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Abstract. Let M be a properly infinite von Neumann algebra, and α a dominant
action of a separable compact group. Choose a faithful normal state ϕ0 on the fixed-
point algebra Mα and lift it to M as ϕ := ϕ0 · ε by means of the canonical expectation
ε : M →Mα. Then we express the modular objects associated with ϕ in terms of the
modular objects associated with ϕ0.

1. Introduction.
Let M be a properly infinite von Neumann algebra, and α a dominant action of a

separable compact group G by automorphisms of M . In this paper we shall describe
the modular structure of M , in terms of the modular structure of Mα, the fixed–point
algebra of M by α.

To do this we have to use some index theory for an inclusion of von Neumann
algebras with nontrivial centre. So we recall, in section 2, the definition of the index
given by H. Kosaki [11] and some related results. Then, in section 3, we slightly extend
a recent result of J.F. Havet’s [5] on the minimal expectation between von Neumann
algebras with finite dimensional centres (proposition 3.6).

In section 4 we state our problem: we start, for simplicity, from a faithful normal
state ϕ0 on Mα, as in case of a weight we are faced with some unsubstantial techni-
cal complications, and, denoting with ε : M → Mα the normal faithful conditional
expectation of M on Mα, we express the modular group associated to ϕ := ϕ0 · ε in
terms of the modular group associated to ϕ0. To do this, we have to characterize the
restriction to Mα of some conditional expectation E of M . We consider first, both for
their importance and simplicity, prime actions, namely those with Mα′ ∧M = C, as
in this case the characterization of E|Mα is immediate (see proposition 4.8). Then we
solve the case of finite group actions using the result on the minimal conditional ex-
pectation previously proved. The general case is solved by means of another approach,
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which makes use of the unitary implementing the flip to characterize the expectation
E. Let us observe that we use, here and in section 6, the construction of the crossed
product by the dual of G given by J.E. Roberts [20], as this approach provides us with
a set of generators of M , namely Mα and the Hilbert spaces in M , in terms of which
the expression of the modular objects associated to ϕ is particularly simple. Therefore
this approach is more useful than the one based on Hopf–von Neumann algebras, for
details of which we refer to [18] and [21].

Section 5 is devoted to the proof of a sufficient condition for two endomorphisms
to be conjugate. This result is used in section 6 to compute the modular operators
associated to ϕ.

Finally, we would like to mention that this structure appears, for example, in
algebraic quantum field theory, where one may ask for the modular structure of the
local field algebras in terms of the modular structure of the local observable algebras.

2. Preliminaries.
In this section we recall some known results on the theory of index, initiated

by V. Jones [9], both for ease of reference and for fixing notations. Throughout the
paper we assume that all von Neumann algebras have separable predual, and use the
following notation: if A ⊂ B are von Neumann algebras, P (B,A) is the set of all
normal semifinite faithful (n.s.f.) A-valued weights on B, E(B,A) is the set of all
normal faithful conditional expectations from B to A; if M is a von Neumann algebra,
P (M) is the set of all n.s.f. weights on M , and E(M) is the set of all normal faithful
states on M .

Let us now recall the definition of H. Kosaki’s index [11] based on A. Connes’
spatial theory and U. Haagerup’s operator valued weights.
Let M ⊂ B(H) be a von Neumann algebra, and ψ ∈ P (M ′). We use the standard
notation:
Nψ := {x ∈M ′ : ψ(x∗x) <∞};
Mψ := N ∗ψNψ the domain of ψ;
Hψ := the Hilbert space completion of Nψ with respect to x→ ψ(x∗x)1/2;
Λψ := the canonical injection of Nψ into Hψ;
πψ := the regular representation of M ′ on Hψ, that is

πψ(x)Λψ(y) := Λψ(xy),∀x ∈M ′,∀y ∈ Nψ.

Define, ∀ξ ∈ H, the operator Rψ(ξ) : Hψ → H by

D(Rψ(ξ)) := Λψ(Nψ), Rψ(ξ)Λψ(x) := xξ, ∀x ∈ Nψ.

2



We say ξ ∈ H is ψ-bounded if Rψ(ξ) is a bounded operator, that is if ∃C > 0 s.t.
‖xξ‖ ≤ Cψ(x∗x)1/2,∀x ∈ Nψ. The set D(H;ψ) := {ξ ∈ H : ξ is ψ-bounded } is dense
in H. Let us set ϑψ(ξ, η) := Rψ(ξ)Rψ(η)∗; then ϑψ(ξ, ξ) ∈M+ (the extended positive
part of M), and, if ξ, η ∈ D(H;ψ), ϑψ(ξ, η) ∈M .

Let now ϕ ∈ P (M) and extend it to M+ and set qϕ : ξ ∈ H → qϕ(ξ) :=
ϕ(ϑψ(ξ, ξ)) ∈ [0,∞]. Then qϕ is a lower semicontinuous (hence closable) quadratic
form, thus, by Friedrichs’ theorem, there exists a unique positive self-adjoint opera-
tor dϕ/dψ on H (called the spatial derivative of ϕ relative to ψ) such that q̄ϕ(ξ) =
‖(dϕ/dψ)1/2ξ‖2.
Based on spatial theory one can prove that, if A ⊂ B are von Neumann algebras,
∀E ∈ P (B,A) there is a unique E−1 ∈ P (A′, B′) such that d(ϕ·E)/dψ = dϕ/d(ψ·E−1),
∀ϕ ∈ P (A), ∀ψ ∈ P (B′). Observe that E−1(1) ∈ Z(B)+ and does not depend on the
representation of B (as the same proof of [11, th.2.2] works).

2.1 Definition. If A ⊂ B are von Neumann algebras and E ∈ E(B,A), we say that

E has finite index if E−1(1) ∈ Z(B), and that IndE(A,B) ≡ Ind(E) := E−1(1) is the

index of E.

Let now A ⊂ B be von Neumann algebras and let E ∈ E(B,A). Let ϕ ∈ E(A),
and set ψ := ϕ ·E ∈ E(B); let Ψ ∈ H ≡ Hψ cyclic and separating for B and such that
ψ = (Ψ, ·Ψ), and set e := [AΨ] ∈ A′. We call e the Jones projection of the inclusion.
Then one has

2.2 Proposition. [11]

(i) E−1(e) = 1. In particular Ind(E) ≥ 1 and Ind(E) = 1 ⇐⇒ A = B.

(ii) exe = E(x)e, ∀x ∈ B.

(iii) x ∈ B; x ∈ A ⇐⇒ [x, e] = 0.

(iv) JBeJB = e, where JB := JΨ
B .

(v) 〈B, e〉 = JBA
′JB . This algebra is called Jones basic construction.

(vi) A := {
∑n
i=1 aiebi : ai, bi ∈ B,n ∈ N} is a dense *subalgebra of 〈B, e〉.

(vii) The central support of e in 〈B, e〉 is 1.

(viii) x ∈ A→ xe ∈ Ae = e〈B, e〉e is a surjective isomorphism.

2.3 Proposition. Let A ⊂ B be von Neumann algebras, E ∈ E(B,A) with finite

index, J a modular conjugation for B, and j := adJ . Then

(i) E1 := Ind(E)−1j ·E−1 · j(·) ∈ E(〈B, e〉, B) and E1(e) = Ind(E)−1; we call E1 the

expectation dual of E.

(ii) If Ind(E) ∈ A, Ind(E1) = Ind(E).

Proof. (i) follows by direct computation.
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(ii) Ind(E1) = E−1
1 (1) = j · E · j(Ind(E)) = j · E(Ind(E)) = Ind(E).

ut

2.4 Proposition. Let A ⊂ B be von Neumann algebras, E ∈ E(B,A) with finite

index. Let e be Jones projection and B1 := 〈B, e〉 the basic construction. Then

∀x ∈ B1, ∃! b ∈ B s.t. xe = be.

Proof. It follows from [11, lemma 3.3] with obvious modifications.
ut

2.5 Proposition. Let A ⊂ B be properly infinite von Neumann algebras, E ∈
E(B,A) with finite index. Then ∃b ∈ B s.t. x = bE(b∗x),∀x ∈ B. Moreover beb∗ = 1,

bb∗ = Ind(E), and E(b∗b) = 1.

Proof. Let v ∈ B1 be such that v∗v = e, and vv∗ = 1 and let b ∈ B be s.t.
v = ve = be. Let E1 ∈ E(B1, B) be the dual expectation. Then beb∗ = vv∗ = 1,
bb∗ = Ind(E)bE1(e)b∗ = Ind(E)E1(beb∗) = Ind(E), and E(b∗b)e = eb∗be = v∗v = e,
so that, by uniqueness in proposition 2.4, E(b∗b) = 1. Finally, ∀x ∈ B, xe = beb∗xe =
bE(b∗x)e, so that x = bE(b∗x).

ut

3. A result on the minimal expectation of an inclusion of von
Neumann algebras with nontrivial centres.

In this section we want to give one result on the minimal expectation that will be
useful in the next section. To do this, we have to prove some preliminary results on
the behaviour of expectations and indeces w.r.t. decompositions.

3.1 Proposition. Let A ⊂ B be von Neumann algebras, E ∈ E(B,A). If A =∫ ⊕
Aωdµ(ω), B =

∫ ⊕
Bωdµ(ω) are their decompositions with respect to L∞(Ω, µ) ∼=

Z ⊂ Z(A) ∧ Z(B), then for almost all ω, there exists Eω ∈ E(Bω, Aω) such that

E(x) =
∫ ⊕

Eω(xω)dµ(ω), ∀x =
∫ ⊕

xωdµ(ω) ∈ B.

Proof. Let us choose ϕ ∈ E(A) and set ψ := ϕ · E ∈ E(B); then ψ = ψ · E, and, if
σt := σψt , then σt(A) = A, ∀t ∈ R.
Let σt(x) =

∫ ⊕
σω,t(xω)dµ(ω), be its decomposition as in [22, Th.A.13] and let ϕ =∫ ⊕

ϕωdµ(ω), ψ =
∫ ⊕

ψωdµ(ω) be the decompositions of ϕ and ψ, where ϕω ∈ E(Aω),
ψω ∈ E(Bω) for almost every ω [23, prop.IV.8.34].
Observe that ψω|Aω = ϕω, from uniqueness [23, prop.IV.8.34], therefore σω,t(Aω) =
Aω,∀t ∈ R. Thus, from Takesaki’s criterion, ∃! Eω ∈ E(Bω, Aω) such that ψω · Eω =
ψω.
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Let us set F (x) :=
∫ ⊕

Eω(xω)dµ(ω),∀x ∈ B. Then it is easy to prove that F ∈ E(B,A)
and that ψ · F = ψ, so that, by uniqueness, F = E.

ut

3.2 Lemma. Let A be a von Neumann algebra,
∫ ⊕

Aωdµ(ω) its decomposition w.r.t.

L∞(Ω, µ) ∼= Z ⊂ Z(A), ϕ ∈ P (A), ϕ =
∫ ⊕

ϕωdµ(ω). Then

(i) Hϕ =
∫ ⊕Hϕωdµ(ω);

(ii) Nϕ ⊂
∫ ⊕Nϕωdµ(ω);

(iii) D(H;ϕ) ⊂ {ξ =
∫ ⊕

ξωdµ(ω) : ξω ∈ D(Hϕω ;ϕω) a.e.}.

Proof. (i) By [13, Cor. 2.7] A :=
∫ ⊕ Λϕω (Nϕω ∩ N ∗ϕω )dµ(ω) is a full left Hilbert

algebra, dense in H, and whose left von Neumann algebra is A [13, Th. 2.5]. Besides
ϕ is the weight on A determined by A, by [22, Th. A.6], so that A = Λϕ(Nϕ ∩ N ∗ϕ)
and the thesis follows.
(ii) Let x =

∫ ⊕
xωdµ(ω) ∈ Nϕ; then

∫
ϕω(x∗ωxω)dµ(ω) = ϕ(

∫ ⊕
x∗ωxωdµ(ω)) =

ϕ(x∗x) <∞ so that ϕω(x∗ωxω) <∞ a.e., that is xω ∈ Nϕω a.e.
(iii) Let ξ =

∫ ⊕
ξωdµ(ω) ∈ D(H;ϕ); then ∃C > 0 s.t. ‖xξ‖2 ≤ Cϕ(x∗x), x ∈

Nϕ, that is
∫
‖xωξω‖2dµ(ω) ≤ C

∫
ϕω(x∗ωxω)dµ(ω), x ∈ Nϕ. Then in particular

‖xωξω‖2 ≤ Cϕω(x∗ωxω), xω ∈ Nϕω ∩ N ∗ϕω a.e. Let now {uωi}i∈I ⊂ Mϕω+ be s.t.
uωi ↗ 1. Then ‖Λϕω (xω) − Λϕω (uωixω)‖ → 0 and uωixω ∈ Mϕω [21, 2.2] so that
‖xωξω‖2 ≤ Cϕω(x∗ωxω), xω ∈ Nϕω a.e., that is ξω ∈ D(Hϕω ;ϕω) a.e.

ut

3.3 Lemma. Let A =
∫ ⊕

Aωdµ(ω) be a von Neumann algebra, ϕ =
∫ ⊕

ϕωdµ(ω) ∈
P (A), ψ =

∫ ⊕
ψωdµ(ω) ∈ P (A′), where the decompositions are w.r.t. L∞(Ω, µ) ∼=

Z ⊂ Z(A). Then dϕ
dψ =

∫ ⊕ dϕω
dψω

dµ(ω).

Proof. Let ξ =
∫ ⊕

ξωdµ(ω) ∈ D(H;ψ) and x′ =
∫ ⊕

x′ωdµ(ω) ∈ Nψ; then

∫ ⊕
Rψω (ξω)dµ(ω)Λψ(x′) =

∫ ⊕
Rψω (ξω)Λψω (x′ω)dµ(ω) =

=
∫ ⊕

x′ωξωdµ(ω) = x′ξ = Rψ(ξ)Λψ(x′)

so that
∫ ⊕

Rψω (ξω)dµ(ω) = Rψ(ξ), ξ ∈ D(H;ψ).
Then ϑψ(ξ, ξ) =

∫ ⊕
ϑψω (ξω, ξω)dµ(ω), ξ ∈ D(H;ψ), whence

(
dϕ

dψ
ξ, ξ) = ϕ(ϑψ(ξ, ξ)) =

∫
ϕω(ϑψω (ξω, ξω))dµ(ω) =
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=
∫

(
dϕω
dψω

ξω, ξω)dµ(ω) = (
∫ ⊕ dϕω

dψω
dµ(ω)ξ, ξ)

for ξ ∈ D(H;ψ). Therefore dϕ
dψ ≥

∫ ⊕ dϕω
dψω

dµ(ω).
Let now ω ∈ Ω → ξω ∈

∏
ω′ D(Hω′ ;ψω′) be a measurable field, and let, ∀n ∈ N,

Ωn := {ω ∈ Ω : ‖x′ωξω‖2 ≤ nψω(x′ω
∗
x′ω), x′ω ∈ Nψω}; then ∪Ωn = Ω.

Let us observe that ∀Γ Borel subset of Ωn we get
∫ ⊕

χΓ(ω)ξωdµ(ω) ∈ D(H;ψ) so that,
from what we have proved above, we get

∫
Γ
(( dϕdψ )ωξω, ξω)dµ(ω) =

∫
Γ
(dϕωdψω

ξω, ξω)dµ(ω),

hence (( dϕdψ )ωξω, ξω) = (dϕωdψω
ξω, ξω) a.e. Therefore dϕω

dψω
≥ ( dϕdψ )ω a.e., so that dϕ

dψ ≤∫ ⊕ dϕω
dψω

dµ(ω) and the thesis follows.
ut

3.4 Theorem. Let A ⊂ B be von Neumann algebras, E ∈ E(B,A), and let

A =
∫ ⊕

Aωdµ(ω), B =
∫ ⊕

Bωdµ(ω), E =
∫ ⊕

Eωdµ(ω) their decompositions w.r.t.

L∞(Ω, µ) ∼= Z ⊂ Z(A)∧Z(B). Then E−1 =
∫ ⊕

E−1
ω dµ(ω) and in particular Ind(E) =∫ ⊕

Ind(Eω)dµ(ω).

Proof. As

dϕω

dψω · E−1
ω

=
dϕω · Eω
dψω

=
d(ϕ · E)ω
dψω

=
(dϕ · E

dψ

)
ω

=

=
( dϕ

dψ · E−1

)
ω

=
dϕω

d(ψ · E−1)ω
=

dϕω
dψω · (E−1)ω

from uniqueness of decomposition of dϕ
dψ·E−1 , we get (E−1)ω = E−1

ω a.e. and the thesis
follows.

ut
Recall that, when the two algebras A and B have finite dimensional centres,

J.F. Havet proved in [5, th. 2.9] the existence of a minimal expectation.

3.5 Theorem. Let A ⊂ B be von Neumann algebras with finite dimensional centres,

and exists E ∈ E(B,A) with finite index. Setting µ := min{‖Ind(F )‖ : F ∈ E(B,A)},
∃ !Em ∈ E(B,A) s.t.

(i) ‖Ind(Em)‖ = µ

(ii) ∀ F ∈ E(B,A) s.t. ‖Ind(F )‖ = µ there follows Ind(Em) ≤ Ind(F ).
Besides Ind(Em) ∈ Z(A) ∩ Z(B) and Em(xy) = Em(yx), x ∈ A′ ∧B, y ∈ B.

ut

3.6. Proposition. Let A ⊂ B be von Neumann algebras, E ∈ E(B,A), A =∫ ⊕
Aωdµ(ω), B =

∫ ⊕
Bωdµ(ω), E =

∫ ⊕
Eωdµ(ω) their decompositions with respect to
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L∞(Ω, µ) ∼= Z ⊂ Z(A)∧Z(B). Suppose that dim(Z(Aω)) <∞, dim(Z(Bω)) <∞ a.e.

and that Eω is the unique expectation of theorem 3.5. Set m(z) := min{‖Ind(F )z‖ :
F ∈ E(B,A)}, for all z ∈ Proj(Z). Then E is the unique expectation in E(B,A) s.t.

(i) ‖Ind(E)z‖ = m(z), ∀z ∈ Proj(Z)

(ii) ∀ F ∈ E(B,A) s.t. ‖Ind(F )z‖ = m(z), ∀z ∈ Proj(Z), there follows Ind(E) ≤
Ind(F ).

Proof. (i) Let F =
∫ ⊕

Fωdµ(ω) ∈ E(B,A) and z ∈ Proj(Z) corresponding to the
Borel subset Γ ⊂ Ω; then ‖Ind(E)z‖ = ess supΓ‖Ind(Eω)‖ ≤ ess supΓ‖Ind(Fω)‖ =
‖Ind(F )z‖.
(ii) Let now F ∈ E(B,A) be s.t. ‖Ind(F )z‖ = m(z), z ∈ Proj(Z); then ‖Ind(Eω)‖ =
‖Ind(Fω)‖ a.e., from standard measure theoretic arguments. Therefore, from 3.5,
Ind(Eω) ≤ Ind(Fω) a.e. and the thesis follows.
Uniqueness follows from 3.5.

ut

3.7 Definition. We call E of proposition 3.6 the minimal conditional expectation in

E(B,A).

4. The modular group.

The first part of this section is taken from an unpublished manuscript of R. Longo.
First of all, let us review some notions and results from [20] that we will use throughout
the following.

Let M be a properly infinite von Neumann algebra; then a norm closed linear
subspace H of M is said to be a Hilbert space in M if a ∈ H implies a∗a ∈ C, and
x ∈M , xa = 0, ∀a ∈ H implies x = 0. Let us denote with H(M) the set of all Hilbert
spaces in M .

A unital normal endomorphism ρ ∈ End(M) is said to be inner if there exists
H ∈ H(M) such that, if {vi : i ∈ I} is a basis of H, ρ(x) =

∑
i∈I vixv

∗
i , where the

series is strongly summable. In this case we write ρ = ρH and it follows that ρH is
faithful and we have the isomorphism M ∼= ρH(M) ⊗ (H,H), where (H,H) := {x ∈
M : a∗xb ∈ C,∀a, b ∈ H} ∼= B(H).

Let now G be a separable compact group, and α : G → Aut(M) be a continuous
action. We recall that α is said to be dominant if (i) Mα := {x ∈ M : αg(x) =
x,∀g ∈ G} is properly infinite, and (ii) ∀π ∈ Ĝ there exists H ∈ Hα(M), the set of
α-invariant Hilbert spaces in M, such that α|H ∼= π. Then, from [20, th. 6.5], we have
M = 〈Mα,Hα(M)〉 the von Neumann algebra generated by Mα and the set Hα(M).
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In this section we want to describe the modular structure of M , knowing that of
Mα. To begin with, let H ∈ Hα(M) be a Hilbert space in M , invariant with respect
to α, and ρ = ρH be the corresponding inner endomorphism. Then we have:

4.1 Lemma. With the above notation, if {vi, i ∈ I} is a basis of H, the tensor

product decomposition M ∼= ρH(M)⊗ (H,H) is given by

x =
∑
i,j∈I

ρ(xij)viv∗j ,

where xij := v∗i xvj , and the series is strongly summable.

Proof.∑
i,j∈I

ρ(xij)viv∗j =
∑
i,j∈I

∑
k∈I

vkxijv
∗
kviv

∗
j =

∑
i,j∈I

vixijv
∗
j =

∑
i,j∈I

viv
∗
i xvjv

∗
j = x.

ut

4.2 Remark. If we set d := dimH and Φ : x ∈M → [v∗i xvj ] ∈Matd(M), then from
lemma 4.1 we get

x =
∑
i,j∈I

ρ(Φ(x)ij)viv∗j .

Therefore the inverse of Φ is given by Φ−1[xij ] =
∑
i,j∈I vixijv

∗
j =

∑
i,j∈I ρ(xij)viv∗j .

Note also that Φ · ρ(x) = x⊗ 1, and Φ−1(X) =
∑
i,j∈I ρ⊗ id(X)ijviv∗j , where we have

used the identification Matd(M) ∼= M ⊗Matd(C).

Denote by ε : M → Mα the normal faithful conditional expectation given by
ε :=

∫
G
αg(·)dg, and suppose we are given a normal faithful state ϕ0 on Mα with

modular group σϕ0 ; we wish to describe σϕ, where ϕ := ϕ0 ·ε is a faithful normal state
on M .
Let H ∈ Hα(M); since σϕ commutes with α, as ϕ is α-invariant, we get σϕ(H) ∈
Hα(M). Set ut :=

∑
i viσ

ϕ
t (vi)∗, where {vi, i ∈ I} is a basis of H. Then σϕt (v) =

u∗t v,∀v ∈ H.

4.3 Lemma. With the above notation, ut is a unitary σϕ-cocycle that does not

depend on the basis of H.

Proof.

u∗t+sv = σϕt+s(v) = σϕt (σϕs (v)) = σϕt (u∗sv) = σϕt (u∗s)u
∗
t v,∀v ∈ H.

Thus u∗t+s = σϕt (u∗s)u
∗
t or ut+s = utσ

ϕ
t (us). Formula σϕt (v) = u∗t v shows that ut does

not depend on the basis {vi} but only on H.
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ut
Since ut is a cocycle, by a result of Connes’ [21] there is a positive linear functional

ϕ′ on M such that σϕ
′

t = utσ
ϕ
t (·)u∗t . We want to write ϕ′ explicitely.

4.4 Proposition. If ut is the cocycle of lemma 4.3, then the positive linear functional

ϕ′ on M such that σϕ
′

t = utσ
ϕ
t (·)u∗t , is given by ϕ′(x) := ϕ(

∑
i v
∗
i xvi).

Proof. Indeed

σϕ
′

t (x) = utσ
ϕ
t (x)u∗t =

∑
i,j

viσ
ϕ
t (v∗i )σϕt (x)σϕt (vj)v∗j =

=
∑
i,j

viσ
ϕ
t (v∗i xvj)v

∗
j =

∑
i,j

vi(σ
ϕ
t ⊗ id)(Φ(x))ijv∗j = Φ−1 · (σϕt ⊗ id) · Φ(x).

Thus σϕ
′

= Φ−1 · σϕ⊗tr ·Φ, where tr is the usual trace on Matd(C), tr[aij ] :=
∑
i aii.

Let us now verify that ϕ′ = (ϕ⊗ tr) · Φ, that is

ϕ′(x) = (ϕ⊗ tr) · Φ(x) = ϕ⊗ tr[v∗i xvj ] = ϕ(
∑
i

v∗i xvi).

Indeed from KMS formulas we get

F (t) = ϕ′(utx) = ϕ′(
∑
i

viσ
ϕ
t (vi)∗x) =

∑
i,j

ϕ(v∗j viσ
ϕ
t (vi)∗xvj) =

∑
i

ϕ(σϕt (vi)∗xvi)

and
F (t+ i) =

∑
i

ϕ(xviσ
ϕ
t (vi)∗) = ϕ(xut).

ut
Let us observe that ϕ′ is α-invariant; therefore, if we set ϕ′0 := ϕ′|Mα , we get

ut = (Dϕ′ : Dϕ)t = (Dϕ′0 : Dϕ0)t ∈Mα. To determine ut we need a more convenient
expression for ϕ′.

4.5 Proposition. The functional ϕ′ ∈ M∗+ of proposition 4.4 is given by ϕ′ =
dϕ · ρ−1 · Eτ , where Eτ ∈ E(M,ρ(M)) is given by Eτ (x ⊗ y) = τ(y)x, ∀x ∈ ρ(M),
y ∈ B(H), in the isomorphism M ∼= ρ(M)⊗ B(H) and τ := 1

d tr.

Proof. Indeed

ϕ′(ρ(x)) = ϕ(
∑
i

v∗i ρ(x)vi) = ϕ(
∑
i,j

v∗i vjxv
∗
j vi) = dϕ(x),

9



thus ϕ′|ρ(M) = dϕ · ρ−1|ρ(M). On the other hand

ϕ′(viv∗j ) = ϕ(
∑
k

v∗kviv
∗
j vk) = δij ,

that is to say ϕ′|ρ(M)′∧M = tr.
So, if we denote with Eτ the normal conditional expectation from M to ρ(M) given
by τ , we get

ϕ′ = dϕ · ρ−1 · Eτ .

ut

4.6 Remark. As follows from lemma 4.1, ∀x ∈M , x =
∑d
i,j=1 ρ(v∗i xvj)viv

∗
j , so that

Eτ (x) =
∑d
i,j=1 ρ(v∗i xvj)Eτ (viv∗j ) = 1

d

∑d
i=1 ρ(v∗i xvi).

4.7 Lemma.
(i) αgρ = ραg, ∀g ∈ G, so that ρ(Mα) ⊂Mα;

(ii) αgEτ = Eταg, ∀g ∈ G, so that Eτ (Mα) ⊂Mα;

(iii) ∀E ∈ E(M,ρ(M)), s.t. αgE = Eαg, g ∈ G, one has E · ε = ε · E.

Proof. (i)

αg(ρ(x)) = αg(
∑
i

vixv
∗
i ) =

∑
i

αg(vi)αg(x)αg(vi)∗ = ρ(αg(x)).

(ii) Recall that, in the isomorphism M ∼= ρ(M) ⊗ B(H), we have α ∼= α ⊗ adπ,
Eτ (x⊗ y) = τ(y)x, ∀x ∈ ρ(M), ∀y ∈ B(H). Then

αg · Eτ (x⊗ y) = τ(y)αg(x) = τ(π(g)yπ(g)∗)αg(x) =

τ(adπ(g)(y))αg(x) = Eτ (αg(x)⊗ adπ(g)(y)) = Eτ · (αg ⊗ adπ(g))(x⊗ y),

from which the thesis follows.
(iii)

E · ε(x) = E

∫
G

αg(x)dg =
∫
G

Eαg(x)dg =
∫
G

αgE(x)dg = ε · E(x),∀x ∈M.

ut
As follows from proposition 4.5, to determine ut we have to characterize Eτ |Mα .

For the time being, let us state a simple condition which allows us to uniquely determine
Eτ |Mα .
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4.8 Proposition. If Mα′ ∧M = C, then ρ(Mα)′ ∧Mα = C. Then the restriction of

Eτ to Mα is unique.

Proof. Let x ∈ ρ(Mα)′ ∧Mα; then xρ(y) = ρ(y)x,∀y ∈Mα, i.e.∑
i

xviyv
∗
i =

∑
j

vjyv
∗
jx.

Multiplying both sides of this equality by v∗h on the left and by vk on the right, we get

v∗hxvky = yv∗hxvk,∀y ∈Mα,

that is v∗hxvk = Φ(x)hk ∈Mα′ ∧M .
Therefore Φ(x) ∈ (Mα′ ∧M)⊗Matd(C),∀x ∈ ρ(Mα)′ ∧Mα.
Denote with π(g) := αg|H , where H ∈ Hα(M) is the Hilbert space in M implementing
ρ, and recall that π is irreducible; then Φ · α · Φ−1|B(H) = adπ, and Φ(Mα) = M ⊗
Matd(C)α⊗adπ.
Therefore

Φ(ρ(Mα)′ ∧Mα) = (Mα′ ∧M)⊗Matd(C) ∧M ⊗Matd(C)α⊗adπ =

= (Mα′ ∧M)⊗Matd(C)α⊗adπ.

Now, as Mα′ ∧M = C, we get ρ(Mα)′ ∧Mα = C.
ut

To determine Eτ |Mα in the general case we need some preparation.

Let A ⊂ B be properly infinite von Neumann algebras, G a separable compact
group, α : G→ Aut(B,A) a dominant action.

4.9 Lemma. With the previous notation, ∀E ∈ E(Bα, Aα), ∃E ∈ E(B,A) such that

Eαg = αgE, g ∈ G, and E|Bα = E .

Proof. From [20, th. 6.5] and [18, th. IV.4.8] there exists an isomorphism ψ :
{B,α} → {Bα×δG, δ̂}, where δ is a dual coaction. If we identify B = Bα×δG, α = δ̂,
then A = Aα ×δ G, and, [8, §5], there exists E := E ⊗ idB(L2(G))|B ∈ E(B,A), such
that Eαg = αgE, g ∈ G, and E|Bα = E .

ut

4.10 Definition. We call E the canonical lifting of E [8]. Besides we call any

E ∈ E(B,A) such that Eαg = αgE, g ∈ G, and E|Bα = E , a lifting of E .

4.11 Lemma. Let
A ⊂ B
∪ ∪
A0 ⊂ B0
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be von Neumann algebras, E ∈ E(B,A), E := E|B0 ∈ E(B0, A0), Ind(E) ∈ Z(B0)+.

Then Ind(E) ≥ Ind(E).

Proof. Let ϕ ∈ E(A), ψ ∈ E(B′0), then we have

dϕ

dψ|B′ · E−1
=
dϕ · E
dψ|B′

≤ d(ϕ · E)|B0

dψ
=
dϕ|A0 · E

dψ
=

dϕ|A0

dψ · E−1

where the inequality follows from [7, lemma 1.8]. Then ∀ξ ∈ D(H;ϕ) ⊂ D(H;ϕ|A0)
we have ψ · E−1(θϕ|A0 (ξ, ξ)) ≤ ψ|B′ · E−1(θϕ(ξ, ξ)). By normality we get ψ · E−1|A′ ≤
ψ|B′ · E−1, so that, in particular, ψ(Ind(E)) ≥ ψ(Ind(E)), ∀ψ ∈ E(Z(B0)), and, as
Ind(E), Ind(E) ∈ Z(B0)+, we obtain Ind(E) ≥ Ind(E) in Z(B0)+.

ut

4.12 Proposition. Let E ∈ E(Bα, Aα), E ∈ E(B,A) a lifting of E , and suppose E

has finite index. If α|A is dominant, then Ind(E) = Ind(E).

Proof. Let ϕ0 ∈ E(Aα) and ϕ := ϕ0 · E · ε ∈ E(B) (since E and ε commute,
E ·ε ∈ E(Bα, Aα)). The modular group σϕ of ϕ leaves A, Aα and Bα globally invariant.
As E = αg · E · α−1

g we get Ind(E) ∈ Z(B)α ⊂ Z(Bα). Indeed, if αg = adug|B , let
us set ᾱg := adug ∈ Aut(B(H)). Then by [10, lemma 1.6], E−1 = (αg · E · α−1

g )−1 =
ᾱg · E−1 · ᾱ−1

g so that Ind(E) = ᾱg(Ind(E)) = αg(Ind(E)).
As follows from previous lemma, Ind(E) is finite, so that from proposition 2.5 we get
that ∃b ∈ Bα s.t. x = bE(b∗x), ∀x ∈ Bα. As α|A is dominant, B = 〈Bα,Hα(A)〉,
A = 〈Aα,Hα(A)〉. Then {b} is a basis for B w.r.t. E, as ∀H ∈ Hα(A), ∀v ∈ H we get
bE(b∗v) = bE(b∗)v = v. So we obtain Ind(E) = bb∗ = Ind(E).

ut

4.13 Remark. Let E ∈ E(B,A); then E is uniquely determined by its action on Bα

as B = 〈Bα,Hα(A)〉 and E(v) = v, ∀v ∈ H, ∀H ∈ Hα(A). Hence ∀E ∈ E(Bα, Aα)
there is a unique lifting E ∈ E(B,A).

We can finally come to the characterization of the restriction, to the fixed-point
algebra, of Eτ ∈ E(M,ρH(M)), the conditional expectation given by the trace on
ρH(M)′ ∧M at least in the case dimZ(Mα) <∞.

Notice that ρH(M) and M have the same centre, and that Eτ is the minimal
expectation in E(M,ρH(M)), as defined in 3.6, and has scalar index. Besides α|ρH(M) is
dominant as ρH is an equivariant isomorphism between {M,α} and {ρH(M), α|ρH(M)}.

4.14 Proposition. Suppose that dimZ(Mα) < ∞ and let Eτ be the minimal

expectation in E(M,ρ(M)) and Em the minimal expectation in E(Mα, ρ(Mα)). Then

Eτ := Eτ |Mα = Em.
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Proof. Let Em be the canonical lifting of Em to M . Then from proposition 4.12 we
get ‖Ind(Em)‖ = ‖Ind(Em)‖ ≤ ‖Ind(Eτ )‖ = Ind(Eτ ) = Ind(Eτ ), as Eτ is a lifting of
Eτ , as is easily verified.
As Ind(Eτ ) ≤ ‖Ind(Em)‖ we get ‖Ind(Em)‖ = ‖Ind(Em)‖ = Ind(Eτ ) = Ind(Eτ ).
Therefore from 3.5 and 4.12 we get Ind(Em) = Ind(Em) ≤ Ind(Eτ ) = Ind(Eτ ) ≤
Ind(Em). Hence Em ≡ Eτ , as Eτ is the unique minimal expectation in E(M,ρ(M)).
Then Eτ |Mα = Em|Mα = Em.

ut
Gathering together what we have found thus far we can state the following

4.15 Theorem. Let M be a properly infinite von Neumann algebra, α a dominant

action of a separable compact group s.t. dimZ(Mα) < ∞, ε : M → Mα the normal

faithful conditional expectation from M to Mα, ϕ0 a faithful normal state on Mα and

set ϕ := ϕ0 · ε. Then ∀H ∈ Hα(M), α-invariant Hilbert space in M , we get

σϕt (x) = σϕ0
t (x), ∀x ∈Mα,

σϕt (v) = u∗H,tv, ∀v ∈ H,

where uH,t := (DϕH : Dϕ0)t ∈Mα, ϕH := dim(H)ϕ0 · ρ−1
H · EH , EH : Mα → ρH(Mα)

the minimal normal conditional expectation.

4.16 Proposition. Let M be a properly infinite von Neumann algebra, α a dominant

action of a finite group, ε : M →Mα the normal faithful conditional expectation from

M to Mα, ϕ0 a faithful normal state on Mα and set ϕ := ϕ0 · ε. Then ∀H ∈ Hα(M),
α-invariant Hilbert space in M , we get

σϕt (x) = σϕ0
t (x), ∀x ∈Mα,

σϕt (v) = u∗H,tv, ∀v ∈ H,

where uH,t := (DϕH : Dϕ0)t ∈ Mα, ϕH := dim(H)ϕ0 · ρ−1
H · EH , and EH : Mα →

ρH(Mα) is the minimal expectation given in proposition 3.6.

Proof. Let M =
∫ ⊕

Mωdµ(ω) be the decomposition of M w.r.t. Z(M)α. Then,
as Z(M)α =

∫ ⊕
Z(Mω)αωdµ(ω), we get Z(Mω)αω = C a.e. As Z(Mω)αω ⊂ Z(Mω)

has finite index because the group is finite, from [1] dimZ(Mω) <∞. As the inclusion
Mαω
ω ⊂Mω has finite index again because the group is finite, from [1] dimZ(Mαω

ω ) <
∞. Let us denote with EH,ω ∈ E(Mω, ρH,ω(Mω)) the minimal expectation, and with
EH :=

∫ ⊕ EH,ωdµ(ω) the minimal expectation given in proposition 3.6. Then it is easy
to see, using arguments similar to those in proposition 4.14, that EH is the restriction
to Mα of the minimal expectation EH of E(M,ρH(M)) and this completes the proof.
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ut
The lack of a definition of minimal conditional expectation in full generality pre-

vents us to solve the problem in the general case of a dominant action of a separable
compact group, so we use another approach, based on [16]. We hope to return to the
approach based on the minimal expectation somewhere else.

Let H ∈ Hα(M), and {vi : i = 1, . . . , d} be a basis of H; then

ϑH :=
d∑

i,j=1

vivjv
∗
i v
∗
j

is independent of the chosen basis; besides ϑH ∈ Mα is unitary and v∗i ϑHvj = vjv
∗
i .

So that, from remark 4.6, we get Eτ (ϑH) = 1
d

∑d
i=1 ρ(v∗i ϑHvi) = 1

d

∑d
i=1 ρ(viv∗i ) = 1

d .

4.17 Proposition. Let F ∈ E(M,ρH(M)) be s.t. F (ϑH) = 1
d . Then F = Eτ .

Proof. As M ∼= ρH(M) ⊗ B(H), there is a bijective correspondence between
E(M,ρH(M)) and the set of faithful normal states on B(H), so that there is a unique
A = [ahk] ∈Matd(C), positive definite, with τ(A) = 1, s.t.

F (x) =
d∑

i,j=1

ρ(v∗i xvj)F (viv∗j ) =
d∑

i,j=1

ρ(v∗i xvj)τ(Aviv∗j ).

Now, as {viv∗j } is a set of matrix units in Matd(C), we get

Aviv
∗
j =

d∑
h,k=1

ahkvhv
∗
kviv

∗
j =

d∑
h=1

ahivhv
∗
j

and τ(Aviv∗j ) = 1
daji, so that F (x) = 1

d

∑d
i,j=1 ajiρ(v∗i xvj) and

F (ϑH) =
1
d

d∑
i,j=1

aijρ(viv∗j ).

As F (ϑH) = 1
d , we get

∑d
i,j=1 aijρ(viv∗j ) = 1 that is

∑d
i,j=1 aijviv

∗
j = 1, whence

aij = δij and F = Eτ .
ut

4.18 Proposition. The restriction Eτ |Mα of Eτ to Mα is uniquely determined by

the condition Eτ |Mα(ϑH) = 1
d .

Proof. It follows from remark 4.13 and the previous proposition.
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ut

4.19 Theorem. Let M be a properly infinite von Neumann algebra, α a dominant

action of a separable compact group, ε : M → Mα the normal faithful conditional

expectation from M to Mα, ϕ0 a faithful normal state on Mα and set ϕ := ϕ0 · ε.
Then ∀H ∈ Hα(M), α-invariant Hilbert space in M , we get

σϕt (x) = σϕ0
t (x), ∀x ∈Mα,

σϕt (v) = u∗H,tv, ∀v ∈ H,

where uH,t := (DϕH : Dϕ0)t ∈ Mα, ϕH := dim(H)ϕ0 · ρ−1
H · EH , and EH : Mα →

ρH(Mα) is the unique expectation s.t. EH(ϑH) = dim(H)−1.

5. A sufficient condition for the conjugate endomorphism.
Before we come to the main result of this section we recall a few notions.
Let A,B be von Neumann algebras, then H is said to be an A−B correspondence

if it is a (separable) Hilbert space where A acts on the left, B on the right, and the
actions are normal: we denote with aξb, a ∈ A, b ∈ B, ξ ∈ H, the relative actions.
Let Corr(A,B) be the set of A−B correspondences.
Let ρ : A → B be a normal homomorphism, then we let Hρ be the Hilbert space
L2(B) with actions aξb := ρ(a)Jb∗Jξ, a ∈ A, b ∈ B, ξ ∈ L2(B), where J is the
modular conjugation of B. Conversely [17, prop. 2.1] if A,B are properly infinite von
Neumann algebras, and H ∈ Corr(A,B), there is ρ : A → B normal homomorphism
such that H ∼= Hρ.

Let H ∈ Corr(A,B), then the conjugate correspondence H̄ ∈ Corr(B,A) is given
by the complex conjugate Hilbert space H̄ with actions bξ̄a := a∗ξb∗, a ∈ A, b ∈ B,
where ξ̄ ∈ H̄ is the conjugate vector of ξ ∈ H. We say σ ∈ End(A) is a conjugate
endomorphism of ρ ∈ End(A) if Hσ ∼= H̄ρ, and set ρ̄ for a conjugate endomorphism.
Then, if A is a properly infinite von Neumann algebra, ρ, σ ∈ End(A) are conjugate
endomorphisms, by [17, prop. 2.3], iff ∀ξ, η ∈ L2(A), ∃ξ′, η′ ∈ L2(A) s.t. (ξ, ρ(x)ηy) =
(η′, xξ′σ(y)), ∀x, y ∈ A, or, by [17, th. 3.1], iff ∃γ : A→ ρ(A) canonical endomorphism,
s.t. σ = ρ−1 · γ.

Let us state and prove a sufficient condition for two endomorphisms to be conju-
gate.

5.1 Assumption. Let M be a properly infinite von Neumann algebra, and ρ, σ ∈
End(M) and injective. Let v, w ∈ M be isometries s.t. σρ(x)v = vx, ρσ(x)w = wx,
∀x ∈M , and ∃λ ∈ (0,∞) s.t. w∗ρ(v) = v∗σ(w) = λ.
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Set χ(x) := v∗σ(x)v, ψ(x) := w∗ρ(x)w, ∀x ∈M ; then χ, ψ are completely positive
normal maps s.t. χρ(x) = v∗σρ(x)v = x, ψσ(x) = w∗ρσ(x)w = x, ∀x ∈M .

5.2 Lemma. E := ρ · χ ∈ E(M,ρ(M)), F := σ · ψ ∈ E(M,σ(M)).

Proof. We have only to prove faithfulness. Let us set G(y) := σ·E ·σ−1(y) and prove
that G ∈ E(σ(M), σρ(M)) from which will follow immediately that E ∈ E(M,ρ(M)).
Set e := vv∗ ∈ Proj(M); then σρ(x)e = σρ(x)vv∗ = vxv∗ = vv∗σρ(x) = eσρ(x),
∀x ∈M , that is e ∈ σρ(M)′ ∧M . Besides

eσ(x)e = vv∗σ(x)vv∗ = vχ(x)v∗ = σρχ(x)vv∗ = σ(E(x))e,∀x ∈M,

that is G(y)e = eye, ∀y ∈ σ(M).
Now, if y = σ(x) ∈ σ(M) and G(y∗y) = 0, we have 0 = G(y∗y)e = ey∗ye, that
is 0 = ye = σ(x)e, that is σ(x)v = 0, that is ρσ(x)ρ(v) = 0, which implies 0 =
w∗ρσ(x)ρ(v) = xw∗ρ(v) = λx, that is x = 0, which implies y = 0 and the faithfulness
of G.
The proof of the faithfulness of F is analogous.

ut

5.3 Theorem. Under assumption 5.1 ρ and σ are conjugate endomorphisms and

IndE(ρ(M),M) = IndF (σ(M),M) = λ−2.

The proof follows closely that of [17, th. 4.1]. We divide it in some lemmas.
Choose Ω ∈ H cyclic and separating for M,ρ(M), σ(M); let U, V be the canonical
unitary implementations, with respect to Ω, of ρ, and σ respectively; set J := JΩ

M ,
Jρ := JΩ

ρ(M), Jσ := JΩ
σ(M), ω := (Ω, ·Ω) ∈ E(M) and ϕ := ω · E ∈ E(M).

5.4 Lemma. ϕ(x) = (Φ, xΦ), where Φ := V ∗vU∗Ω.

Proof. We have, ∀x ∈M ,

ϕ(x) = ω · E(x) = (Ω, E(x)Ω) = (Ω, ρ(v∗σ(x)v)Ω)

= (Ω, Uv∗σ(x)vU∗Ω) = (Ω, Uv∗V xV ∗vU∗Ω) = (V ∗vU∗Ω, xV ∗vU∗Ω).

ut

5.5 Lemma. Φ is cyclic and separating for M .

Proof. Φ is separating for M because ϕ is faithful. We want to show that Φ is also
cyclic for M. Let us set σ−1(x) := V ∗xV , ∀x ∈ M . Then we get [ρ(M)Φ] = σ−1(e) ∈
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ρ(M)′ ∧ σ−1(M). Indeed, ∀x ∈M , we get

ρ(x)Φ = ρ(x)V ∗vU∗Ω = V ∗U∗UV ρ(x)V ∗U∗UvU∗Ω

= V ∗U∗ρσρ(x)ρ(v)Ω = V ∗U∗ρ(σρ(x)v)Ω

= V ∗U∗ρ(vx)Ω = V ∗U∗ρ(v)ρ(x)Ω.

As Ω is cyclic for ρ(M) we get,

[ρ(M)Φ] = range(V ∗U∗ρ(v)) = V ∗U∗ρ(v)ρ(v)∗UV

= V ∗U∗ρ(e)UV = V ∗eV = σ−1(e).

Finally, let us set q := [MΦ], and show that q = 1. Indeed q = [MΦ] ≥ [ρ(M)Φ] =
σ−1(e). But we have σ(w)∗v = λ so that w∗σ−1(v) = λ that is σ−1(v)∗w = λ, so that
w∗σ−1(e)w = w∗σ−1(v)σ−1(v)∗w = λ2 and q = qw∗w = w∗qw ≥ w∗σ−1(e)w = λ2 > 0
which implies q = 1, and Φ is cyclic for M .

ut

Multiplying UV by a unitary in M ′, if necessary, we may assume that Φ ∈
L2(M,Ω)+.

Let us now set M1 := 〈M,σ−1(e)〉; then, as [ρ(M)Φ] = σ−1(e), we have that
ρ(M) ⊂ M ⊂ M1 is Jones’ basic construction. By applying σ we have σρ(M) ⊂
σ(M) ⊂ 〈σ(M), e〉 ⊂M .

5.6 Lemma. M = 〈σ(M), e〉, that is σρ(M) ⊂ σ(M) ⊂ M = 〈σ(M), e〉 is Jones’

basic construction. Besides IndE(ρ(M),M) = λ−2.

Proof. We want to apply [12, lemma 1]. Remember that in lemma 5.2 we already
proved that, with G(y) := σ · E · σ−1(y), we have G(y)e = eye, ∀y ∈ σ(M).
Moreover the central support, cM (e), of e in M is 1, as cM (e) ≡ [MeH] = [Mvv∗H] ≥
[σ(w)∗vv∗vH] = 1.
Besides F (e) = σψ(e) = σ(w∗ρ(e)w) = σ(w∗ρ(v)ρ(v)∗w) = λ2.
Finally, ∀x ∈M ,

F (xe)e = σψ(xe)e = σ(w∗ρ(xe)w)e

= σ(w∗ρ(x)ρ(v)ρ(v)∗w)e = λσ(w∗ρ(x)ρ(v))e

= λσ(w)∗σρ(x)σρ(v)vv∗ = λσ(w)∗σρ(x)vvv∗

= λσ(w)∗vxe = λ2xe.

Therefore, by [12, lemma 1], M = 〈σ(M), e〉, and λ−2F = adJσ · G−1 · adJσ so that
λ−2 = G−1(1) = IndG(σρ(M), σ(M)) = IndE(ρ(M),M).
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ut
Note that, exchanging the roles of ρ and σ, we also get that M = 〈ρ(M), ww∗〉

and IndF (σ(M),M) = λ−2.

Proof of theorem 5.3.
From the previous lemma it follows that σ−1(M) = 〈M,σ−1(e)〉 = M1 = Jρ(M)′J .
Therefore σ−1(v), σ−1(e) ∈ M1 = Jρ(M)′J , so that v0 := Jσ−1(v)J ∈ ρ(M)′.
The canonical unitary implementation of the isomorphism y ∈ ρ(M) → yσ−1(e) ∈
ρ(M)σ−1(e), with respect to Ω and Φ, is given by the isometry w0 = v0z, where
z ∈ ρ(M)′ is unitary. Then, from [16, prop. 3.1], we get Γρ := JρJ = w∗0Jw0J =
z∗v∗0Jv0zJ = z∗v∗0Jv0JJzJ , thus, to compute the class of γρ := adΓρ, the canonical
endomorphism of M into ρ(M), we may assume w0 = v0. Then we have, ∀x ∈M ,

ΓρxΓ∗ρ = v∗0Jv0JxJv
∗
0Jv0

= Jσ−1(v)∗Jσ−1(v)xσ−1(v)∗Jσ−1(v)J

= Jσ−1(v)∗Jσ−1(vσ(x)v∗)Jσ−1(v)J

= Jσ−1(v)∗Jσ−1(vv∗σρσ(x))Jσ−1(v)J

= Jσ−1(v)∗Jσ−1(e)ρσ(x)Jσ−1(v)J

= Jσ−1(v)∗Jσ−1(e)Jσ−1(v)Jρσ(x)

= Jσ−1(v∗ev)Jρσ(x)

= ρσ(x),

because Jσ−1(v)J ∈ ρ(M)′ and Jσ−1(e)J = σ−1(e). Hence we get [ρσ] = [γρ], that is
ρ and σ are conjugate.

ut

6. The modular operators.
Recall the notation of section 4. M is a properly infinite von Neumann algebra,

α is a dominant action of a separable compact group G, ε : M → Mα the canonical
expectation, ϕ0 ∈ E(Mα), ϕ := ϕ0 ·ε ∈ E(M). Let Ω be a cyclic and separating vector
for M representing ϕ and set UgxΩ := αg(x)Ω,∀x ∈ M . Then g ∈ G → Ug ∈ U(H)
is a strongly continuous unitary representation of G on H and we have the following
decomposition for U

U =
⊕
π∈Ĝ

nππ

where Ĝ is the set of classes of irreducible unitary representations of G modulo unitary
equivalence. Let H =

⊕
π∈ĜHπ be the induced decomposition of H, that is U |Hπ =

nππ.
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6.1 Definition. Let Eπ :=
∫
G
χπ(g)Ugdg, where χπ(g) := dπtr(π(g)), dπ := degπ;

then Eπ ∈ B(H) is an orthogonal projection and EπH = Hπ.

Set επ :=
∫
G
χπ(g)αg(·)dg; then επ(x)Ω = EπxΩ, ∀x ∈M .

Set Mπ := επ(M); then Hπ = [MπΩ].
Finally set E0 :=

∫
G
Ugdg, projection on the α-invariant vectors, and H0 := E0H =

[MαΩ].

Now let us choose, ∀π ∈ Ĝ, an α-invariant Hilbert space Hπ in M , such that
α|Hπ ∼= π, and let {vπk : k = 1, . . . , dπ} be a basis for Hπ; then

Eπ̄ = dπ

dπ∑
k=1

v∗πkE0vπk,

where π̄ ∈ Ĝ is a conjugate representation of π [15].
With the previous notation, we have

6.2 Lemma.
(i) Mπ̄ = H∗πM

α and x = dπ
∑dπ
k=1 v

∗
πkε(vπkx),∀x ∈Mπ̄;

(ii) Mπ̄ = MαHπ̄ and x = dπ
∑dπ
k=1 ε(v

∗
π̄kx)v∗π̄k,∀x ∈Mπ̄.

Proof. (i) Let us prove first that Mπ̄ ⊂ H∗πMα. Indeed, ∀x ∈Mπ̄, we have

x = επ̄(x) =
∫
G

χπ(g)αg(x)dg = dπ

dπ∑
k=1

v∗πk

∫
G

αg(vπk)αg(x)dg = dπ

dπ∑
k=1

v∗πkε(vπkx).

Then we prove H∗πM
α ⊂Mπ̄; indeed, ∀v∗πkxk ∈ H∗πMα, we have

επ̄(v∗πkxk) =
∫
G

χπ(g)αg(v∗πkxk)dg = dπ

dπ∑
l,m=1

∫
G

π(g)llαg(vπk)∗vπmv∗πmdgxk

= dπ

dπ∑
l,m=1

∫
G

π(g)llπ(g)mkdgv∗πmxk =
dπ∑

l,m=1

δlmδlkv
∗
πmxk = v∗πkxk

and, by linearity, we are through.
(ii) is analogous.

ut
For the sake of completeness we report here the proof of a result, which is part of

a stronger one in [4], that we will use repeatedly in the sequel.
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6.3 Proposition. For every π ∈ Ĝ, there exist {Vπk : k = 1, . . . , dπ} isometries from

H0 to Hπ, with mutually orthogonal ranges, such that
∑dπ
k=1 VπkV

∗
πk = Eπ.

Proof. For the sake of brevity, let us drop suffix π from what follows.
Let {ξ1, . . . , ξd} ⊂ Hπ be such that Ugξi =

∑d
j=1 ξjπ(g)ji, and let {v̄1, . . . , v̄d} be a

basis of Hπ̄ such that αg(v̄i) =
∑d
j=1 v̄j π̄(g)ji.

Then ξ :=
∑d
i=1 v̄iξi ∈ H0: indeed

Ugξ =
d∑
i=1

Ug v̄iξi =
d∑
i=1

Ug v̄iU
∗
gUgξi =

d∑
i=1

αg(v̄i)Ugξi =

=
d∑
i=1

d∑
j=1

v̄j π̄(g)ji
d∑
k=1

ξkπ(g)ki =
d∑

j,k=1

v̄jξk

d∑
i=1

π(g)kiπ(g−1)ij =
d∑
k=1

v̄kξk = ξ.

Thus ξi = v̄∗i ξ ∈ v̄∗iH0.
Besides ξ ∈ H0 ⇒ v̄∗i ξ ∈ Hπ as

Ug v̄
∗
i ξ = αg(v̄i)∗ξ =

d∑
j=1

π̄(g)jiv̄∗j ξ =
d∑
j=1

π(g)jiv̄∗j ξ.

Finally ∀ξ, η ∈ H0 we get

(v̄∗i ξ, v̄
∗
j η) = (ξ, v̄iv̄∗j η) = (ξ, E0v̄iv̄

∗
jE0η) = (ξ, ε(v̄iv̄∗j )η) =

=
∫
G

(ξ, αg(v̄iv̄∗j )η)dg =
d∑

l,m=1

∫
G

(αg(v̄i)∗v̄lv̄∗l ξ, αg(v̄j)
∗v̄mv̄

∗
mη)dg =

=
d∑

l,m=1

∫
G

π̄(g)ilπ̄(g)jm(v̄∗l ξ, v̄
∗
mη)dg = d−1

d∑
l,m=1

δijδlm(v̄∗l ξ, v̄
∗
mη) =

= d−1δij

d∑
m=1

(v̄mv̄∗mξ, η) = d−1δij(ξ, η).

Therefore, if we set Vi :=
√
dv̄∗i |H0 , we get

(i) Vi : H0 → Hπ,
(ii) (Viξ, Vjη) = δij(ξ, η), that is {Vi} are isometries with mutually orthogonal ranges,
and
(iii) Hπ =

∑d
i=1 VπiH0, so that

∑dπ
k=1 VπkV

∗
πk = Eπ.
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ut
We now want to calculate the modular operator ∆ϕ, and the modular conjugation

Jϕ associated to (M,Ω), in terms of those ∆ϕ0 , Jϕ0 associated to (Mα
E0
,Ω).

Motivated from proposition 6.3, we now introduce the following unitary operators

Uπ :
dπ∑
k=1

ek ⊗ ξk ∈ Cdπ ⊗H0 →
dπ∑
k=1

Vπkξk ∈ Hπ,

where {ek : k = 1, . . . , dπ} is the canonical basis of Cdπ . To state the following theorem,
we have to recall some notation.
We set, ∀π ∈ Ĝ, ϕπ := dπϕ0 · ρ−1

π · Eπ, where ρπ(x) :=
∑dπ
k=1 vπkxv

∗
πk, and Eπ : Mα →

ρπ(Mα) is the normal conditional expectation given in proposition 4.16, if G is finite,
and in theorem 4.19, in the general case.
In addition we denote by ∆ϕ0;ϕπ the modular operator associated with

xΩ ∈MαΩ ⊂ H0 → Λϕπ (x∗) ∈ Hϕπ ,

where Λϕπ : x ∈ Mα
E0
→ πϕπ (x)Ωϕπ ∈ Hϕπ , is the canonical injection in the GNS of

ϕπ.
Now we are ready to state and prove

6.4 Theorem. With the above notation, ∆ϕ =
∑
π∈Ĝ Uπ(1⊗∆ϕ0;ϕπ̄ )U∗π , where the

series converges in strong resolvent sense.

Proof. As ∆it
ϕ : Hπ → Hπ, if we set ∆π := U∗π∆ϕUπ : Cdπ ⊗H0 → Cdπ ⊗H0, we

get ∆it
π = U∗π∆it

ϕUπ, and then, ∀x ∈Mα,

∆it
π

dπ∑
k=1

ek ⊗ xkΩ = U∗π∆it
ϕ

dπ∑
k=1

VπkxkΩ =
√
dπ

dπ∑
k=1

U∗π∆it
ϕv
∗
π̄kxkΩ =

=
√
dπ

dπ∑
k=1

U∗πσ
ϕ
t (v∗π̄kxk)Ω =

√
dπ

dπ∑
k=1

U∗πσ
ϕ
t (vπ̄k)∗σϕ0

t (xk)Ω =

=
√
dπ

dπ∑
k=1

U∗πv
∗
π̄kuπ̄,tσ

ϕ0
t (xk)Ω,

where uπ̄,t := (Dϕπ̄ : Dϕ0)t = ∆it
ϕ0;ϕπ̄∆−itϕ0

, as follows from [3].
Then we get

∆it
π

dπ∑
k=1

ek ⊗ xkΩ =
√
dπ

dπ∑
k=1

U∗πv
∗
π̄k∆it

ϕ0;ϕπ̄∆−itϕ0
∆it
ϕ0
xkΩ =
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= U∗π

dπ∑
k=1

Vπk∆it
ϕ0;ϕπ̄xkΩ =

dπ∑
k=1

ek ⊗∆it
ϕ0;ϕπ̄xkΩ.

That is ∆it
π = 1 ⊗ ∆it

ϕ0;ϕπ̄ ⇒ ∆π = 1 ⊗ ∆ϕ0;ϕπ̄ and ∆ϕ =
∑
π∈Ĝ Uπ∆πU

∗
π =∑

π∈Ĝ Uπ(1⊗∆ϕ0;ϕπ̄ )U∗π , in strong resolvent sense.
ut

6.5 Remark. We can prove a little more. Set F := {F : F finite subset of Ĝ}, or-
dered by inclusion, D :=

∑
π∈ĜMπΩ, and, ∀F ∈ F , ∆F :=

∑
π∈F Uπ∆πU

∗
π , extended

with zero on (
∑
π∈F Hπ)⊥.

Then D is a common core for {∆F } and ∆ϕ, and ∆F ξ → ∆ϕξ,∀ξ ∈ D.

We now come to the decomposition of Jϕ. We have the following

6.6 Theorem. Jϕ =
∑
π∈Ĝ Uπ̄(1⊗WπJϕ0)U∗π , where the series is strongly summable,

and Wπ is the canonical implementation of ρπ|Mα , the restriction of ρπ to Mα, with

respect to a cyclic separating vector ξ ∈ H0 for both Mα and ρπ(Mα).

We divide the proof of the theorem in a series of lemmas.

6.7 Lemma. Let A ⊂ B be properly infinite von Neumann algebras, Ω ∈ H cyclic

and separating for B. Then ∃ξ ∈ L2(B,Ω)+ cyclic and separating for A ⊂ B.

Proof. Let us take a ξ′ cyclic and separating for both A and B and consider the
normal state ωξ′ := (ξ′, ·ξ′) on B. From known results [2], there exists ξ ∈ L2(B,Ω)+

such that ωξ′ = (ξ, ·ξ). Then ξ is cyclic and separating for A ⊂ B. In fact, let U be
the unitary operator such that Uxξ′ = xξ,∀x ∈ B; then U ∈ B′ and [Aξ] = [AUξ′] =
[UAξ′] = 1.

ut

6.8 Remark. From this lemma it follows that, ∀H ∈ Hα(M), ∃ξ ∈ L2(Mα,Ω)+,

cyclic and separating for ρH(Mα) ⊂Mα. Then JξMα = Jϕ0 .

Let now H ∈ Hα(M) be such that α|H ∼= π and let {vk : k = 1, . . . , d} be a basis
of H. Let K ∈ Hα(M) be such that α|K ∼= π̄, and denote with {v̄k : k = 1, . . . , d}
the conjugate basis of K. Let us set ZHK :=

∑d
k=1 vkJϕv̄

∗
kJϕ and, consequently,

ZKH :=
∑d
k=1 v̄kJϕv

∗
kJϕ; then we get

6.9 Lemma.
(i) ZHK is a unitary operator on H which is independent of the chosen basis;

(ii) JϕZ
∗
HKJϕ = ZKH ;

(iii) ZHKxZ
∗
HK = ρH(x),∀x ∈M ;
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(iv) ZHK commutes with Ug,∀g ∈ G.

Proof. Let us set, for the sake of brevity, J := Jϕ and Z := ZHK .
(i) We get

ZZ∗ =
d∑

h,k=1

vhJv̄
∗
hJJv̄kJv

∗
k =

d∑
h,k=1

vhJv̄
∗
hv̄kJv

∗
k

=
d∑

h=1

vhJJv
∗
h =

d∑
h=1

vhv
∗
h = 1.

And, analogously, Z∗Z = 1.
Let now {wk}, {w̄k} be new bases in H and K respectively. Then we get

d∑
k=1

wkJw̄
∗
kJ =

d∑
i,j,k=1

viv
∗
iwkJw̄

∗
kv̄j v̄

∗
jJ =

d∑
i,j=1

viJv̄
∗
jJ

d∑
k=1

v∗iwkw̄
∗
kv̄j

=
d∑

i,j=1

viJv̄
∗
jJ

d∑
k=1

v∗iwkw
∗
kvj =

d∑
i,j=1

viJv̄
∗
jJv

∗
i vj =

d∑
i=1

viJv̄
∗
i J = ZHK .

(ii) JZ∗HKJ =
∑d
k=1 v̄kJv

∗
kJ = ZKH .

(iii) ∀x ∈M ,

ZxZ∗ =
d∑

h,k=1

vhJv̄
∗
hJxJv̄kJv

∗
k =

d∑
h,k=1

vhJJxJv̄
∗
hv̄kJv

∗
k

=
d∑

h=1

vhxJJv
∗
h =

d∑
h=1

vhxv
∗
h = ρH(x).

(iv) As Ug commutes with J we have

UgZU
∗
g =

d∑
k=1

UgvkU
∗
g JUg v̄

∗
kU
∗
g J =

d∑
k=1

αg(vk)Jαg(v̄k)∗J = Z,

because of (i).
ut

Because of 6.9(iv) we can set WHK := ZHK |H0 ∈ U(H0).

6.10 Lemma. W ≡WHK satisfies

(i) WxE0W
∗ = ρH(x)E0 , for x ∈Mα,

(ii) (Jϕ0W
∗Jϕ0)xE0(Jϕ0WJϕ0) = ρK(x)E0 , for x ∈Mα.
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If W ′ ∈ U(H0) satisfies (i) and (ii) then there is a unitary operator z ∈ (ρK(Mα)′ ∧
Mα)E0 s.t. W ′ = WJϕ0zJϕ0 .

Proof. W verifies (i) and (ii) as a consequence of lemma 6.9. Let us now set
J0 := Jϕ0 for the sake of brevity and let W ′ be another unitary operator on H0

satisfying (i) and (ii). Then V := W ∗W ′ is such that, for x ∈Mα,

V xE0V
∗ = W ∗W ′xE0W

′∗W = W ∗ρH(x)E0W = xE0 ,

that is V ∈ (Mα
E0

)′ ⇔ J0V J0 ∈Mα
E0

, and

(J0V
∗J0)ρK(x)E0(J0V J0) = (J0W

′∗J0)(J0WJ0)ρK(x)E0(J0W
∗J0)(J0W

′J0) =

= (J0W
′∗J0)xE0(J0W

′J0) = ρK(x)E0 ,

that is J0V J0 ∈ ρK(Mα)′E0
. Therefore J0V J0 =: z ∈ (ρK(Mα)′ ∧ Mα)E0 , that is

W ′ = WV = WJ0zJ0.

ut

Let us set ψ : x ∈ Mα → xE0 ∈ M0, where M0 := Mα
E0

, and recall, from
proposition 2.2, that ψ is an isomorphism. Set also σH := ρH |Mα , for all H ∈ Hα(M),
ΓH := JξρH(Mα)J

ξ
Mα ∈ U(H0), γH := ψ−1 · adΓH ·ψ, the canonical endomorphism [14],

and finally σH := σ−1
H · γH . Then we have

6.11 Lemma. For every H ∈ Hα(M) such that α|H ∼= π there exists an L ∈ Hα(M)
such that α|L ∼= π̄ and σH = σL.

Proof. Let us choose a K ∈ Hα(M) such that α|K ∼= π̄, and recall that σH :=
ρH |Mα and σK := ρK |Mα . We want to show that σH is conjugate to σK .

Let {vi} and {v̄i} be conjugate bases for H and K, respectively, and set

v := d−1/2
d∑
k=1

v̄kvk, w := d−1/2
d∑
k=1

vkv̄k.
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Then

αg(v) = d−1/2
d∑
k=1

αg(v̄k)αg(vk)

= d−1/2
d∑

i,j,k=1

v̄iv̄
∗
i αg(v̄k)vjv∗jαg(vk)

= d−1/2
d∑

i,j,k=1

v̄ivj π̄(g)ikπ(g)jk

= d−1/2
d∑

i,j=1

v̄ivj

d∑
k=1

π(g)jkπ(g−1)ki

= d−1/2
d∑
i=1

v̄ivi = v,

that is v ∈ Mα, and analogously w ∈ Mα. Besides v∗v = d−1
∑d
i,j=1 v

∗
i v̄
∗
i v̄jvj =

d−1
∑d
i=1 v

∗
i vi = 1, and analogously w∗w = 1, that is v, w ∈ Mα and are isometries.

Moreover, ∀x ∈Mα, we get

σKσH(x)v = d−1/2
d∑

h,k=1

v̄hσH(x)v̄∗hv̄kvk = d−1/2
d∑
k=1

v̄kσH(x)vk

= d−1/2
d∑
k=1

v̄kvkx = vx,

and analogously σHσK(x)w = wx. Finally

w∗σH(v) = d−1/2
d∑

i,j=1

v̄∗i v
∗
i vjvv

∗
j = d−1/2

d∑
i=1

v̄∗i vv
∗
i

= d−1
d∑

i,j=1

v̄∗i v̄jvjv
∗
i = d−1

d∑
i=1

viv
∗
i = d−1,

and analogously v∗σK(w) = d−1.
Then from theorem 5.3 it follows that σK ∼= σH , so that there exists z = σH(u) ∈
σH(Mα) unitary, such that σHσK = ad(z)γH , hence σH(u∗σK(·)u) = γH .
Let us set L := u∗K and σL := ρL|Mα , so that σH = σL.

ut
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6.12 Lemma. For every H ∈ Hα(M) such that α|H ∼= π there exists a K ∈ Hα(M)
with α|K ∼= π̄, such that WHK is the canonical implementation of σH ≡ ρH |Mα with

respect to the cyclic separating vector ξ of remark 6.8.

Proof. Let us set R for the canonical implementation of σH ; then we get RxE0R
∗ =

σH(x)E0 , x ∈ Mα. Besides, as R satisfies RJ0R
∗ = JH , where J0 := Jϕ0 ≡ JξMα , and

JH := JξσH(Mα), we get, for x ∈Mα,

(J0R
∗J0)xE0(J0RJ0) = R∗JHJ0xE0J0JHR = R∗ΓHxE0Γ∗HR

= (σ−1
H · γH(x))E0 = σL(x)E0 ,

where L is given in lemma 6.11. Therefore, by lemma 6.10, there exists z ∈ (σL(Mα)′∧
Mα)E0 , unitary operator such that R = WHLJ0zJ0. Let u ∈ ρL(Mα)′ ∧Mα be s.t.
uE0 = z∗, and set K := uL. Then α|K ∼= π̄, and, if {v̄k : k = 1, . . . , d} is the conjugate
basis of L, so that {wk : k = 1, . . . , d}, where wk := uv̄k, is the conjugate basis of K,
we have

ZHK =
d∑
k=1

vkJv̄
∗
ku
∗J =

d∑
k=1

vkJv̄
∗
kJJu

∗J,

and if we restrict to H0,

WHK = ZHK |H0 =
d∑
k=1

vkJv̄
∗
kJ |H0J0u

∗
E0
J0 = WHLJ0zJ0 = R.

ut

Proof of theorem 6.6. For every π ∈ Ĝ let us choose an Hπ ∈ Hα(M) such that
α|Hπ ∼= π, and a basis {vπk : k = 1, . . . , dπ}. Take Kπ ∈ Hα(M) such that α|Kπ ∼= π̄

as given by lemma 6.12, and let {wπk : k = 1, . . . , dπ} be its conjugate basis.
Then from the definition of Zπ ≡ ZHπKπ we get v∗πkZπ = Jϕw

∗
πkJϕ and then, ∀xk ∈

Mα,

Jϕ

dπ∑
k=1

VπkxkΩ =
√
dπ

dπ∑
k=1

Jϕw
∗
πkJϕJϕ0xkΩ =

=
√
dπ

dπ∑
k=1

v∗πkZπJϕ0xkΩ =
dπ∑
k=1

Vπ̄kWπJϕ0xkΩ,

therefore U∗π̄JϕUπ = 1⊗WπJϕ0 , and eventually

Jϕ =
∑
π∈Ĝ

Uπ̄(1⊗WπJϕ0)U∗π ,

where the series is strongly summable.
ut
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