theory for an inclusion of von Neumann
algebras with nontrivial centre. So we recall, in section 2, the definition of the index
given by H. Kosaki [11] and some related results. Then, in section 3, we slightly extend
a recent result of J.F. Havet’s [5] on the minimal expectation between von Neumann
algebras with finite dimensional centres (proposition 3.6).

In section 4 we state our problem: we start, for simplicity, from a faithful normal
state g on M“, as in case of a weight we are faced with some unsubstantial techni-
cal complications, and, denoting with € : M — M® the normal faithful conditional
expectation of M on M, we express the modular group associated to ¢ := ¢ - € in
terms of the modular group associated to y. To do this, we have to characterize the
restriction to M of some conditional expectation F of M. We consider first, both for
their importance and simplicity, prime actions, namely those with M* A M = C, as
in this case the characterization of F|j« is immediate (see proposition 4.8). Then we
solve the case of finite group actions using the result on the minimal conditional ex-
pectation previously proved. The general case is solved by means of another approach,
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which makes use of the unitary implementing the flip to characterize the expectation
E. Let us observe that we use, here and in section 6, the construction of the crossed
product by the dual of G given by J.E. Roberts [20], as this approach provides us with
a set of generators of M, namely M“ and the Hilbert spaces in M, in terms of which
the expression of the modular objects associated to ¢ is particularly simple. Therefore
this approach is more useful than the one based on Hopf-von Neumann algebras, for
details of which we refer to [18] and [21].

Section 5 is devoted to the proof of a sufficient condition for two endomorphisms
to be conjugate. This result is used in section 6 to compute the modular operators
associated to .

Finally, we would like to mention that this structure appears, for example, in
algebraic quantum field theory, where one may ask for the modular structure of the
local field algebras in terms of the modular structure of the local observable algebras.

2. Preliminaries.

In this section we recall some known results on the theory of index, initiated
by V. Jones [9], both for ease of reference and for fixing notations. Throughout the
paper we assume that all von Neumann algebras have separable predual, and use the
following notation: if A C B are von Neumann algebras, P(B,A) is the set of all
normal semifinite faithful (n.s.f.) A-valued weights on B, E(B, A) is the set of all
normal faithful conditional expectations from B to A; if M is a von Neumann algebra,
P(M) is the set of all n.s.f. weights on M, and E(M) is the set of all normal faithful
states on M.

Let us now recall the definition of H. Kosaki’s index [11] based on A. Connes’
spatial theory and U. Haagerup’s operator valued weights.
Let M C B(H) be a von Neumann algebra, and ¢ € P(M'). We use the standard
notation:
Ny :={z e M :¢(z*z) < o};
My, = NNy the domain of 1);
H, := the Hilbert space completion of Ny with respect to x — 1 (x*x)/2;
A, := the canonical injection of Ny into Hy;
Ty := the regular representation of M’ on Hy, that is

Ww(x)Aw(y) = A¢(xy),Vx S M’,Vy S Nw.
Define, V¢ € ‘H, the operator RY(€) : Hy, — H by
D(RY(€)) = Ay(Ny), RY(§Ay(x) =2, Vo € Ny.
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We say & € H is -bounded if R¥(¢) is a bounded operator, that is if 3C' > 0 s.t.
|2€|| < Cop(z*x)/2 Vo € Ny. The set D(H;1p) := {€ € H : € is ¢-bounded } is dense
in H. Let us set 9¥(&,n) := RY(&)RY (n)*; then 9¥ (&, &) € M, (the extended positive
part of M), and, if £, € D(H;v), 9% (&, 1) € M.

Let now ¢ € P(M) and extend it to M, and set g, : £ € H — q,(£) =
(V¥ (£,€)) € [0,00]. Then g, is a lower semicontinuous (hence closable) quadratic
form, thus, by Friedrichs’ theorem, there exists a unique positive self-adjoint opera-
tor dyp/diy on H (called the spatial derivative of ¢ relative to ) such that q,(§) =
I(d/dp) /€|
Based on spatial theory one can prove that, if A C B are von Neumann algebras,
VE € P(B, A) there is aunique E~1 € P(A’, B') such that d(¢-F)/dy = dp/d(-E™1),
Vo € P(A), V¢ € P(B’). Observe that E~'(1) € Z(B), and does not depend on the
representation of B (as the same proof of [11, th.2.2] works).

2.1 Definition. If A C B are von Neumann algebras and E € E(B, A), we say that
E has finite index if E=1(1) € Z(B), and that Indg(A, B) = Ind(E) := E~1(1) is the
index of E.

Let now A C B be von Neumann algebras and let E € E(B, A). Let p € E(A),
and set ¢ 1= p-E € E(B); let ¥ € H = 'H, cyclic and separating for B and such that
Y = (U, -¥), and set e := [A¥] € A’. We call e the Jones projection of the inclusion.
Then one has

2.2 Proposition. [11]

(i) E~'(e) = 1. In particular Ind(E) > 1 and Ind(E) =1 <= A= B.
(1) exe = E(x)e, Vx € B.

(iii) x € B;x € A <= [z,e] =0.
(iv) JpeJp = e, where Jp —JB

(vi ={>"" | aeb; : a;,b; € B,n € N} is a dense *subalgebra of (B, e).
(vit The central support of e in (B, e) is 1.

i)
)
)
(v) ( e) = JgA'Jp. This algebra is called Jones basic construction.
) A
)
(viii) © € A — ze € Ae = e(B, e)e is a surjective isomorphism.

2.3 Proposition. Let A C B be von Neumann algebras, E € E(B,A) with finite

index, J a modular conjugatjon for B, and j := adJ. Then

(i) E1:=1Ind(E)"'j-E~1.j(-) € E({(B,e), B) and Ey(e) = Ind(E)~!; we call E; the
expectation dual of E.

(13) If Ind(F) € A, Ind(Ey) = Ind(E).

Proof. (i) follows by direct computation.
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(i5) Ind(E,) = Ey (1) = j - E - j(Ind(E)) = j - E(Ind(E)) = Ind(E).
O

2.4 Proposition. Let A C B be von Neumann algebras, E € E(B, A) with finite
index. Let e be Jones projection and By := (B,e) the basic construction. Then
Ve € By, d' b€ B s.t. xe = be.

Proof. It follows from [11, lemma 3.3] with obvious modifications.
O

2.5 Proposition. Let A C B be properly infinite von Neumann algebras, E €
E(B, A) with finite index. Then 3b € B s.t. x = bE(b*x),Vx € B. Moreover beb* =1,
bb* = Ind(E), and E(b*b) = 1.

Proof. Let v € B; be such that v*v = e, and vv* = 1 and let b € B be s.t.
v = ve = be. Let Ey € FE(Bi,B) be the dual expectation. Then beb* = vv* = 1,
bb* = Ind(E)bE,(e)b* = Ind(E)E;(beb*) = Ind(E), and E(b*b)e = eb*be = v*v = e,
so that, by uniqueness in proposition 2.4, E(b*b) = 1. Finally, Vo € B, ze = beb*zre =
bE(b*z)e, so that = bE(b*x).

g

3. A result on the minimal expectation of an inclusion of von
Neumann algebras with nontrivial centres.

In this section we want to give one result on the minimal expectation that will be
useful in the next section. To do this, we have to prove some preliminary results on
the behaviour of expectations and indeces w.r.t. decompositions.

3.1 Proposition. Let A C B be von Neumann algebras, E € E(B,A). If A =
[€ Aydp(w), B = [® B,du(w) are their decompositions with respect to L™ (€2, i)
Z C Z(A) N Z(B), then for almost all w, there exists E, € E(B,,A,) such that
E(z) = [¥ By(z,)du(w), Vo = [© z,du(w) € B.

Proof. Let us choose p € E(A) and set ¢ := ¢ - E € E(B); then ¢ = - E, and, if
op := o), then 0y (A) = A, Vt € R.

Let o¢(x) = f@ 0w t(xy)dp(w), be its decomposition as in [22, Th.A.13] and let ¢ =
f® Yodp(w), Y = fEB Y, du(w) be the decompositions of ¢ and v, where ¢, € F(A,),
Y, € E(B,) for almost every w [23, prop.IV.8.34].

Observe that ¢, |4, = ¢, from uniqueness [23, prop.IV.8.34], therefore o, (A,) =
A, vVt € R. Thus, from Takesaki’s criterion, 3! E, € E(B,,, A,) such that ¢, - E, =
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Let us set F'(x f E,(zy)dp(w), Ve € B. Then it is easy to prove that F' € E(B, A)
and that ¢ - F = zp, so that, by uniqueness, F' = F.
O

3.2 Lemma. Let A be a von Neumann algebra, f@ A, dp(w) its decomposition w.r.t.
L>e(Quu)=Z C Z(A), pe P(A), p= f® Ywdp(w). Then
(i) Ho = ¥ Hodp(w);
(ii) Ny C f®/\/’%d,u(w);
(iii) D(H;0) C{€ = [ Cudp(w) : & € D(Hy,500) ace.}.

Proof. (i) By [13, Cor. 2.7] A = [¥ Ay, (N, NN, )du(w) is a full left Hilbert
algebra, dense in H, and whose left von Neumann algebra is A [13, Th. 2.5]. Besides
¢ is the weight on A determined by A, by [22, Th. A.6], so that A = A, (N, NNY)
and the thesis follows.

(i) Let x = fEB Tudp(w) € Ny then [, (xfz,)dp(w) = go(fEB i rudp(w)) =
@(z*z) < 0o so that ¢, (zz,) < oo a.e., that is z,, € N, a.e.

(1i1) Let & = f@ﬁwdu (w) € D(H;p); then 3C > 0 s.t. ||z€]]? < Cp(z*x), = €
Ny, that is [ ||z,&oll?du(w) < C [ oo (z}ry)du(w), © € N,. Then in particular
|z.éul? < Cou(atny,), x, € ./\f% NN, ae. Let now {ugitier C My,4 be s.t.
uwi /1. Then [[Ay, (o) — Ap, (UwiTw)| — 0 and wuyz, € My, [21, 2.2] so that
|zwéull? < Cpu(zlry), Tw € Ny, ae., that is &, € D(Hy,; pw) a.e.

O

3.3 Lemma. Let A= f@ A,du(w) be a von Neumann algebra, ¢ = f@ Vudu(w)
P(A), ¢ = f@ Yodu(w) € P(A’), Where the decompositions are w.r.t. L% (2, u1)
Z C Z(A). Then 52 = [ 9224

I m

Proof. Let £ = [ ¢,du(w) € D(H;¢) and 2’ = [© 2/ du(w) € Nyy; then

[ R = [ R A e in) =

(&)
_ / 2 Eudp(w) = 26 = R¥(€)Ay(2')

so that [¥ RV (&,)dp(w) = R¥(€), £ € D(H; ).
Then 9% (¢,€) = [© 0¥~ (&0, &) dp(w), € € D(H;1), whence

(Pe €)= o0 (¢.6)) = / o (9% (60, £2)) du(w) =

dyp
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dipo, © dep,
— [P cdute) = ([ GP2du)t. o

for £ € D(H; ). Therefore ﬁ > f@ dow <dp(w).

Let now w € Q — &, € [[, D(Hu ,@bw/) be a measurable field, and let, Vn € N,
={w e Q: |z, |?* < nvy, (2,2, z, € Ny, }; then UQ, = Q.

Let us observe that VI' Borel subset of 2,, we get f@ xr(w )&,du( ) € D(H; ) so that,

from what we have proved above, we get fr 70w € )dp(w = [ ( Ziz £, &0)du(w),
hence ((—)wfw,fw) = (dwgw,gw) a.e. Therefore 42« > (dgo)w a.e., so that g—i <

di, dip
f @ d% ) and the thesis follows.
O

3.4 Theorem. Let A C B be von Neumann algebras, E € FE(B,A), and let
A= [P Aydu(w), B = [® Budu(w), E = [® E,du(w) their decompositions w.r.t.
L°(Q,u) =2 Z C Z(A)ANZ(B). Then E-1 = f@ E;Ydu(w) and in particular Ind(E) =
[ Ind(E.,)du(w).

Proof. As
deo., :dgow-Ew:d(cp-E)w:<dgo-E> _
dww : E; ! d/‘vbw dww d@b w
_ <d790> _ A dpe
dy-E-1/)w d-E-Y), di, - (E71),

from uniqueness of decomposition of ﬁ, we get (E~1), = E;! a.e. and the thesis
follows.

g

Recall that, when the two algebras A and B have finite dimensional centres,

J.F. Havet proved in [5, th. 2.9] the existence of a minimal expectation.

3.5 Theorem. Let A C B be von Neumann algebras with finite dimensional centres,
and exists E € E(B, A) with finite index. Setting p := min{||Ind(F)|| : F € E(B,A)},
JE,, € E(B,A) s.t
(&) [nd(Ep)|| = p
(i1) V F € E(B,A) s.t. |[Ind(F)| = u there follows Ind(E,,) < Ind(F).
Besides Ind(E,,) € Z(A)N Z(B) and E,,(zy) = Ep(yx), x € A NB, y € B.

O

3.6. Proposition. Let A C B be von Neumann algebras, E € E(B,A), A =
[® Audp(w), B= [¥ B,du(w), E = [¥ E,du(w) their decompositions with respect to
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L>(Q,u)=Z C Z(A)NZ(B). Suppose that dim(Z(Ay)) < oo, dim(Z(B,)) < oo a.e.

and that E,, is the unique expectation of theorem 3.5. Set m(z) := min{||Ind(F)z| :

F e E(B,A)}, for all z € Proj(Z). Then E is the unique expectation in E(B, A) s.t.

(i) [|[Ind(E)z|| = m(z), Yz € Proj(Z)

(i1) V F € E(B,A) s.t. |[Ind(F)z|| = m(z), Yz € Proj(Z), there follows Ind(E) <
Ind(F).

Proof. (i) Let F = f@ F,du(w) € E(B,A) and z € Proj(Z) corresponding to the
Borel subset I' C Q; then || Ind(E)z| = ess supp|/Ind(E,)| < ess supp|[Ind(F,)| =
| nd(F)2].
(7i) Let now F' € E(B, A) be s.t. |[Ind(F)z|| = m(z), z € Proj(Z); then || Ind(E,)| =
| Ind(F,)| a.e., from standard measure theoretic arguments. Therefore, from 3.5,
Ind(E,) < Ind(F,) a.e. and the thesis follows.
Uniqueness follows from 3.5.

O

3.7 Definition. We call E of proposition 3.6 the minimal conditional expectation in
E(B,A).

4. The modular group.

The first part of this section is taken from an unpublished manuscript of R. Longo.
First of all, let us review some notions and results from [20] that we will use throughout
the following.

Let M be a properly infinite von Neumann algebra; then a norm closed linear
subspace H of M is said to be a Hilbert space in M if a € H implies a*a € C, and
x € M, za=0,Va € H implies z = 0. Let us denote with H (M) the set of all Hilbert
spaces in M.

A unital normal endomorphism p € End(M) is said to be inner if there exists
H € H(M) such that, if {v; : i € I} is a basis of H, p(z) = >_,.; vizv], where the
series is strongly summable. In this case we write p = py and it follows that pg is
faithful and we have the isomorphism M = py(M) ® (H, H), where (H,H) := {z €
M :a*zbe C,Va,be H} =2 B(H).

Let now G be a separable compact group, and « : G — Aut(M) be a continuous
action. We recall that « is said to be dominant if (i) M* = {z € M : a4(z) =
z,Yg € G} is properly infinite, and (i) Vr € G there exists H € H®(M), the set of
a-invariant Hilbert spaces in M, such that a|g = . Then, from [20, th. 6.5], we have
M = (M*, H*(M)) the von Neumann algebra generated by M* and the set H*(M).
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In this section we want to describe the modular structure of M, knowing that of
M®. To begin with, let H € H*(M) be a Hilbert space in M, invariant with respect
to a, and p = pgy be the corresponding inner endomorphism. Then we have:

4.1 Lemma. With the above notation, if {v;,i € I} is a basis of H, the tensor
product decomposition M = py (M) ® (H, H) is given by

T = Z p(zij) v},

ijel
where x;; := v xv;, and the series is strongly summable.

Proof.

E p(ij) V;V; E E vkx”vkvz E VT4V J E VU] LUV J =z.

i,J€1 i,5€l kel i,j€1 i,7€T
O

4.2 Remark. If we set d :=dimH and ® : x € M — [vizv;] € Maty(M), then from
lemma 4.1 we get
r =Y p(®(x)ij)viv}.
ijel
Therefore the inverse of ® is given by ®~![z;;] = Doijer Vitijvy = 3 icr p(Tig)viv].
Note also that ® - p(z) =2 ® 1, and (X)) = > i jer P®1d(X)i5v;07, where we have
used the identification Matqy(M) = M @ Maty(C).

Denote by ¢ : M — M® the normal faithful conditional expectation given by
€ = fG ay(-)dg, and suppose we are given a normal faithful state ¢y on M with
modular group o%°; we wish to describe 0%, where ¢ := g - ¢ is a faithful normal state
on M.

Let H € HY(M); since 0¥ commutes with a, as ¢ is a-invariant, we get o%(H) €
H*(M). Set uy == >, viof (v;)*, where {v;,i € I} is a basis of H. Then o7 (v) =
uyv, Vv € H.

4.3 Lemma. With the above notation, u; is a unitary o¥-cocycle that does not
depend on the basis of H.

Proof.
up v = 0f (V) = of (08 (v) = of (uzv) = of (uj)ujv, Yo € H.

Thus uf, , = o] (u})uf or upys = w0y (us). Formula of (v) = ufv shows that u; does
not depend on the basis {v;} but only on H.
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O
Since uy is a cocycle, by a result of Connes’ [21] there is a positive linear functional
¢’ on M such that of = w0 (-)uf. We want to write ¢’ explicitely.

4.4 Proposition. Ifu; is the cocycle of lemma 4.3, then the positive linear functional

¢ on M such that of = w;0f (-)ul, is given by ¢/ (z) = o>, vizv;).

Proof. Indeed

of (x) = w0 ( szat (x)0f (00} =

= Zviaf(vfxvj)v;f = Zvi(af ®id)(®(x))iv; = @~ - (of ®@id) - ().

Thus 0¥ = &1 g¥®" . &, where tr is the usual trace on Maty(C), trla;,] == 3, aii.
Let us now verify that ¢’ = (¢ ® tr) - ®, that is

(@) = (p@tr)- &) = p @ triviav] = (Y vizv).

Indeed from KMS formulas we get

E(t) = ¢’ (us) szat v;)”* Zcp viviof (vi)"zv;) ng of (vi)*zv;)

t,j

F(t+1) ng zviof (v;)%) = p(zuy).

O

Let us observe that ¢’ is a-invariant; therefore, if we set ¢f := ¢'|apa, we get

= (D¢’ : Dp)y = (Dyy : Dpg)r € M. To determine u; we need a more convenient
expression for ¢'.

4.5 Proposition.  The functional ¢’ € M, of proposition 4.4 is given by ¢’ =
do-p~t- E., where E, € E(M,p(M)) is given by E.(x ® y) = 7(y)x, Vo € p(M),
y € B(H), in the isomorphism M = p(M) ® B(H) and T := Ltr.

Proof. Indeed

= o(Y vipla)ei) = ¢(3_ vivaviv) = dp(a)



thus ¢'|,(ar) = de - p~ 1 p(ar). On the other hand
¢ (viv]) = SD(Z VRV k) = bij,
k

that is to say ¢©'|,aryan = tr.
So, if we denote with E, the normal conditional expectation from M to p(M) given
by 7, we get

¢ =dp-p'-E;.

O

4.6 Remark. As follows from lemma 4.1, Vo € M, x = szzl p(vixvj)v;v}, so that

d * * d *
Er(z) = Zm’:l p(v; m’j)Er@z‘Uj) = é > im1 P(vfTv;).

4.7 Lemma.
(i) agp = pay, Vg € G, so that p(M*) C M*;
(i7) agbBr = Eray, Vg € G, so that E.(M*) C M*%;
(t3i) VE € E(M,p(M)), s.t. agE = Eay, g€ G, onehas E-c=¢-E.

Proof. (i)

7

ag(p(2)) = ag(Y_viavy) = Z%(vi)%(w)ag(vi)* = plag(@)).

(7i) Recall that, in the isomorphism M = p(M) ® B(H), we have a = o ® adm,
E(zx®y) =71(y)z, Vo € p(M), Yy € B(H). Then

oy Er(z@y) =T1(y)ag(z) = 7(r(9)ym(9)")ay(z) =

7(adr(9)(y))ay(x) = Er(ag(x) @ adn(g)(y)) = Er - (g @ adn(g))(z @ y),

from which the thesis follows.

(ii4)
E-e(x) = E/Gozg(x)dg = /GEag(x)dg = /GagE(x)dg =c¢- FE(x),Yx € M.

g
As follows from proposition 4.5, to determine u; we have to characterize E.|pso.
For the time being, let us state a simple condition which allows us to uniquely determine

ET’M°‘~
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4.8 Proposition. If M*' A M = C, then p(M“)" A M = C. Then the restriction of
E. to M“ is unique.

Proof. Let x € p(M%)" A M?; then zp(y) = p(y)z, Yy € M*, i.e.

g TV YU; = g VYU T,
i

J

Multiplying both sides of this equality by v; on the left and by vj, on the right, we get
VpTVRY = YupaxvE, Yy € M,

that is vizvy = ®(z)pe € MY A M.

Therefore ®(z) € (M A M) ® Matq(C),Vx € p(M)' A M?,

Denote with 7(g) := a4|m, where H € H*(M) is the Hilbert space in M implementing
p, and recall that « is irreducible; then ® - o - @7 1|gy) = adm, and (M) = M ®
Maty(C)a®adr,

Therefore

B(p(M>) NM>) = (MY NM)® Maty(C) A M & Maty(C)*®4m =
= (Moc/ A M) ® Matd(c)a@)adﬂ"
Now, as M A M = C, we get p(M)' N M* = C.

To determine E.|jso in the general case we need some preparation.

Let A C B be properly infinite von Neumann algebras, G a separable compact
group, a : G — Aut(B, A) a dominant action.

4.9 Lemma. With the previous notation, V€ € E(B%, A%), 3E € E(B, A) such that
Fay=0a4E, g€ G, and E|ga = €.

Proof.  From [20, th. 6.5] and [18, th. IV.4.8] there exists an isomorphism ¢ :
{B,a} — {B* %G, 5}, where § is a dual coaction. If we identify B = B x5 G, o = 0,
then A = A% x5 G, and, [8, §5], there exists £ := & ® idg(2(q))|B € E(B,A), such
that Fay = agF, g € G, and E|g- = €.

O

4.10 Definition. = We call E the canonical lifting of £ [8]. Besides we call any
E € E(B, A) such that Eay = oy E, g € G, and E|g- = &, a lifting of €.

4.11 Lemma. Let

A C B
U U
Ao C By

11



be von Neumann algebras, E' € E(B, A), £ := E|p, € E(By, Ao), Ind(E) € Z(By),.-
Then Ind(E) > Ind(£).

Proof. Let p € E(A), ¥ € E(B]), then we have

dp  _dp-E _dlp B, _ dela,-€ _ _dpla
Wlp B dly - dY &y Ay g

where the inequality follows from [7, lemma 1.8]. Then V¢ € D(H;¢) C D(H;¢|a,)
we have ¢ - E71(0%140 (€,€)) < Y| - ETHO%(€,€)). By normality we get ¢ - 714 <
Y|p - E7Y, so that, in particular, ¥ (Ind(E)) > ¢(Ind(£)), Vi € E(Z(By)), and, as
Ind(E), Ind(€) € Z(By) ., we obtain Ind(E) > Ind(£) in Z(By)_.

O

4.12 Proposition. Let £ € E(B*, A%), E € E(B, A) a lifting of £, and suppose E
has finite index. If a| is dominant, then Ind(E) = Ind(E).

Proof. Let 9 € E(AY) and ¢ := ¢ - E -¢ € E(B) (since E and ¢ commute,
E-¢e € E(B“, A%)). The modular group o¥ of ¢ leaves A, A% and B® globally invariant.
As E = oy - E-ay" we get Ind(E) € Z(B)* C Z(B®). Indeed, if oy = adugy|p, let
us set &y = aduy € Aut(B(H)). Then by [10, lemma 1.6], E~" = (ay - E-a, ") 7! =
ag - E~1-ag ! so that Ind(E) = ay(Ind(E)) = ay(Ind(E)).
As follows from previous lemma, Ind(€) is finite, so that from proposition 2.5 we get
that 3b € B* s.t. = = b&(b*x), Vo € B*. As a|4 is dominant, B = (B*, H*(A)),
A= (A% H*(A)). Then {b} is a basis for B w.r.t. E, as VH € H*(A), Vv € H we get
bE(b*v) = bE(b*)v = v. So we obtain Ind(E) = bb* = Ind(E).

O

4.13 Remark. Let E € E(B, A); then E is uniquely determined by its action on B*
as B = (B* H*(A)) and E(v) = v, Yv € H, VH € H*(A). Hence V€ € E(B%, A%)
there is a unique lifting £ € E(B, A).

We can finally come to the characterization of the restriction, to the fixed-point
algebra, of E. € E(M,py(M)), the conditional expectation given by the trace on
pr (M) N M at least in the case dimZ(M®*) < oc.

Notice that pgy (M) and M have the same centre, and that E, is the minimal
expectation in E(M, pg(M)), as defined in 3.6, and has scalar index. Besides «|,,, (ar) is
dominant as pg is an equivariant isomorphism between {M, a} and {pg (M), @, (ar) }-

4.14 Proposition.  Suppose that dimZ(M®) < oo and let E; be the minimal
expectation in E(M, p(M)) and &, the minimal expectation in E(M®*, p(M*®)). Then
57- = ET|Ma = gm

12



Proof. Let E,, be the canonical lifting of &, to M. Then from proposition 4.12 we
get [ Ind(Ep)| = [Ind(Ex)|| < ||[Ind(E;)|| = Ind(E;) = Ind(E;), as E, is a lifting of
&, as is easily verified.
As Ind(E;) < ||[Ind(Ep)|| we get ||[Ind(E,,)| = [[Ind(Ey)| = Ind(E;) = Ind(E;).
Therefore from 3.5 and 4.12 we get Ind(E,,) = Ind(&,) < Ind(&;) = Ind(E;) <
Ind(E,,). Hence E,, = E., as E, is the unique minimal expectation in E(M, p(M)).
Then E;|pje = Ep|pe = Em.

g

Gathering together what we have found thus far we can state the following

4.15 Theorem. Let M be a properly infinite von Neumann algebra, o a dominant
action of a separable compact group s.t. dimZ(M®) < oo, € : M — M® the normal
faithful conditional expectation from M to M%, ¢ a faithful normal state on M“ and
set ¢ := o -e. Then VH € H*(M), a-invariant Hilbert space in M, we get

Q

f(x)=0f"(x), VYzeM®,

of (v) = uy v, Vv e H,

where ug; := (Deg : Do) € M®, og = dim(H)po - pr - Em, Eg : M — ppr (M)
the minimal normal conditional expectation.

4.16 Proposition. Let M be a properly infinite von Neumann algebra, o a dominant
action of a finite group, € : M — M® the normal faithful conditional expectation from
M to M®, pg a faithful normal state on M® and set ¢ := ¢q -€. Then VH € H*(M),
a-invariant Hilbert space in M, we get

of () =of%(x), Ve M,

of (v) = up v, Vv H,

where up,; = (Dog : Dog)r € M, o = dim(H)po - pl_j[1 -y, and Eg : M* —
pr(M®) is the minimal expectation given in proposition 3.6.

Proof. Let M = fEB M, du(w) be the decomposition of M w.r.t. Z(M)“. Then,
as Z(M)* = [¥ Z(M,,)*du(w), we get Z(M,)* = C ae. As Z(M,)* C Z(M,)
has finite index because the group is finite, from [1] dimZ (M, ) < co. As the inclusion
Mg« C M, has finite index again because the group is finite, from [1] dimZ(MS«) <
oo. Let us denote with g, € E(M,, prw(M,)) the minimal expectation, and with
En = Ye i.wdp(w) the minimal expectation given in proposition 3.6. Then it is easy
to see, using arguments similar to those in proposition 4.14, that £ is the restriction

to M“ of the minimal expectation Eg of E(M, py(M)) and this completes the proof.
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The lack of a definition of minimal conditional expectation in full generality pre-

vents us to solve the problem in the general case of a dominant action of a separable

compact group, so we use another approach, based on [16]. We hope to return to the
approach based on the minimal expectation somewhere else.

Let H € H*(M), and {v; : i =1,...,d} be a basis of H; then

d
= E ViUV V]

i,j=1
is independent of the chosen basis; besides 9 H € M® is unitary and v;9gv; = v;v;.
So that, from remark 4.6, we get E(Jy) = 5 ZZ PV HY) = 5 ZZ Lp(vvy) = 1.

4.17 Proposition. Let F € E(M,py(M)) be s.t. F(9g) = L. Then F = E;.

Proof. As M = pyg(M) ® B(H), there is a bijective correspondence between
E(M,pg(M)) and the set of faithful normal states on B(H), so that there is a unique
A = [apk] € Maty(C), positive definite, with 7(A) = 1, s.t.

d d
E (v zv;)F vz = E (vizv;)T(Aviv )

Now, as {v;v}} is a set of matrix units in Matq(C), we get

d

d
* * * *
Avjv] = E ARKVR VROV, = g Ahi VY]

h,k=1 h=1

and 7(Avv}) = Laj;, so that F(z) = éZf’j:l ajip(vizv;) and

d
1 *
=3 > aiip(vivy)

1,j=1

F(Wg) =

1 we get Zw L aijp(vivy) = 1 that is Z 1 aijv;vl = 1, whence
=6 and F = E,.

J

O

4.18 Proposition. The restriction E.|pe of E. to M® is uniquely determined by

the condition E.|pre(0g) = %.

Proof. It follows from remark 4.13 and the previous proposition.
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4.19 Theorem. Let M be a properly infinite von Neumann algebra, o a dominant
action of a separable compact group, € : M — M the normal faithful conditional
expectation from M to M, ¢o a faithful normal state on M“ and set ¢ = g - €.
Then VYH € H*(M), a-invariant Hilbert space in M, we get

of () =0f%(x), Vee M,

of (v) = up v, Vv e H,

where ug ;s := (Dpm : Dyo)r € M®, og = dim(H )y - pﬁl &, and Eg : M —

pr(M?) is the unique expectation s.t. Eg(Vy) = dim(H)™L.

5. A sufficient condition for the conjugate endomorphism.

Before we come to the main result of this section we recall a few notions.

Let A, B be von Neumann algebras, then H is said to be an A — B correspondence

if it is a (separable) Hilbert space where A acts on the left, B on the right, and the
actions are normal: we denote with aéb, a € A, b € B, £ € 'H, the relative actions.
Let Corr(A, B) be the set of A — B correspondences.
Let p : A — B be a normal homomorphism, then we let H, be the Hilbert space
L?*(B) with actions a&b := p(a)Jb*JE, a € A, b € B, £ € L*(B), where J is the
modular conjugation of B. Conversely [17, prop. 2.1] if A, B are properly infinite von
Neumann algebras, and H € Corr(A, B), there is p : A — B normal homomorphism
such that H = H,.

Let H € Corr(A, B), then the conjugate correspondence H € Corr(B, A) is given
by the complex conjugate Hilbert space H with actions bfa := a*€b*, a € A, b € B,
where £ € H is the conjugate vector of ¢ € H. We say o € End(A) is a conjugate
endomorphism of p € End(A) if H, & 7:[p, and set p for a conjugate endomorphism.
Then, if A is a properly infinite von Neumann algebra, p,o € End(A) are conjugate
endomorphisms, by [17, prop. 2.3], iff V&, n € L2(A), 3¢',n' € L*(A) s.t. (&, p(x)ny) =
(n',x&'o(y)), Va,y € A, or, by [17, th. 3.1], iff 3y : A — p(A) canonical endomorphism,

st.o=p L.

Let us state and prove a sufficient condition for two endomorphisms to be conju-
gate.

5.1 Assumption. Let M be a properly infinite von Neumann algebra, and p,o €
End(M) and injective. Let v,w € M be isometries s.t. op(z)v = vz, po(z)w = we,

Vz € M, and 3\ € (0,00) s.t. w*p(v) =v*o(w) = A.

15



Set x(z) :=v*o(x)v, Y(z) := w*p(x)w, Vo € M; then x, 1) are completely positive
normal maps s.t. xp(z) = v*op(x)v =z, Yo(z) = w*po(x)w = x, Vx € M.

5.2 Lemma. E:=p-x€ E(M,p(M)), F:=0-1¢ € E(M,oc(M)).

Proof. We have only to prove faithfulness. Let us set G(y) := o-E-0~1(y) and prove
that G € E(o(M),op(M)) from which will follow immediately that £ € E(M, p(M)).
Set e := vv* € Proj(M); then op(x)e = op(x)vv* = vav* = vv*op(r) = eop(x),
Vx € M, that is e € op(M )’ A M. Besides

eog(x)e = vv*o(z)vv* = vx(z)v* = opx(x)vv* = o(E(x))e,Vr € M,

that is G(y)e = eye, Yy € a(M).
Now, if y = o(x) € o(M) and G(y*y) = 0, we have 0 = G(y*y)e = ey*ye, that
is 0 = ye = o(z)e, that is o(xz)v = 0, that is po(x)p(v) = 0, which implies 0 =
w*po(x)p(v) = zw*p(v) = Az, that is z = 0, which implies y = 0 and the faithfulness
of G.
The proof of the faithfulness of F' is analogous.

O

5.3 Theorem. Under assumption 5.1 p and o are conjugate endomorphisms and
Indg(p(M),M) = Indp(c(M), M) = X2

The proof follows closely that of [17, th. 4.1]. We divide it in some lemmas.
Choose Q2 € H cyclic and separating for M, p(M),o(M); let U,V be the canonical
unitary implementations, with respect to €2, of p, and o respectively; set J := J]g\},
Jp = J[?(M), Jo 1= J(?(M), w:=(Q,-Q) € E(M) and p :=w - E € E(M).

5.4 Lemma. ¢(z)= (®,2P), where ® := V*oU*Q.
Proof. We have, Vo € M,

p(2) = w- B(z) = (2, E(2)Q) = (2, p(vo(2)0)9)
= (Q,Uv*o(x)vU"Q) = (Q,Uv*VaV*oU*Q) = (VU Q, zV*oU*Q).

5.5 Lemma. & is cyclic and separating for M.

Proof. @ is separating for M because ¢ is faithful. We want to show that ® is also
cyclic for M. Let us set o~ 1(z) := V*2V, Vo € M. Then we get [p(M)®] = o~ 1(e) €

16



p(M) Aot (M). Indeed, Vo € M, we get

p(x)® = p(z)V*oU Q= VU UV p(x)V* U UvU*Q
=V U pop(x)p(v)Q = VU p(op(x)v)Q2
=V*U"p(vz)Q = V*U"p(v)p(x)2.
As Q is cyclic for p(M) we get,

[p(M)®] = range(V*U* p(v)) = VU* p(0)plw) UV
=V*U*p(e)UV =V*eV = o (e).

Finally, let us set ¢ := [M®], and show that ¢ = 1. Indeed ¢ = [M®] > [p(M)P] =
o~ !(e). But we have o(w)*v = X so that w*o~1(v) = A that is o 1(U)*w A, so that
w*o (e)w = w*o T (v)o 7 H(v)*w = A% and ¢ = qu*w = wr*qw > w*o " (e)w = A2 > 0

which implies ¢ = 1, and ® is cyclic for M.

Multiplying UV by a unitary in M’ if necessary, we may assume that ® €
L?(M,Q),.

Let us now set My := (M,o'(e)); then, as [p(M)®] = o~ '(e), we have that
p(M) C M C M, is Jones’ basic construction. By applying ¢ we have op(M) C
o(M) C (o(M),e) C M.

5.6 Lemma. M = (0(M),e), that is op(M) C o(M) C M = (o(M),e) is Jones’
basic construction. Besides Indg(p(M), M) = \72.

Proof. We want to apply [12, lemma 1]. Remember that in lemma 5.2 we already
proved that, with G(y) := o - E - 0~ }(y), we have G(y)e = eye, Yy € o(M).

Moreover the central support, cys(e), of e in M is 1, as cps(e) = [MeH| = [Mov*H| >
[o(w)*vv*vH] = 1.

Besides F(e) = o(e) = o(w*p(e)w) = o(w*p(v)p(v)*w) = N2

Finally, Vx € M,

F(ze)e e)e = o(w*p(xe)w)e

p(z)p(v)p(v)*w)e = Ao (w*p(z)p(v))e
) op(z)op(v)vv” = Ao(w)*op(z)vov”
) v

vre = \ze.

op(x
o(w*
Ao(w
Ao(w

Therefore, by [12, lemma 1], M = (¢(M),e), and \72F = adJ, - G™! - adJ, so that
A2 =G71(1) = Indg(op(M),o(M)) = Indg(p(M), M).
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Note that, exchanging the roles of p and o, we also get that M = (p(M), ww*)
and Indp(o(M), M) = \72.

Proof of theorem 5.3.

From the previous lemma it follows that o=} (M) = (M,o07(e)) = My = Jp(M)'J.
Therefore o~ 1(v),07t(e) € My = Jp(M)'J, so that vy = Jo 1(v)J € p(M).
The canonical unitary implementation of the isomorphism y € p(M) — yo~1(e) €
p(M)o=1(e), with respect to Q and ®, is given by the isometry wg = vpz, where
z € p(M)" is unitary. Then, from [16, prop. 3.1], we get ', := J,J = wiJwoJ =
Z*viJvozd = z*vgJvgJJzJ, thus, to compute the class of v, := adl',, the canonical
endomorphism of M into p(M ), we may assume wg = vg. Then we have, Vo € M,

Lol = vy JugJzJug Jug

= Jo ') Jo (W) zo T (v)* TJo T (v)J
= Jo H(v)* Ja_l(va( ) Jo t(v)J
= Jo () Jo  (wvropo(x))Jot(v)J]
= Jo = (v)"Jo~ (e)po(x)Jo ™ (v)]

= Jo t(w)*Jo " (e)Jo  (v)Jpo(x)

= Jo ' (v*ev)Jpo(z)

= po(z),

because Jo = (v)J € p(M) and Jo~!(e)J = o7 (e). Hence we get [po] = [7,], that is
p and o are conjugate.
O

6. The modular operators.

Recall the notation of section 4. M is a properly infinite von Neumann algebra,
« is a dominant action of a separable compact group G, € : M — M® the canonical
expectation, g € E(M®), p := pg-c € E(M). Let Q be a cyclic and separating vector
for M representing ¢ and set U,z := ay(x)Q,Vz € M. Then g € G — U, € U(H)
is a strongly continuous unitary representation of G on H and we have the following

U:@nwﬂ

decomposition for U

where G is the set of classes of irreducible unitary representations of G modulo unitary
equivalence. Let H = D, s Hr be the induced decomposition of H, that is Uls, =

N,T.
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6.1 Definition. Let E; := [, xx(g Xx(9)U,dg, where xx(g) := dxtr(n(g)), dr := degr;
then E, € B(H) is an orthogona] projection and E;H = H;.

Set ex := [ Xr(9)crg(-)dg; then e, (z)Q = E 2, Vo € M.

Set M, := e (M); then H, = [M,)].

Finally set Ey := fG Uydg, projection on the a-invariant vectors, and Hy := EqoH =
[MQ)].

A

Now let us choose, Vr € G, an a-invariant Hilbert space H, in M, such that
alg, 27, and let {v, : k=1,...,d;} be a basis for H,; then

dr
ET_I' — dﬂ' § U;‘;kEO'UTrk:;
k=1

where @ € G is a conjugate representation of 7 [15].

With the previous notation, we have

6.2 Lemma.
(1) Mz = H:M® and x = d, ZZLI v e(vak), Vo € Mxz;
(ii) My = M®Hy and & = dr Y07, (vl 2)v5,, Vo € M.

Proof. (i) Let us prove first that Mz C HXM®“. Indeed, Vx € Mz, we have

dr
v=es@)= [ xalg)ag(e)dy = d, vak [ as(may @)ds = dn 3 viye(unea).
G k=1
Then we prove H; M C Mz; indeed, Vv;, x, € HM®*, we have

e (0 4) = / xn (9) g (02 i) dg = Z / 9ty (Vi) U g

I,m=1

dr
=dy Z / ll7T kdgv = Z 5lm5lkv;mxk:v;’;kxk

I,m=1 I,m=1

and, by linearity, we are through.
(i) is analogous.
O
For the sake of completeness we report here the proof of a result, which is part of
a stronger one in [4], that we will use repeatedly in the sequel.
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6.3 Proposition. For every m € G, there exist {Vyy, : k= 1,...,d,} isometries from
‘Ho to ‘H,, with mutually orthogonal ranges, such that Zk 1 WkV =FE,.

Proof. For the sake of brevity, let us drop suffix 7= from what follows.
Let {&1,...,&} C Hy be such that Uy = Z;l:l §jm(g)ji, and let {v1,...,04} be a

basis of Hz such that a,(7;) = Z?Zl 0;7(9) ji-
Then & := S0, 5,6 € Ho: indeed

d d d d d d
= > 0m(9)ii Y & @k = > Uk Y w(@rim(g T )ij = Y bp =€
i=1 j=1 P —1

k=1 Js

Thus & = v;€ € v Ho.
Besides £ € Hyp = v € H, as

d
Ug"jjf = O‘g(@i)*f = Zﬁ-(g)ji@;g = Zﬂ(g)ﬂ@;é

Finally V¢, n € Hy we get

(05 €,05m) = (§,005n) = (§, BEoviv; Eon) = (§,€(v:07)n) =

:/G<§7ag(vz dg— Z / CVg Uz Ulvl £7O‘g(vj) Umvmn)dg

I,m=1

Z / zl7T jm(vl 57 mn)dg_d ! Z 51j5lm Ul 57 mn)

I,m=1 I,m=1

SH

=d 55 Y (OmUEn) =d " 655(E,m).
m=1
Therefore, if we set V; := v/do}|x,, we get
(Z) ‘/Z : HO - Hﬂ')
(13) (Vi€,Vim) = 6;;(€,m), that is {V;} are isometries with mutually orthogonal ranges,
and

(id1) Ha = S0, VaiHo, so that 307 Ve Vi, = En.

20



0
We now want to calculate the modular operator A, and the modular conjugation
J,, associated to (M, (), in terms of those Ay, J,, associated to (Mg , ).
Motivated from proposition 6.3, we now introduce the following unitary operators

dﬂ d7r
Uﬂ— : Zek@)ék € (jd7r ®HO - vakék € Hﬂ')
k=1 k=1

where {e, : k = 1,...,d,} is the canonical basis of C%~. To state the following theorem,
we have to recall some notation.

We set, Vi € G, or :=drpo - pzt - Ex, where pr(z) = ZZ; Uk VS, and Ex : M —
pr (M) is the normal conditional expectation given in proposition 4.16, if G is finite,
and in theorem 4.19, in the general case.

In addition we denote by A, ... the modular operator associated with

Qe M*Q C Ho — Ay, (z7) € Hyo,

where A,z € Mg — 7, (2)Qp, € Hy,, is the canonical injection in the GNS of

Pr-
Now we are ready to state and prove

6.4 Theorem. With the above notation, A, =) _~Ur(1® Ay, )Ux, where the

series converges in strong resolvent sense.

Proof. As A” : He — Ha, if we set Ay := UzALU, : Cl* @ Hy — C @ Hy, we
get Al = U*A”U,r, and then, Vo € M?,

dx dr dx
A?Zek@)l‘kQ: U:Agzvﬂkku: \/az U*A” l'kQ—
k=1 k=1 k=1
dr
= \/az Uiof (vixg)= \/72U* (vrg) 0f° (2)Q =
k=1

= Vix Z Vaktir, 0 (@),

where uz ;.= (Dpz : Do)y = A% A7, as follows from [3].

Po;pr — Po
Then we get
dr
it it —it At
AT ek @l = Vds Z TR pn D A, 42 =
k=1
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dn a4
=Ux Z V”’“Ago;soﬁxkﬂ = Z e @ AZﬁokaQ.
k=1 k=1
. it it
That is AY = 1® A;O;%
Yo Un(1® Ay, )Ux, in strong resolvent sense.

= Ap = 1® Apgpy and Ay = YU AU =

O

6.5 Remark. We can prove a little more. Set F := {F : F finite subset of G}, or-
dered by inclusion, D := )~ M, and, VF' € F, Ap := ) U.ArUZ, extended
with zero on (3 o Hr)t.

Then D is a common core for {Ap} and A, and Apé — AL, VE € D,

TEF

We now come to the decomposition of J,. We have the following

6.6 Theorem. J, =) _~Uz(1@WrJ,,) Uy, where the series is strongly summable,
and W is the canonical implementation of p;|pr«, the restriction of p, to M, with
respect to a cyclic separating vector £ € Hy for both M“ and p,(M®).

We divide the proof of the theorem in a series of lemmas.

6.7 Lemma. Let A C B be properly infinite von Neumann algebras, ) € H cyclic
and separating for B. Then 3¢ € L?(B, Q). cyclic and separating for A C B.

Proof. Let us take a & cyclic and separating for both A and B and consider the
normal state we := (¢/,-€') on B. From known results [2], there exists £ € L?(B, Q)4
such that we = (,-§). Then ¢ is cyclic and separating for A C B. In fact, let U be
the unitary operator such that Uz’ = &,V € B; then U € B’ and [A{] = [AU¢'| =
[UAE'] = 1.

0

6.8 Remark. From this lemma it follows that, VH € H*(M), 3¢ € L*(M*,Q),
cyclic and separating for pg (M) C M. Then waa = Jop-

Let now H € H*(M) be such that a|g = 7 and let {vg : k= 1,...,d} be a basis
of H. Let K € HY(M) be such that a|x = 7, and denote with {vy : £ = 1,...,d}
the conjugate basis of K. Let us set Zyg = ZZ:1 v J,0J, and, consequently,
gy i= Zzzl Ui J v Jy,; then we get

6.9 Lemma.

(1) Zpk Is a unitary operator on H which is independent of the chosen basis;
(i) JoZiigJp = Zrn;
(tit) ZuxxZi i = pu(x),Vo € M;
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(iv) Zyr commutes with Uy, Vg € G.

Proof. Let us set, for the sake of brevity, J := J, and Z := Zpk.
(7) We get

d d
7% = § vpJUy, J JogJvy, = E v J Uy O JUj,
h,k=1 h,k=1
d d
= E vpJ Jup = g vpoy = 1.

And, analogously, Z*Z = 1.
Let now {wy}, {wx} be new bases in H and K respectively. Then we get

d d d d
E wiJwgJ = g Ui’l);kwaU_JZ@jT_);J = E U,L-J@;‘TJ E V; WEWED;
k=1 i,j, k=1 ij=1 k=1
d d d d
= E U,L-J@;JE Uy WEWLY; = E viJz_);-‘Jv;‘vj = g v JoiJ = Zyk.
ij=1 k=1 ij=1 i=1
g d
(i1) JZfd = g UJV = Zkp.
(iid) Vo € M,
d d
ZxZ* = E vpJUg JxJogJvy, = g vpJ JxJ oy, v Juy,
h k=1 h,k=1

d d
= thxJJv,’; = thxv}‘; = py(x).
h=1 h=1

(tv) As U, commutes with J we have
d d
UgZU; =Y UgopUy JUGORUST = ag(vg)Jag ()] = Z,
k=1 k=1

because of (7).

Because of 6.9(iv) we can set Wy = Zyk|n, € U(H,).

6.10 Lemma. W = Wy satisfies
(1) Wag,W* = pu(z)g,, forx € M,
(44) (J<P0W*J<Po)xEo(J<P0WJ<Po) = pK('T)Em for x € M“.
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If W' € U(Hy) satisfies (i) and (ii) then there is a unitary operator z € (px (M%) N
Mg, s.t. W =W, 2Jy,.

Proof. W verifies (i) and (i) as a consequence of lemma 6.9. Let us now set
Jo = Jy, for the sake of brevity and let W' be another unitary operator on H
satisfying (i) and (i¢). Then V := W*W' is such that, for z € M,

Vep, V' = W*Wap W'W = W py(2)g,W = zg,,
that is V € (Mg, ) < JoVJo € Mg, , and

(JQV*JQ)pK(.iE)EO(JoVJo) = (JoW/*Jo)(JQWJo)pK(.Q?)EO(J()W*JQ)(J()W/J()) =

= (JoW'" Jo)x o (JoW'Jo) = prc (%) By

that is JoVJo € px(M®)p, . Therefore JoVJy =: z € (prx(M*) N M®)g,, that is
W' =WV =WJyzJy.

O

Let us set ¢ : @ € M* — wxg, € My, where My := Mg , and recall, from
proposition 2.2, that 1 is an isomorphism. Set also oy = pg|m«, for all H € H*(M),

Iy := JﬁH(MQ)JJia € U(Ho), vz =~ 1 adlg -1, the canonical endomorphism [14],

and finally o := aﬁl -vg. Then we have

6.11 Lemma. For every H € H*(M) such that a|g = 7 there exists an L € H*(M)
such that o|p 2 7 and 6 = 0.

Proof.  Let us choose a K € H*(M) such that a|x = 7, and recall that oy :=

pH|me and ok = pr|peo. We want to show that oy is conjugate to ok.

Let {v;} and {v;} be conjugate bases for H and K, respectively, and set

d d
vi=d /2 E VgV, w = d /? E Vg Uk«
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Then

d
ag(v) = d 2y 7 ag(ti)ag(vr)

k=1
d
=q /2 Z 0;0; g (U, )v;05 g (V)
i, k=1
d
=d /2 Z U0;7(9)ikT(9) ik
i, k=1
d d
d—1/2 Z ﬂivJZW 9)km(g )kz
ij=1 k=1

d
d_1/2 E @ivi =,
=1

that is v € M“, and analogously w € M®. Besides v*v = d~ 12” LU0 U =

d-! 2?21 v;v; = 1, and analogously w*w = 1, that is v,w € M and are isometries.
Moreover, Vo € M“, we get

—-1/2 2 : 12§ :
O'KO'H( / UhO'H Uk;_d / ’UkO'H ) Vk
h,k=1 k=1

d
=d 1?2 E Vp VT = VI,
k=1

and analogously ook (x)w = wz. Finally

d
w oy (v —dl/zzv vjfuv Z

1,5=1

=d! Zvvjv] —dlzvZ =d!,

1,5=1

and analogously v*ox (w) = d~!.

Then from theorem 5.3 it follows that ox = T, so that there exists z = oy (u) €
o (M®) unitary, such that ogox = ad(z)vm, hence oy (u ok (-)u) = vu.

Let us set L := u*K and o, := pp|pe, so that 77 = of.
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6.12 Lemma. For every H € H*(M) such that a|g = 7 there exists a K € H*(M)
with o|x = 7, such that Wy is the canonical implementation of oy = pg |y with
respect to the cyclic separating vector £ of remark 6.8.

Proof. Let usset R for the canonical implementation of oy ; then we get Rrp, R* =
ou(x)g,,x € M“. Besides, as R satisfies RJoR* = Jy, where Jy := J,, = waa, and

— 78
Jg = JUH(MQ)

, we get, for x € M%,
(JoR*Jo)QZEO(JQRJo) = R*JHJ()CE‘EO J()JHR = R*FHZ’EOFER
= (og' - yu(@) B, = 01(2) By,

where L is given in lemma 6.11. Therefore, by lemma 6.10, there exists z € (o (M)A
M®)g,, unitary operator such that R = Wy JozJy. Let u € pr, (M) A M® be s.t.

ug, = 2%, and set K :=uL. Then o|x =7, and, if {), : k = 1,...,d} is the conjugate
basis of L, so that {wy : k = 1,...,d}, where wy := uvy, is the conjugate basis of K,
we have
d d
Zuk =Y wedtiutt =Y opJupJJutJ,
k=1 k=1

and if we restrict to Hy,

d
Wik = ZHK|H0 = ZUICJEZJ|H0JOU*EOJO = WxrJozJy = R.
k=1

O

Proof of theorem 6.6. For every m € G let us choose an H, € H*(M) such that
alg, 2w, and a basis {vg, : k=1,...,d;}. Take K; € H*(M) such that o|g_ =7
as given by lemma 6.12, and let {w,x : k = 1,...,d;} be its conjugate basis.

Then from the definition of Z, = Zg g, we get v}, Z, = Jow},J, and then, Vr; €
Me,

dr dr
Jo Y VartrQ = dr Y Jowh T o mi =
k=1 k=1

dr dr
=V Y 05 Zed gk =Y Ve Wadoymi,
k=1 k=1

therefore Uz J,U; = 1® WrJ,,, and eventually
']cp = Z Ufr(l ® WTFJ(PO)U;>

ﬂeé

where the series is strongly summable.
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