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Abstract

In Alain Connes noncommutative geometry, the question of the exis-
tence of a non-trivial integral can be described in terms of the singular
traceability of the compact operator \D|_d, D being the Dirac operator.

In this paper we give a non-triviality condition different from the co-
homological one used by Connes, namely we show that, under suitable
regularity conditions on the eigenvalue sequence of |D|, the dimension d
can be uniquely determined by imposing that \D|7d is singularly trace-
able, thus providing a geometric measure theoretic definition for d.

In the second part of the paper we discuss large scale counterparts of
this notion of dimension for the case of covering manifolds.

We show that A;I/Q, raised to power ap, the p-th Novikov-Shubin
number, is singularly traceable. As a consequence, Novikov-Shubin num-
bers can be considered as (asymptotic) dimensions in the sense of geomet-
ric measure theory.

Finally we show that the (lower) Novikov-Shubin number a,, coincides
with (the supremum of) the dimension at co of the semigroup generated
by the Laplacian on p-forms introduced in [24].
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0 Introduction.

In Alain Connes noncommutative geometry, integration of a function a on a
noncommutative manifold is described via the formula [a = 7(a|D|~%), where
D is an unbounded selfadjoint operator playing the role of the Dirac operator, d
is the dimension of the manifold, and 7 is a singular trace introduced by Dixmier
and corresponding to logarithmic divergences.

As a consequence the question of the existence of a non-trivial integral can
be described in terms of the singular traceability of the compact operator |D|~¢,
namely of the existence of a finite non-trivial singular trace on the ideal gener-
ated by |D|~.

In this paper we show that, under suitable regularity conditions on the eigen-
value sequence of | D|, the dimension d can be uniquely determined by imposing
that |D|~¢ is singularly traceable, thus providing a geometric measure theoretic
definition for d. We remark that with this choice of d the operator |D|~% always
produces a singular trace which gives rise to a non-trivial integration procedure,
even when the logarithmic trace fails.

Singular traceability of compact operators has been described in [1] via their
eccentricity. We propose here another sufficient condition in terms of the poly-
nomial order of (the eigenvalue sequence of) the given compact operator. More
precisely, we prove that if T has polynomial order equal to 1 it is singularly
traceable. Since the polynomial order of |D|~¢ is equal to d times the polyno-
mial order of |D| ™!, this shows that the geometric measure theoretic dimension
d coincides with the inverse of the polynomial order of |D|~1.

In the second part of the paper we discuss large scale counterparts of the
geometric measure theoretic dimension for the case of covering manifolds.

Le us recall that in the case of von Neumann algebras with a continuous trace
singular traces can be constructed on the ideal generated by a trace-compact
operator a when the eigenvalue function p,(t) has a suitable asymptotics when
t — 00, as in the discrete case.

However, a new family of singular traces arises in this case, detecting the
asymptotic behaviour of p,(t) when ¢t — 0 [13].

We prove here that if the polynomial order at 0, ordg(a), is 1, then a is
singularly traceable.

In the case of a non-compact covering M of a compact Riemannian manifold,
Atiyah considered the von Neumann algebra with continuous trace consisting
of the bounded operators on L?(M) commuting with the action of the covering
group [2]. In this case both behaviours at 0 and at oo of trace-compact operators
may give rise to singular traces.

As far as the behaviour at infinity is concerned, we note that the dimension
n of M is twice the inverse of the order at infinity of Agl, therefore, by the

result mentioned above, A;n/ % s singularly traceable at co, and the dimension
of M has a geometric measure theoretic interpretation.

We prove here that the large-scale counterpart of this dimension, namely the
number d = 2ordy(A; ')~ coincides with the k-th Novikov-Shubin number.
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As a consequence, Novikov-Shubin numbers can be considered as (asymp-
totic) dimensions in the sense of geometric measure theory, since the correspond-
ing power of A,:l/ 2 produces a singular trace. Let us remark that an asymptotic-
dimensional interpretation of the Oth Novikov-Shubin number is given by the
fact, proved by Varopoulos [25], that «p coincides with the growth of the cov-
ering group.

Finally we show that the Novikov-Shubin number q, coincides with (the
supremum of ) the dimension at co of the semigroup e~ % introduced by Varopou-
los, Saloft-Coste and Coulhon [24].

Generalizations of the mentioned results on covering manifolds to the case
of open manifolds with bounded geometry are studied in [13].

1 Polynomial order of an operator

In this section we give a quick review to some notions pertaining to singular
traces [12], and then give some sufficient conditions for the construction of sin-
gular traces in terms of the local or asymptotic polynomial order of an operator.

Let M C B(H) be a semifinite von Neumann algebra equipped with a normal
semifinite faithful trace tr. We refer the reader to [22] for the general theory of
von Neumann algebras. Let M be the collection of the closed, densely defined
operators x on H affiliated with M such that tr(e),(t,00)) < oo for some ¢ > 0.

M, equipped with strong sense operations [19] and with the topology of
convergence in measure ([21], [15]), becomes a topological x-algebra, called the
algebra of tr-measurable operators.

For any © = [;°t des(t) € My, E € R — vy(E) = tr(e,(E)) is a Borel
measure on R, and tr(z) := [°t dv,(t) is a faithful extension of tr to M.

Definition 1.1. [10] Let a € M, and define, for all ¢ > 0,

(i) Aa(t) :=tr(e)q(t,00)), the distribution function of a w.r.t. tr,

(i1) pe(t) == inf{s > 0 : A\,(s) < t}, the non-increasing rearrangement of a
w.r.t. tr, which is a non-increasing and right-continuous function. Moreover
limy o pa (t) = [la]| € [0, o0].

Remark 1.2. (i) If M := L°>°(X, m) and tr(f) := [ fdm, then M is the *-algebra
of functions that are bounded except on a set of finite m-measure, and, for any
feM, uy = f* is the classical non-increasing rearrangement of f [3].

(i4) If M = B(H) and tr is the usual trace, then pq = Y " SnX[n,n+1), Where
{sn} is the sequence of singular values of the operator a, arranged in non-
increasing order and counted with multiplicity [20].

Definition 1.3. [12] Let a € M. Then

(1) ais called 0-eccentric if, setting
Jy Ha(s)ds  pia € L1(0,1)
SO(t) :=
S} pals)ds o & L1(0,1),
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59(2t)
EHO)

1 is a limit point of { }, when t — 0.

(#i) a is called oco-eccentric if, setting

Ji pa(s)ds  pa & L'(1,00)
52°(t) =

[ a(s)ds  pa € LY(1,00),

522 (21)

1 is a limit point of { =75

}, when t — oo.

In (i) we could replace (0,1) with (0,c¢) for any ¢ < oo, and in (i) we could
replace (1,00) with (¢, 00) for any ¢ < oo, without affecting the definitions.

Theorem 1.4. ([12], Theorem 6.4) Let (M,tr) be a semifinite von Neumann
algebra with a normal semifinite faithful trace, a € My an eccentric operator.
Then there exists a singular trace T, namely a trace vanishing on projections
which are finite w.r.t. tr, whose domain is the measurable bimodule generated
by a and such that 7(a) = 1.

Now we give sufficient conditions to ensure eccentricity at 0, or at co. It is
based on the notions of order of infinite at 0 and of order of infinitesimal at oco.

Definition 1.5. For a € M we define

(¢) order of infinitesimal of a at co

orde (a) := liminf og pta(t) ,
22 Gog (/)

(#4) order of infinite of a at 0

i 108 ta (1)
ordg(a) := hgll)lglf Tog (/)

Remark 1.6. If a € M, then for any a > 0, ordy(a®) = a ord(a) and
ordp(a®) = a ordp(a).

Theorem 1.7. Let a € M be s.t. ordg(a) = 1. Then a is 0-eccentric.

Proof. Tt is a consequence of the following Propositions. ad

Proposition 1.8. Suppose p, ¢ L'(0,1), and liminf,_ o+ ﬁggé‘f/%) =1
S0 (2t)

Then limsup,_, g+ S OR 1.

Proof. Let us set x := log(1/t), and g(z) := tp,(t). Then ll‘z)ggfl“/(:)) = bgg(x) +1,

so that the hypothesis becomes liminf, ., % = 0. Besides, as S(t) =
SO(t) = j;l ta(s)ds, S is nonincreasing and convex, so that S(¢) > S(2t) >
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S(t) — tpa(t), that is 1 > 5@ > 1 — e and the thesis is implied by

50 = S(t)
o ot tpa(t g(z
liminf,_ g+ *Sb(g)) =0, but, as é(i)) = fzqg((s))ds setting G(z fo s)ds, the
thesis follows from liminf, .. Cg;((m) =0.
So we have to prove that liminf,_, . % = 0 implies liminf,_, . g((z)) = 0.
Suppose on the contrary that there are zg,e > 0 s.t. g,((;;)) > g, for x > xp.
Then, for x > x(, we have log g((;co)) = ffo %((:)) ds > e(x — xg), which implies
G(x) > G(w0)ec™ ), and g(x) > eG(z) > eG(x0)e”® %), 5o that 28I >
% + ¢ and liminf,_ o % > ¢ > 0, which is absurd. O
Proposition 1.9. Suppose p, € L1(0,1) and liminf, o+ loggﬁa/(:)) =

s
Then liminf,_, ¢+ SO((ztt)) =1.
Proof. Recall that S(t) = SO(t fo ta(s)ds, is positive, nondecreasing, con-

cave, and S(0) = 0, S(1) = 1 as we can multiply p, by a suitable positive
constant without altering our statement.

Then log S is nondecreasing and concave, and lim;_,q+ log S = —oo, so that
g = % is positive, nonincreasing, lim;_ g+ g(t) = oo, log S(t) = —ft

and fo s)ds = —lim;_,g+ log S = oo. Finally p, = S’ = ¢S, so that lloggétla/(f)) _

log(tg(t)) fr g(s)d log(tg(t)) ff g(s)ds

® +1, and the hypothesis becomes lim inf,_,+

Tog(1/t) log(1/t)
= 0, that is for any € > 0 there is t. > 0 s.t.
log(t
ox(tg(t)) — J, o S (1.1)
log(l/t)
for all t € (0,t.). Observe now that 5:92? = el 9()ds 5o that lim mfth SS((Qtt))

t
= 1 is equivalent to liminf, o+ fft (s)ds = 0, and, as 0 < ft s)ds < tg(t),
our thesis will be proved as soon as we can show that lim mftém tg( )=0. So
suppose, on the contrary, there are tg,c > 0 s.t. tg(t) > ¢, for all ¢ € (0,¢).
From inequality (1.1) it follows that

log(tg(t ft
1Og(l/t) - 10g(1/t)
clog(to/t) fto
Toa(1/1) 1og<1/t>
clogto + ftt g(s)ds
log(1/t)

C 10| 1 S S
for all ¢ € (0,min{tz,to}). As lim, o ety S0

e < ¢/4, and t; > 0 s.t. lffg(ff%))) > &, for all t € (0,t1). Then we have

=c—

= 0, we can choose
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g(t) > (1/t)/?*1 for all t € (0,t;), so that

ftl g(s)ds > ttl (1/s)/* ds + ftll g(s)ds
log(1/t) — log(1/t)

from which it follows

ft = +o00. (1.2)

0% log( 1/t)

log(g(t)—J;" g(s)ds

As inequality (1.1) it equivalent to >1—¢, forall t €(0,t.),

log(1/t)
it follows that fllogg(t) >1+(1—¢) }?g;(ls/)gs — 1, when t — 0T. Therefore,
t
with G(t) := ft s)ds, we have W > 1—¢, for all t € (0,t2). This

implies —G’( e~ (1= E)G(t) > 1, which we integrate in (0,¢) for ¢ < t9, to obtain
t < ;& e~ (179CM that is G(t) < 1 [log(1/t) — log(1 — ¢)], and choosing ¢
small enough, we get G(t) < 2log(1/t), for all ¢ near 0. But this contrasts with
equation (1.2), so we are done. O

Theorem 1.10. Let a € M be s.t. orde(a) = 1. Then a is co-eccentric.

Proof. Tt is a consequence of the following Propositions. a

Proposition 1.11. Suppose p, & L*(1,00) and liminf,_, logpa ()" _

logt
Then liminf;_, 5:900((25) =1.

Proof. Recall that S(t) = fl 1q(8)ds, is positive, nondecreasing, con-
cave, and S(1) =0, hmtHOO S(t)
Then log S is nondecreasing and concave, and lim; logS = oo so that
g = % is positive, nonincreasing, lim;_, g(t) = 0, log S(t) fl s)ds, and
[ g(s)ds = limy_oolog S = oo. Finally p, = S’ = ¢S, so that % =
W + 1, and the hypothesis becomes
log(tg(t)) +
lim sup Bltg(t fl =0 (1.3)
t—00 logt
Observe now that 5:9((2:)) = ol 9(s)ds g that lim lnft—>oo S((ztt)) = 1 is equivalent
to liminf, o fft (s)ds =0, and, as 0 < ft s)ds < tg(t), our thesis will be

proved as soon as we can show that lim 1nftHOO tg( ) = 0. So suppose, on the
contrary, there are to,c > 0 s.t. tg(t) > ¢, for all t € (tg,00). From equation

(1.3) it follows that for all & > 0 there is ¢ > 0 s.t. W < g, for
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all t > t., so that

log(tg(t) _ _Jy 9(s)ds

logt — logt
[g(s)ds  clog(t/to)
logt logt
to
clogty — d
— —c4e+ g2lo fl g(S)S
logt

clogto— fl (s)ds

for all ¢ > max{t.,tp}. Aslim; oot

and t; > max{te,to} s.t. logggggt)) < —¢, for all £ > ¢;. Then we have g(t) <

t=¢/2=1 for all t > t1, so that ¢/t < g(t) < t¢/>71 for all t > t;, and this is
absurd. O

=0, we can choose € < ¢/4,

Proposition 1.12. Suppose p, € L*(1,00) and liminf, % =1.
Then limsup,_, . Soo((it)) =1.

Proof. Setting S := S2°, as S is a decreasing and convex function, 1 > ‘Z((Qtt)) >

1- %, so that liminf, .o % = 0 implies the thesis. Let us assume on

the contrary that there are c¢,tg > 0 s.t. % > ¢, for all t > t3. Then

5;((;)) = 7$ < —¢%, so that S(t) < S(to) (i)_ = kt~¢, for some positive

k. Then tu(2t) < ft s)ds < [ p(s)ds < kt=¢, for all t > to, therefore
w(t) < k't=et for all t 2 2t0, so that hm inf; oo llgg”(t) > 1 + ¢ contrary to

g(1/t)
the hypothesis. ]

Because of their importance in determining the eccentricity properties of an
operator a, let us compute the orders of a in terms of the asymptotics of its
distribution function A,.

Proposition 1.13. ordg(a) and ords(a) are also given by

i~ (e 250)

ordso(a) = (lifjlip log(l/( j)) )

Proof. Let us set pi := g, A := Aq, and assume p is never 0 and lim;_, p(t) =
400, otherwise the proof is obvious.
Let Gy = {(z,y) € R2 :y = pu(2)}, G2 = {(z,y) € RL : = A(y)}. Then

.. logu(t) logy .. . logy

liminf ——= = lim inf = lim inf

t—oo log(l/t) t—oo(a, y)GGl log(1/x)  s—0 (z,y)<eG1 log(1/x)
y<s
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and
lim infloi = lim inf loi = lim in loi
s—0 log(1/A(s))  s—0(xp)eG, log(1/x)  t—oo (;c,y)Eth log(1/z)"
y<s >
Also
. . logy . . logy
lim inf ——— = 1lim inf —2—
=00 (wy)eG log(1/x) =0 2 y)eq; log(1/x)
x>t x>t
lim loi = lim inf loi
5—0 (z,y)€G1 log(l/x) s—0 (z,9)€G1 log(l/x) )
y<s y<s
. . logy : . logy
lim inf ———=1lim inf ———
t—00 (2,y)eGs log(1/z)  t—00 (2.4)eq; log(1/x)
>t >t
and
. . logy . . logy
Iim inf ———=1lm inf ———.
s—0 (2,9)€Gs log(1/x)  5=0 (2 4)eq, log(1/x)
y<s y<s

Define, for any y > 0, [¢y,7,] := {# >0: (z,y) € G1}, and, for any = > 0,
[do,ug] = {y>0: (z,y) € G2}. Then (z,y) € Gi NGy < (z,y) € Gy and
z € {ly,ry} <= (z,y) € Gy and y € {dy,u,}. Indeed, defining A~ (y) :=
limg_,,~ A(s), and p~ () := limy_,,— p(t), one proves that G1(u~) = G1(p) and

Go(A™) = G2()\), and the rest follows easily.
log p(t) . logp(t)
og(1/re) — log(1/t)

Finally, since ; one gets, taking the lim inf,

. . logy . . log y
lim inf ——— = lim inf —_—
1= (z,9)eCy 10g(1/2) =% (2y)eainG; log(1/x)

x>t x>t

Analogously, since 1og1(01g/1;\zs)) < log(li)/g)\s(s)) one gets, taking the liminf,
. . logy : . logy
lim inf ———— =lim inf —_—.
5—0 (zyyeds log(l/z) 520 (zy)eqina, log(1/x)
y<s y<s

Putting all this together one gets

log u(t 1 log(1/A !

lim inf LM() —liminf ——2°___ — (1im sup M
t—oo log(1/t) s—0 log(1/A(s)) 50 log s

- (i 2230)

The equality

-1
lim inf log (1) = limsupM
t—0 log(1/t) s—oo  log(1/s)

is proved in the same way (using ¢; and dy). O
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2 Some results on noncommutative geometric
measure theory

In this section we shall discuss some definitions of dimension in noncommutative
geometry in the spirit of geometric measure theory.

As it is known, the measure for a noncommutative manifold is defined via a
singular trace applied to a suitable power of some geometric operator (e.g. the
Dirac operator of the spectral triple of Alain Connes). Connes showed that such
procedure recovers the usual volume in the case of compact Riemannian mani-
folds, and more generally the Hausdorff measure in some interesting examples
[6].

Let us recall that (A, D, H) is called a spectral triple when A is an algebra
acting on the Hilbert space H, D is a self adjoint operator on the same Hilbert
space such that [D, a] is bounded for any a € A, and D has compact resolvent.
In the following we shall assume that 0 is not an eigenvalue of D, the general
case being recovered by replacing D with Dlye,(pyr. Such a triple is called
d*-summable, d € (0,00), when |D|~¢ belongs to the ideal

n

L= {a e K(H): > pu(a) = O(logn)}, (2.1)
k=1

where, in case of compact operators, we denote the non-increasing rearrange-
ment of a by ug(a), instead of py(k), to conform with tradition.

The noncommutative version of the integral on functions is given by the for-
mula 7, (a|D|~%), where 7, is a Dixmier trace, i.e. a singular trace summing
logarithmic divergences. Of course the preceding formula does not guarantee
the non-triviality of the integral, and in fact cohomological assumptions in this
direction have been considered [6]. We are interested in different conditions
for non-triviality. In this connection, introducing the space Lé’oo, where the
O(logn) in (2.1) is replaced by o(logn), we observe that the previous noncom-
mutative integration is always trivial when |D|~¢ belongs to L(l)’oo.

Lemma 2.1. Let (A, D,H) be a spectral triple. Then
inf{d > 0:|D|~% € Ly™} =sup{d > 0:|D|~¢ g L>}.

Proof. Let d* = inf{d > 0: |D|~% € £y™}, d < d*. Then [D|~% ¢ L5 for

+o .
d = %7 i.e. there exists a subsequence nyj such that

k—o0

1 & )
lim —— (ID|7%) = > 0.
im lognkjgujﬂ =) >0
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Then, setting e =1 — % > 0, for any m € N we have

li (|D|7%) = 1i (|D|~4
kl—>Holo log ny, ZMJ(‘ ™) k1—>H<>lo log ny, Z Hs(1DI75)
Jj=1 j=m
1 & (D)7
. 11
koo logmg £ p1;(|D|~)*
1 1 & /
=t (ID]~%)% koo log ng JZ;MJ(‘ =)
B 14
fim (| D] =)
By the arbitrariness of m, the limit is oo, i.e. |D|~¢ ¢ L£1°° which implies the
thesis. 0

These results, together with the examples by Connes and Sullivan [6], justify
the following definition.

Definition 2.2. Let (A, D, H) be a spectral triple. We shall call the functional
a — 7,(a|D|™%) the a-dimensional Hausdorfl measure, and the number

dg(A,D,H) =inf{d > 0: |D|™% € Ly™} =sup{d > 0: |D|~? ¢ LV}
the Hausdorff dimension of the spectral triple.

Let us observe that the d-dimensional Hausdorff measure depends on the
generalized limit procedure w, however all such functionals coincide on mea-
surable operators in the sense of Connes [6]. As in the commutative case, the
Hausdorff dimension is the supremum of the d’s such that the d-dimensional
Hausdorfl measure is everywhere infinite and the infimum of the d’s such that
the d-dimensional Hausdorff measure is identically zero.

Concerning the non-triviality of the dg-dimensional Hausdorff measure, we
have the same situation as in the classical case.

Proposition 2.3. Let (A, D, H) be a spectral triple with finite non-zero Haus-
dorff dimension dy. Then the dg-dimensional Hausdorff measure is the only
possibly non-trivial functional on A among the Hausdorff measures.

Proof. The result obviously follows by Lemma 2.1 and the definition of the
Hausdorff measures. a

According to the previous result, a non-trivial Hausdorff measure is unique
but does not necessarily exist. In fact, if the eigenvalue asymptotics of D is
e.g. nlogn, the Hausdorff dimension is one, but the 1-dimensional Hausdorff
measure gives the null functional.

We shall now propose another spectral dimension, for which the situation
is somewhat the opposite. If we consider all singular traces, not only the loga-
rithmic ones, and the corresponding functionals on A, we shall show that there
exists a non trivial functional associated with such a dimension, but such prop-
erty does not characterize this dimension.
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Definition 2.4. Let (A, D,H) be a spectral triple. We shall call the number

n—o0 logn

—1
dB(‘A7 D7g{) - Ordoo(D_l)_l = <hm1nf log’l/t”l(D))

the box dimension of the spectral triple.

Proposition 2.5. Let (A, D, H) be a spectral triple with finite non-zero box di-
mension d. Then |D|~¢ is singularly traceable, namely it gives rise to a singular
trace T which is non-trivial on the ideal generated by |D|~¢. In particular the
functional a — 7(a|D|~9) is a non-trivial trace state on the algebra A.

Proof. By definition ord,,(D~1) = d~! hence (cf. Remark 1.6) ord(|D|~%) =
1, therefore, by Theorem 1.10, |D|~¢ is eccentric and finally, by Theorem 1.4,
we get the existence of a singular trace 7. The trace property for the functional
a +— 7(a|D|~4) is proved as in [5]. O
Remark 2.6. We call the number dg a dimension since it is related to the
existence of a non-trivial geometric measure. Proposition 2.7 shows that under
suitable regularity conditions of the eigenvalue sequence p,(D) such request
determines dp uniquely, and dp coincides with d. However this is not true in
general. In a following example we describe some selfadjoint operators D for
which the numbers dy and dp are different and both |D|=9# and |D|~92 are
singularly traceable.

Proposition 2.7. Let (A, D,H) be a spectral triple with finite non-zero box
dimension.

(a) If there erists lim %, then dp = dp.

(b) If there exists lim %%:)), dp is characterized by the property that |D| =95

18 singularly traceable, and dp = dp.

Proof. (a). As dy(|D|*) = Ldy(|D|), and dp(|D|*) = Ldg(|D|), for any

T«

a > 0, we may restrict to the case dg = 1. By hypothesis we have that for any

e>0 - .
(1) < (DY < (1) |
n n

for sufficiently large n. As a consequence, if A > 1,

(D] ) < (1)

n

A+1
2

n -
hence it is a summable sequence, which implies L tn(IDI77) 0,ie dyg <1.

logn

Conversely, if A < 1, ¢
1
(DM > (=
10> (1)

A+1
2
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n -
and this implies that % = 00, i.e. dg > 1. The thesis follows.

(b). For any n € N, let k, € N be such that 2% < n < 2k*1 and write u,
for p,(D~') and assume for simplicity that pg = 1. Then
1 & log p1
_ 1 2t 2kn+1
knlog?2 Z °8 Lo kylog2

j=0
log 15,
~ logl/n
log pigrn
= (ko +1)log2
kp—1

1 Poi+1
= lo .
(kn +1)log2 JZ::O s

log pun (D)

Tog 1/m exists, hence dg = dy

Taking the limit for n — oo one gets that lim
by (a), and also

log (limk *:%:)
- log 2 ’
namely
fi2n (D7) —9-1/ds_
" (D)
Assume for the moment that ,, & ¢, and denote by s, (|D|=%) := 3"}, ue(|D|~%)
(the same as S2°(n) of section 1). Then, by a Cesaro theorem,

D —d 2n D —d 2 D —d
1im%|id) :hm%('u :hlid)
nosn([DI79) e Y k(DT un(ID]9)

d

- 220 (|D|7H) ( M2n(|D|1)) 1-d/d

=lim =2 o (lim PN ) = gld/ds
n pa(D[71) n (D7)

Therefore |D|~% is eccentric if and only if such limit is one, i.e. when d = dp. If
fin € €1, then denoting by s, (|D|~) := > 77 ui(|D|~9) (the same as S°(n) of
section 1), the calculation above, suitably modified, shows that | D| =9 is eccentric
if and only d = dp. a

Example 2.8. Let us construct a family of Dirac operators Dy, A > 1, s.t.
dp(Dy) = 1, dg(Dy) = A, and the A-dimensional Hausdor{f measure is non-
trivial. Since the dimensions and the singular traceability property depend only
on the eigenvalue sequence fi,,(A\) := p,(|Dx|™1), we shall concentrate only on
the construction of the sequence p,, ().

Let ar be any increasing diverging sequence, a; = 0, and set u, = e~* when
e < n < e*+1, Then

log fin . logppear) 1

dg' = liminf = =
B e log1/n T log 1/([e*])
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where [-] denotes the integer part. If, setting o, x = 0, (|DA| ™) = Y p_; e(A)?,

we show that

. On,\

lim sup —~

n  logn

is finite non-zero, this shows at once that dg (D)) = A and that there exists a
non trivial logarithmic singular trace on |Dy|~* [23, 1].
Now, for any A > 1, set aj := A\¥ — lf%k‘ and observe that, with this choice,
aj+1 — Aa; = jlog A —log A/(A —1). Then

On A q.. Ole®c] A .. Ole%],A

logn & log[e®] ko oag

lim sup
n
k—1
= 1ima,;1 E (e%+1 — et )e~ A
k
Jj=1

k—1 k—1
—1i —k av+1—)\a- — 13 —k .7 %
lim \ Ze i 7 = lim A Z)\ AT=x
j=1 j=1
N1 ATx
A—1 A—-1

— lim A" FATx
k

Remark 2.9. Example 2.8 describes situations where the two geometric spectral
dimensions considered here are different, and give rise to different (non trivial)
geometric integrations.

For the spectral triples whose Dirac operator has a spectral asymptotics like
n®(logn)? instead, we have dgp = dg = 1/a, namely the two dimensions coin-
cide, and the uniqueness result of the preceding Proposition applies. However,
the nontrivial singular trace associated with |D|~?2 by Theorem 1.4 is a loga-
rithmic trace if and only if 8 = 1. In this sense, the singular traces associated
with a generic eccentric operator generalize the logarithmic trace in the same
way in which the Besicovitch measure theory generalizes the Hausdorff measure
theory.

3 Novikov-Shubin invariants as asymptotic di-
mensions

In this section we apply the theory of polynomial orders of operators introduced
in section 1 to a geometric operator (the Laplacian on k-forms) and show that
these orders give topological information on the manifold.

3.1 Weyl’s asymptotics via Atiyah’s trace on covering ma-
nifolds

Let M be a complete connected Riemannian n-manifold, and G an infinite dis-
crete group of isometries of M. Suppose that G acts freely (i.e. any g € G,
g # e, acts without fixed points), properly discontinuously, and that X :=
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M/G is a compact manifold. Let F be a fundamental domain for G, that
is ([2], page 52) an open subset of M, disjoint from all its translates by G,
and such that M \ Uyecg(F) has measure zero. Let L2A¥(M) be the Hilbert
space of square-integrable k-forms on M, w.r.t. the volume measure, then
L2AF(M) = 2(G) ® L?A*(X). G acts on L2A*(M) as left translation oper-
ators (Lgu)(z) == u(g~'x). Let My = My(M,G) be the von Neumann alge-
bra of bounded G-invariant operators, so that M = R(G) @ B(L?A*(X)) and
M, ={Ly: g € G} =2 L(G) ® C, where R(G), L(G) are the right, resp. left,
regular representations of G. Any self-adjoint G-invariant operator on L2AF (M)
is affiliated with Mj.

By the previous isomorphism, My, inherits a trace Trg = 7¢ ® T'r, and we
quote a result in [2], which gives a more explicit description of Trq.

Proposition 3.1. Let A € My, be a positive self-adjoint operator, with a C*
kernel A(x,y). Then A € L'(My,Trg), and Tra(A) = [;trA(z, z)dvol(x),
where tr is the usual matrix trace.

The Laplacian Ay acting on exterior k-forms on M is essentially self-adjoint
as an operator on L2A*(M) [4], and we use the same notation for its closure.
Let Ay = [tdEy(t), be its spectral decomposition; then e(t, -, -), the Schwartz
kernel of Ey(t), belongs to C*° (M x M), and we have for the spectral distribution
function Ny(t) := Trg(Ex(t)) = [5trep(t,x,x)dvol(x). Ni is an increasing
function on R which vanishes on (—o0, 0).

We are now in a position to make explicit the topological information con-
tained in orde (A} "). We need a lemma.

Lemma 3.2. AAI:l(t) = Ni(1/t) — by.
Proof.

Apr(t) = Tra (B ) (A1) = Tra(X (e (A1)
=Tra(x©,1/1)(Ak)) = Tra(Eo,1/:)(Ak)) = Ni(1/t) — by.
O

Theorem 3.3. dim(M) = 2(ords(A;1))~!. As a consequence A;H/Q is 0o-
eccentric, and gives rise to a singular trace on M.

Proof. Recall from [9], equation (4.5), that Ni(t) ~ $t"/?, as t — oo, where
B # 0. Then from Lemma 3.2 it follows )\A]ZI(S) ~ Bs™2 as s — 0, so that
the thesis follows from Proposition 1.13. a

3.2 Novikov-Shubin invariants as asymptotic dimensions

Novikov and Shubin [16], [17] have studied the asymptotic behaviour of Ny(t)
as t — 0, which, through the efforts of Efremov-Shubin [9], Lott [14], and
Gromov-Shubin [11], has been proved to be a homotopy invariant. We want to
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show that the Novikov-Shubin invariants are asymptotic dimensions, so we need
some notation.

Let 95 (t) := Trg(e k) = [ e *tdNy(s) be the Laplace-Stieltjes transform
of Ni(t). ¥y is a decreasing positive function on (0, c0).

Gromov and Shubin introduced (weak) Novikov-Shubin numbers, which, us-
ing Lott normalization [14], are defined as follows

(1) ap = a,(M,G) :=2liminf;_ % = 2liminf;_ %g(f)_bk)

log (N (t)—by)

(Zl) ap = Oék(M, G) = 2lim SuP¢—0 logt

— log (9 (t)—bx)

(i41) o) = ) (M, Q) == 2limsup,_, Tog ¢

where by, := lim;_.o N (t) are the so-called L2-Betti numbers, and are homotopy
invariant [8]. Gromov and Shubin showed that these numbers are G-homotopy
invariants of M.

In analogy with the definition given in [13], we call asymptotic spectral dimen-
sion of the covering manifold M with structure group G the number

doo(M, G, Ag) = 2(ordo(AL 1)) .
Then

Theorem 3.4. Let k be s.t. 0 < ap < 0o. Then oy = doo (M, G, Ay). Therefore

—ar/2 . . . . .. .
Ay w2 s 0-eccentric, and gives rise to a non-trivial singular trace on M.

Proof. From Proposition 1.13 and Lemma 3.2 it follows that

IOg(Nk (t) — bk)

doo (M, G, Ag) = 20rdg(A; ")~ = 2limsup —————— = oy,
t—0 logt
Therefore, if 0 < oy < o0, ordo(A;ak/z) = 1 and the thesis follows from
Theorem 1.7. o

Remark 3.5. If k = 0, a result by Varopoulos [25] shows that ag(M,G) =
growth G. Since the growth of G coincides with the asymptotic metric dimen-
sion of M [13], we obtain that the 0-th Novikov-Shubin number coincides with
the asymptotic metric dimension.

3.3 Relation between Novikov-Shubin invariants and the
asymptotic dimension of the heat semigroups

Based on the notion of dimension at infinity due to Varopoulos, Saloff-Coste,
Coulhon [24], see also [7], we define the asymptotic dimension of a semigroup
of bounded operators on a measure space.

Let (X,M, i) be a measure space, V' a finite dimensional (real or complex)
vector space, LP(X, M, u; V') the Lebesgue space of V-valued functions.
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Definition 3.6. Let T} : LY (X, M, u1; V) — L>(X,M, u; V) be a semigroup of
bounded operators. Then we set

doo(T) := lim inf 2108 [Tl -0 [EHEES

i=eet log (3)

Theorem 3.7. ([24], Theorem 11.4.3)
Let Ty € B(LY (X, M, u; V)N L (X, M, 13 V)) and assume it extends to a semi-
group on LP, for any p € [1,00], of class C° if p < co. Suppose moreover that Ty
is equicontinuous on L' and L*, bounded analytic on L?, and ||T1||1— o0 < 00.
Denote by A the generator of the semigroup, and by D := span {fooo o(t)Tpfdt :
p € C§°(0,00), fe LXX, M, ; V), p{f # 0} < oo}. Then for any n > 0,
and 0 < o < g, the following are equivalent

(i) [fll2n/tn—20) < CUA?fll2 + 1A% fll2n/(n—20)), f €D
(“) ||T1f||2n/(n72a) < C”Aa/Qf”Qf f €D
(i1i) | Ti|l1—oo < Ct™™/2, t € [1,00).

Proposition 3.8. Let Ty € B(LY (X, M, 11; V)N L®(X, M, 11; V)) and assume it
extends to a semigroup on L' of class C°, and that ||Ti|1—0c < o0. Then the
following are equivalent

(i) 1Tt 1—oe < CtT™/2, £ >1
(”) ||Tt||1~>oo < Ct_n/27 t>t) > 1.

Proof. (it) = (i) Let t € (1,%] and observe that || Ti|1—oo = |T1Ti-1]l1500 <
171 [1=o00l| Ti-1ll1-1 < K[| T1[l1m00 =t M, where k 1= sup;c(o ) | T2l[1-1 < o0

because Ty is a semigroup of class C% on L. So that, with Cy := max{C, Mtg/Q}7

we get the thesis. O

Proposition 3.9. doo(T) = sup{n > 0: | Ti||1 0o < Ct~™2, t >1}.

Proof. Set d for the supremum. Then for all € > 0, there is {5 > 1 s.t.
T3 |10 < t=(dee(T)=€)/2 for all t > tg, and, by previous proposition, deg(T) —
e < d. Conversely ||T;|[1—c0 < t=(@=9)/2 for all t > 1 implies d — e < deo(T). O

Remark 3.10. Varopoulos, Saloff-Coste and Coulhon call dimension at oo of the
semigroup any of the numbers n verifying the equivalent conditions of Theorem
3.7. Clearly such dimensions form a left half line, and the previous Proposition
shows that d(T") coincides with its upper bound.

We want to give a formula for the computation of the asymptotic dimension
of a semigroup, in the special case of a semigroup of integral operators with
continuous kernel. We need some preliminary results. So let X be a Hausdorff
topological space, and p a Borel measure on it with supp p = X.

Lemma 3.11. Let K be an integral operator with kernel k € C(X x X) N
L®(X x X, MM, u® p; End(V)), where V is endowed with a scalar product.
Then || Kl1-00 = sup,ex [|k(z, z)|-
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Proof. We begin by proving that ||K||; oo = M := sup, ,cx [[k(z,y)|. Recall
that

1[0 = sup {\ |/ <f<x>,k(x,y>g<y>>du<x>du<y>\},

1,9€Q

where Q = {f € LY(X,M,u;V),||f|| = 1}. Then it is easy to see that
IK|[i—oo < M. For the reversed inequality, let € > 0, (2.,y.) € X x X be
st. M —e < ||k(ze,ye)|| < M, and ve,w: € V be s.it. (v, k(xe, yo)we) >
lk(ze, ye)|| —e. Let Ac, B- C X be open neighbourhoods of x., respectively v,

of finite measure s.t. M —e < ||k(z,y)|| < M, for any (z,y) € Ac X Be, and let

fo(z) := 72“22(5) Ve, ge(y) := 72’?%(5) we. Then

‘/X /X<ff($)”f(”«“al/)ga(y)>du(x)du(y)‘
B 1

p(Ae)pu(Be)

1
RRE Jy, W) f, e e

[ n@) [ ant)oe ke

€

Y

€

1
s ) [ ) e ke 9) = by

1
> (el = ¢ = s /A () / dp() k(. 9) — k(e v

> ||k(ze, ye)|| — 3e = M — 4e.

=

So that ||K||1»ec = M follows. Therefore to prove the thesis it suffices to
show that My := sup,cx [|k(z,2)| = M. As My < M is obvious, we show the
opposite inequality. Let ¢ > 0, and z.,y. € X, ve,w. € V, A., B. C X be as
above. Then

1

p(Ae)?
1

= WA
1
o [, ) [, ) s ) o)

S ||k(.’135,l'5)||+ sup Hk(xay)_k(x&‘7x6>” SMO—"E’

T7y€ €

[(fe, Kfo)l =

/AE dﬂ(fﬂ)/A dp(y) (v, k(x, y)ve)

€

/AE dutz) [ ) b, 3o+

where the last inequality follows from the continuity of &, if we choose A, small
enough. Analogously [{(gc, Kg:)| < My + 2¢. Then using the estimates proved
above and Cauchy-Schwarz inequality, we obtain

M —4e < |<f67K95>|

< |<f63Kf6>‘1/2|<g€aKg€>|1/2
< MO + 26,
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and from the arbitrariness of € we get the thesis.

Lemma 3.12. If (f, Kf) > 0 for any f € L*(X, M, u; V), then (v, k(z,z)v) >0
foranyxe X, veV.

Proof. Assume on the contrary that there are zg € X, v € V s.t. (v, k(xg, zo)v) <
0. Then, by continuity, there is an open neighbourhood U of z¢ s.t. Re (v, k(z, y)v)

<0, for any xz,y € U. Let fy(z):= ’LL&(]‘T))v, so that

0 <(fv,Kfu)=Re(fv,Kfu)
1

- M(U)Q/Ud'u(x)/Udﬂ(y)Re (v, k(z,y)v) <0

which is absurd. O

Theorem 3.13. Let X be a Hausdorff space, i a Borel measure on it, Ty :
LY (X, M, 13 V) — L*(X, M, u; V) a semigroup of integral operators with con-
tinuous kernels k(t,x,y), satisfying the hypotheses of Proposition 3.8, and as-
sume Ty is a positive bounded operator on L*(X, M, u; V). Then

—21 Tr(k(t
doo(T) — liminf Og(supxeX 7'( ( ,:L’,it))) )
t—o0 logt

Proof. In the following we use the notation f <t g, where f, g : [0,00) — [0, 00)
to say that there are tg > 0, C > 0s.t. C71 < % < C, for any t > to. As
I lloo and || - ||1 are equivalent on End(V'), and using Lemmas 3.11, 3.12, we get

ITt[1—0c = sup [|k(t, 2, )]
zeX

> sup Tr(|k(t, z, z)|) = sup Tr(k(t, z,x)).

rzeX zeX
Therefore
—2log |IT¢]l1— 0o
Ao (T) = tim inf 2228 1 Ttll1c
t—o00 logt
— lim inf —2log(sup,ex Tr(k(t,:c,:c))).
t—o0 logt

O

Using these results we can show the relation between the asymptotic dimen-
sion of the heat kernel semigroup and the Novikov-Shubin numbers.

Corollary 3.14. Let M be a complete connected Riemannian n-manifold, and
G an infinite discrete group of isometries of M, acting freely and properly dis-
continuously, and with X := M/G a compact manifold. Then do,(e”*2r) =
a,(M,G).
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Proof. In the following we use the notation f < g, as in the proof of Theorem
3.13. Let us denote by Hy(t,z,y) the kernel of the integral operator e "t~ and
observe that

sup Tr(Hy(t,z,x)) = sup Tr(Hy(t,z,x)) > inf Tr(Hg(t, x,x)),
zeEM €T r€F

where the last relation follows from the fact that F is compact and Tr(Hy(t, =, x))
> 0. Therefore

sup Tr(Hg(t, z,x)) / Tr(Hg(t,x,z))dvol(x) = 9k (t) — by.
reM F

Then, using Theorem 3.13, we get

—2log fle”* |10

doo (T) = lim inf

t—o0 logt
= lim inf 0g(Vk(t) = be) =, (M, G).
t—o0 logt

3.4 Comparison between the algebras associated to a cov-
ering manifold and a general open manifold

In this subsection we study the relation between the von Neumann algebra
of G-invariant operators considered here, and the C*-algebra of almost local
operators considered in [13], namely the norm closure of the finite propagation
operators, and the traces on these algebras.

Proposition 3.15. Let us denote by Ay the C*-algebra of almost local operators
on k-forms. Then A N My is weakly dense in My.

Proof. First we choose a fundamental domain J in M and denote by e, the
projection given by the multiplication operator by the characteristic function
of ¢F, g € G. Then denote by G,, the ball of radius n in G, namely the set of
elements which can be written as words of length < n in terms of a prescribed
set of generators for G.

For any selfadjoint operator a acting on L?A¥(M) and any n € N set

p 1= E €gaeh,
g~ theG,

and note that a,, has finite propagation, hence it belongs to Aj.
Observe then that if a is bounded, a,, is bounded too. Indeed

(z,anx) = Z (z,eqaepx) < |al Z (egx,enx)

g~ theG, g theG,

eqz||? + |lenzl?
T w = llallllz]l #(Gn)-

A
B
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Also, if a is periodic, a,, is periodic too. Indeed, for any v € G,

Lyay, = g L.eqae, = g evygteyn Ly = anl,,.
g~theG, g~theG,

Since a,, converges weakly to a, the thesis follows. ad

Consider now the case that G is amenable, and the corresponding (regular)
exhaustion X on M (see [18]). Denoting with Tra the trace on Ay introduced
n [13], the following holds

Corollary 3.16. Trg and Tro coincide on A N My, hence Trg is uniquely
determined by Troc.

Proof. In this case Trq is given, for T' € A N My, by

Tr(e1Teq)
Tro(T) = ————= =Trqg(T
rx(T) vol(F) re(T),
where 1 € G is the identity element, and we have chosen vol(F) = 1. O
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