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Introduction

Born as a mathematical curiosity when Dixmier showed their existence on
B(H), singular traces turned out to play a central role in the integration on
noncommutative manifolds in Connes’ setting [7].

Indeed Connes observed that the (logarithmic) Dixmier trace of a pseudo-
differential operator of negative order coincides (up to a constant) with the
Wodzicki residue [40] of such an operator, and may be used to “ redefine” the
integral of functions on a compact spin manifold.

This finally led Connes to the proposal of a noncommutative (compact) man-
ifold as a triple (A,H, D) where A plays the role of the algebra of functions, H
that of a Clifford bundle, and D of the Dirac operator. A non-commutative di-
mension d can be associated with this triple according to the Weyl asymptotics
relation, namely to the order of growth of the eigenvalues of D. This can be
restated by saying that d is characterized by the logarithmic divergence of the
trace of D−d.

Then the noncommutative dimension appears as the analogue of the Haus-
dorff dimension, namely as the unique number such that the corresponding
d-integration, the singular trace on the ideal generated by D−d, is non-trivial.

In this paper we review how this idea can be further pursued, making use of
different generalizations of singular traces to the von Neumann and C∗-algebra
settings.

Indeed on the one hand the family of singularly traceable operators has been
enlarged in order to contain also trace class elements, and on the other hand
a new family of singular traces appears, detecting the “rate of divergence”
of some unbounded measurable operators affiliated to a continuous semifinite
von Neumann algebra. This family may be defined on C∗-algebras with a trace
too, with the aid of noncommutative Riemann integration.

The first phenomenon produced a criterion for singular traceability in terms
of the infinitesimal order of an operator, irrespective of the trace class member-
ship (cf. Proposition 2.5). Therefore such an order has a dimensional interpre-
tation, because a singular trace (a noncommutative integration) is associated
with it.

We then propose an interpretation of the second as associated with the as-
ymptotic dimension of a manifold. This dimension is a large-scale analogue of
the Kolmogorov dimension and may be attached to any metric space. On a
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suitable class of open manifolds, it may be computed in terms of the spectral
behaviour of some geometrical operator, e.g. as the “order of infinite” of the
inverse of the Laplace-Beltrami operator. In this case also, the asymptotic di-
mension is a noncommutative dimension, namely a non-trivial singular trace is
defined on the bimodule generated by the corresponding power of the Laplacian.

In the particular case of universal coverings, the asymptotic dimension coin-
cides with one of the classical L2 invariants of the manifold, namely with the
0-th Novikov-Shubin invariant.

Finally we notice the following property of the Novikov-Shubin invariants αp:
there exists a nontrivial singular trace on the bimodule generated by ∆−αp/2

p .
This furnishes a dimensional interpretation of the αp, as the corresponding
(non-commutative) integration is non trivial.

1. Singular traces on the compact operators of a Hilbert space.

In this section we present the theory of singular traces on B(H) as it was
developed by Dixmier [13], who first showed their existence, and then in [37]
and [2].

A singular trace on B(H) is a tracial weight vanishing on the finite rank
projections. Any tracial weight is finite on an ideal contained in K(H) and may
be decomposed as a sum of a singular trace and a multiple of the normal trace.
Therefore the study of (non-normal) traces on B(H) is the same of the study
of singular traces.

Moreover, making use of unitary invariance, a singular trace should depend
only on the eigenvalue asymptotics, namely, if a and b are positive compact
operators on H and µn(a) = µn(b)+ o(µn(b)), µn denoting the n-th eigenvalue,
then τ(a) = τ(b) for any singular trace τ .

The main problem about singular traces is therefore to detect which asymp-
totics may be “resummed” by a suitable singular trace, that is to say, which
operators are singularly traceable.

In order to state the most general result in this respect we need some nota-
tions.

Let a be a compact operator. Then we denote by {µn(a)} the sequence
of the eigenvalues of |a|, arranged in non-increasing order and counted with
multiplicity. We consider also the (integral) sequence {Sn(a)} defined as follows:

Sn(a) :=
{ ∑n

k=1 µk(a) a /∈ L1∑∞
k=n+1 µk(a) a ∈ L1,

where L1 denotes the ideal of trace-class operators. A compact operator is
called singularly traceable if there exists a singular trace which is finite non-zero
on |a|. We observe that the domain of such singular trace should necessarily
contain the ideal I(a) generated by a. A compact operator is called eccentric if

S2nk
(a)

Snk
(a)

→ 1 (1.1)

for a suitable subsequence nk. Then the following theorem holds.
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1.1 Theorem. A positive compact operator a is singularly traceable iff it is
eccentric. In this case there exists a sequence nk such that condition (1.1) is
satisfied and, for any singular state ω on `∞, the positive functional

τω(b) =

{
ω

({
Snk

(b)

Snk
(a)

})
b ∈ I(a)+

+∞ b 6∈ I(a), b > 0,

is a singular trace whose domain is the ideal I(a) generated by a.

The first result on singular traceability is due to Dixmier, who showed in [13]
that S2n(a)

Sn(a) → 1 is a sufficient condition for singular traceability when a 6∈ L1.
Then Varga proved that the eccentricity condition is necessary and sufficient
when a 6∈ L1 [37]. Finally it was observed in [1] that singular traces may be
non-trivial on trace-class operators, while the theorem in the previous form is
contained in [2]

Now we briefly recall what can be the general form of a singular trace. The
form presented above is due to Varga for the non L1 case and was generalized in
[1,2]. It is easy to see that a function on positive operators described in terms
of a positive functional on the eigenvalue sequences gives a trace if and only if it
is additive. It was shown in [23] that all traces (on a factor) may be described
in terms of dilation invariant functionals on the sequence {µn(a)}, and that
dilation invariance implies additivity when the functional on the eigenvalues is
monotone (cf. Section 2), hence traces may be produced in this way. The ques-
tion of the existence of singular traces determined by non-monotone functionals
is still open. The family of singular traces determined by monotone functionals
naturally splits in two parts.

1.2 Proposition. Let τ be a singular trace described by a monotone functional
ϕ on the eigenvalue sequences of positive operators. The functional ϕ is increas-
ing iff the domain of τ contains L1, indeed τ vanishes on L1. The functional
ϕ is decreasing, iff the domain of τ is contained in L1. If τ is non-trivial, the
above inclusions are strict.

Proof. If ϕ is increasing and c is a positive element with tr(c) = 1, we may
find a finite rank operator b s.t.

∑n
k=1 µk(c) ≤

∑n
k=1 µk(b) for any n ∈ N,

therefore τ(c) = ϕ(µn(c)) ≤ ϕ(µn(b)) = τ(b) = 0 where the inequality holds
because ϕ is increasing (cf. Definition 2.1) and the last equality follows by the
singularity of τ . Conversely if ϕ is decreasing, it is either 0 or ∞ identically
outside L1, but the value 0 is ruled out by singularity. When τ is non-trivial and
decreasing, and c is a positive operator s.t. τ(c) = 1, we may find an increasing
sequence αn → ∞ s.t. µn(c) · αn is still summable, hence an operator c′ ∈ L1

s.t. µn(c′)
µn(c) = αn →∞. By positivity and singularity of τ we get τ(c′) ≥ αnτ(c)

for any n. The increasing case is obvious.

A principal ideal corresponding to the domain of a trace vanishing on L1

described in Theorem 1.1 may be embedded in a maximal symmetrically normed
ideal (cf. [19]). It was shown by Varga that singular traces may always be
defined on these maximal ideals, and the traces described by Dixmier when
S2n(a)/Sn(a) → 1 were indeed defined on such ideals.
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The form of the traces on maximal ideals is very similar to the form of
the traces in Theorem 1.1. In fact while the eccentricity of a provides enough
dilation invariance to ensure additivity of the functional τ on the principal ideal
generated by a, the dilation invariance of ω is required in order to get additivity
of τ on the maximal ideal generated by a.

It was shown by Varga that the principal ideal I(a) generated by an eccentric
operator a (not in L1) is not norm closed, and its norm closure is strictly smaller
than the corresponding maximal normed ideal.

As for traces inside L1, symmetrically normed ideals are ruled out, because
the minimal symmetrically normed ideal containing a trace class operator is
L1, and the only trace whose domain is L1 is the normal one (up to a scalar),
cf. Proposition 1.2. When a is in L1 (and eccentric), it is not even true in
general that the set {b ∈ K(H) : Sn(b)/Sn(a) ∈ `∞} is an ideal. When
S2n(a)/Sn(a) → 1, it was observed in [2] that this property is true, but the
ideal is not symmetrically normed.

2. Singular traces on semifinite von Neumann algebras.

In order to extend the theory developed in the previous section to general
semifinite von Neumann algebras, we need a substitute for the sequence of
singular values of a compact operator, which is provided by the notion of non-
increasing rearrangement of an operator.

Since the parameter of this rearrangement varies continuously, divergences
in zero appear when the operator is unbounded. This phenomenon produces
a new class of traces (II1 singular traces, or singular traces at 0), which are
defined on M −M-bimodules of measurable operators, M a semifinite von
Neumann algebra.

Indeed in this section all traces are described as unitary invariant positive
functionals on M but, while singular traces at ∞ (like those in Section 1) may
be defined on M, and possibly extended to M, singular traces at 0 vanish on
all bounded operators, hence make sense on M only.

As we shall see below, singular traceability and eccentricity are equivalent
when M is a factor, as in the type I case. In general, eccentricity is only a
sufficient condition to produce a singular trace on the generated bimodule.

Let (M, tr) be a pair consisting of a semifinite von Neumann algebra M ⊂
B(H) with a normal semifinite faithful trace. Let M̃ be the collection of the
closed, densely defined operators on H affiliated with M and define M := {x ∈
M̃ : tr(e|x|(t,∞)) < ∞ for some t > 0}. Then M, equipped with strong
sense operations [35] and with the topology of convergence in measure [36,29],
becomes a topological ∗-algebra, called the algebra of tr-measurable operators.

For example, if M := L∞(X,m) and tr(f) :=
∫
fdm, then M̃ is the ∗-

algebra ofm-measurable functions that are finite a.e., andM is the ∗-subalgebra
of M̃ consisting of functions that are bounded except on a set of finite m-
measure, whereas if M = B(H), then M̃ consists of all closed densely defined
operators on H, while M = M.

Let a ∈ M, and define [17] the distribution function of a (w.r.t. tr) as
λa(t) := tr(e|a|(t,∞)), t ≥ 0, and the non-increasing rearrangement of a as



SINGULAR TRACES AND GEOMETRY 5

µa(t) := inf{s ≥ 0 : λa(s) ≤ t}, t > 0. µa is a non-increasing and right-
continuous function. Moreover limt↓0 µa(t) = ‖a‖ ∈ [0,∞].

For example, if M := L∞(X,m) and tr(f) :=
∫
fdm, then for any f ∈ M,

µf ≡ f∗, the classical non-increasing rearrangement of f . If instead M = B(H)
and tr is the usual trace, then µa =

∑∞
n=0 µn(a)χ[n,n+1).

If M contains no minimal projections, µa is given by a min−max formula:
for all t ∈ [0, tr(1)),

µa(t) = inf
tr(p)≤t

sup
q≤p⊥

tr(|a|q)
tr(q)

,

where p and q are tr-finite, non-zero projections in M.
Non-increasing rearrangements are very useful in describing traces and their

domains, i.e. bimodules of measurable operators. More precisely, on a semifinite
factor, unitarily invariant spaces (such as ideals or bimodules) may be expressed
in terms of the corresponding spaces of non-increasing rearrangements, and
unitarily invariant functionals (such as traces) may be expressed in terms of
functionals on the non-increasing rearrangements, but observe that linearity of
the obtained function is not at all obvious. Following Dixmier, it is natural to
think that dilation invariance is the counterpart of linearity on the space D of
decreasing rearrangements. Indeed dilation invariance is a necessary condition,
and it becomes sufficient when a further positivity property (monotonicity) is
assumed. The following results in this section are taken from [23].

Introduce the notation D for the convex cone of positive measurable functions
on R+ ≡ (0,∞) which are finite, non increasing and right continuous, and
consider the action λ → fλ of the multiplicative group R+ on D given by
fλ(t) = λf(λt). A face F in D is called dilation invariant if f ∈ F ⇒ fλ ∈ F ,
λ ∈ R+. A positive linear functional ϕ on D is called dilation invariant if
ϕ(f) = ϕ(fλ), f ∈ D, λ ∈ R+. Then measurable bimodules on a semifinite
σ-finite factor are described by dilation invariant faces in D, and a generalised
Calkin theorem holds:

(i) each non-zero measurable bimodule X on M contains the two-sided ideal of
bounded, finite-rank elements. In particular, if M is finite, X ⊇M

(ii) each measurable bimodule X satisfies either X ⊆ {a ∈ M : µa → 0} or
X ⊇M.
Some known results may be seen as consequences of this theorem. In partic-

ular, each type II1 factor is algebraically simple and each two-sided ideal in a
type I∞ factor is contained in the compact operators.

As regards traces on a general semifinite von Neumann algebra, a positive
linear functional on M is said a trace if, for each unitary element u ∈ M,
τ(a) = τ(uau∗), a ∈ M+. The bimodule X given by the linear span of the set
X+ := {a ∈M : τ(a) <∞} is called the domain of τ .

There is a relation between dilation invariance on the space D and linearity
on M.

2.1 Definition. A functional ϕ on a subset X of D is increasing if for f, g ∈ X,

∫ t

0

f(s)ds ≤
∫ t

0

g(s)ds, ∀t ∈ (0,∞) ⇒ ϕ(f) ≤ ϕ(g),
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and decreasing if for f, g ∈ X,∫ ∞

t

f(s)ds ≤
∫ ∞

t

g(s)ds, ∀t ∈ (0,∞) ⇒ ϕ(f) ≤ ϕ(g).

A functional ϕ on D is monotone if ϕ|D0 and ϕ|Db
are either increasing or

decreasing, where D0 := {f ∈ D : supp f is compact}, Db := {f ∈ D : f is
bounded}.

2.2 Theorem. Let M be a semifinite von Neumann algebra and ϕ a monotone
positive linear functional on D. If ϕ is dilation invariant the functional τ given
by

τ(a) := ϕ(µa), a ∈M+

is a trace on M, and the converse implication holds when M is a factor.

To give examples of singular traces, we construct dilation invariant monotone
positive linear functionals on D by making use of eccentric operators. Let us
introduce a useful shorthand notation:

S∞a (t) :=

{ ∫ t
1
µa(s)ds µa /∈ L1(1,∞)∫∞

t
µa(s)ds µa ∈ L1(1,∞),

and

S0
a(t) :=

{ ∫ t
0
µa(s)ds µa ∈ L1(0, 1)∫ 1

t
µa(s)ds µa /∈ L1(0, 1).

2.3 Definition. Let (M, tr) be a semifinite algebra with a normal semifinite
faithful trace. An element a ∈ M is called 0-eccentric if 1 is a limit point of
{S

0
a(2t)
S0

a(t) } when t → 0, and ∞-eccentric if 1 is a limit point of {S
∞
a (2t)
S∞a (t) }, when

t→∞. The element a is called eccentric if it is 0 or ∞ eccentric.

We remark that the notion of eccentricity in a von Neumann algebra depends
on the chosen trace.

2.4 Theorem. Let a ∈ M be eccentric at 0, resp. at ∞. Then there exists a
sequence tk → 0, resp. tk → ∞, such that for any singular state ω on `∞ the
(monotone) function on positive elements

τ(b) :=

{
ω

(
S∞b (tk)
S∞a (tk)

)
b ∈ X(a)+

+∞ b 6∈ X(a), b > 0,

resp.

τ(b) :=

{
ω

(
S0

b (tk)
S0

a(tk)

)
b ∈ X(a)+

+∞ b 6∈ X(a), b > 0,

is a singular trace on M (i.e. it vanishes on tr-finite projections) whose domain
is X(a). If M is a factor, a is eccentric if and only if it is singularly traceable.

Finally we describe a sufficient condition for the singular traceability of a
positive operator.
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We say that an operator a is an infinitesimal of order α (cf. [11]) if µa(t) =
O(t−α), t → ∞, and define the order of infinitesimal of a (ord∞(a)) to be the
supremum of such α.

Analogously we say that a is an infinite of order α if µa(t)−1 = O(t−α),
t → 0, and define the order of infinite of a (ord0(a)) to be the supremum of
such α.

The order of infinite(simal) may be easily computed as

ord∞(a) = lim inf
t→∞

logµa(t)
log(1/t)

, ord0(a) = lim inf
t→0

logµa(t)
log(1/t)

.

Then the following proposition holds ([26]).

2.5 Proposition. Let a be a positive measurable operator affiliated to (M, τ).
Then, if ε = ord0(a) ∈ (0,∞), resp. ω = ord∞(a) ∈ (0,∞), then aε is singularly
traceable at 0, resp. aω is singularly traceable at ∞.

3. Singular traces on C∗-algebras.

The purpose of this section is to describe the extension of the theory of
singular traces to C∗-algebras as it is developed in [25]. As shown in the previous
section, singular traces depend, by their very definition, on a given normal trace.
Therefore the basic object in this section will be a pair (A, τ) consisting of a C∗-
algebra and a semicontinuous semifinite trace. In fact, by the classical theory
of traces on C∗-algebras [14], semicontinuity and semifiniteness are necessary
and sufficient conditions for τ to give rise (and to be determined by) a normal
faithful semifinite trace on the von Neumann algebra generated by A in the
GNS representation relative to τ .

When τ is infinite, the theory of singular traces at ∞ may be developed, and
is a simple extension of the corresponding theory on semifinite von Neumann
algebras. For any a ∈ A, we may set µa = µπτ (a), where both the GNS
representation πτ and the non-increasing rearrangement µ are associated with
the trace τ .

Then an operator b ∈ A is eccentric at ∞ if πτ (b) is, and in this case the
singular traces defined on the ideal generated by πτ (b) in πτ (A)′′ in the previous
section may be pulled back on the ideal generated by b in A.

The question is not that simple for singular traces at 0, as are the traces that
are needed to give noncommutative measures associated with the asymptotic
dimension of open manifolds (see Section 7).

Indeed, as shown in the previous section, singular traces at 0 are defined
on bimodules of (unbounded) operators affiliated to a von Neumann algebra,
therefore we need a noncommutative integration for C∗-algebras, namely a ∗-
bimodule over A of unbounded operators “affiliated to A” and measurable
w.r.t. τ in such a way that this bimodule can be represented in every faithful
representation of A, the trace being still well defined on the image. Singular
traces will then be defined on suitable sub-bimodules.

It turns out that if this bimodule has to contain enough operators, its
bounded part should be strictly larger then the C∗-algebra A. Therefore our
first goal is the construction of a ∗-algebra R containing A and with some uni-
versal measurability property, namely τ has to extend to a trace on R, and
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any faithful representation π of A should extend to a representation of R in
such a way that τ is well defined on π(R). In the following A is considered as a
subalgebra of its enveloping von Neumann algebra A∗∗, the normal extension of
τ to A∗∗ is still denoted by τ , and R will be chosen as the enveloping Riemann
algebra of A [25].

A class A of selfadjoint elements in A∗∗ is bounded if it is bounded in norm
and has τ finite support if there exists a τ -finite projection inA∗∗ which contains
the supports of all elements of A. Two classes A+, A− of selfadjoint elements are
called separated if a− ≤ a+ for all a± ∈ A±, τ -contiguous if ∀ε > 0 ∃a± ∈ A±
such that τ(a+ − a−) < ε. An element x is a separating element for two
separated classes A± if for any a± ∈ A± we have a− ≤ x ≤ a+.

3.1 Definition. A linear subspace X of A∗∗ is called Dedekind complete (w.r.t.
bounded τ -contiguous classes with τ -finite support) if, given two classes in X as
before and a separating element in A∗∗ we have x ∈ X. The minimal Dedekind
complete C∗-subalgebra R of A∗∗ containing A is called the enveloping Riemann
algebra of A.

In the commutative case, the algebra R coincides with the algebra of Rie-
mann integrable functions (see e.g. [34]).

3.2 Theorem. The Riemann enveloping algebra R of A is universally τ -
measurable, namely for any faithful representation π of A, there exists ρπ :
π(R) → πτ (A)′′ such that the following diagram commutes

R π−→ π(R)

↘πτ

yρπ

πτ (A)′′

Moreover the closure R0 of the τ -finite elements of R coincides with the norm
closure of the Dedekind completion of the linear span of the τ -finite projections
in R.

In the last part of this section we deal with a concrete C∗-algebra A of
operators on a Hilbert space H, equipped with a semicontinuous semifinite
trace, and write (by an abuse of notation) R for the image of R under (the
normal extension to A∗∗ of) the given representation of A. We observe that,
by universal τ -measurability, τ is well defined on this algebra. Our aim is the
construction of a (τ -a.e.) bimoduleR of (unbounded) operators onH “affiliated
to” R, on which the trace still makes sense.

The elements of R are closed unbounded operators on H affiliated to A′′
which possess a strongly dense domain [5] of τ -cofinite projections of R. The
morphism ρπ extends to R with values in the measurable operators affiliated
with πτ (A)′′, therefore (singular) traces on this von Neumann algebra may be
pulled back to R.

3.3 Definition. A strongly dense domain is an increasing sequence {en} of
projections in R such that τ(1− en) → 0. We denote by e the supremum of en.
R denotes the set of closed densely defined operators A affiliated to A′′ such
that there exists a strongly dense domain {en} with eAen, eA∗en ∈ R.
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If A is a general linear operator on H, its adjoint is a closed densely defined
operator from the closure of the range of A to H, with range in the closure of
the domain of A. Then the “double” adjoint, which we shall denote with A\,
is a closed densely defined operator on H. It coincides with the closure of A
when A is closable and densely defined. Two operators S, T are said to be
equal τ -almost everywhere if there exists a strongly dense domain en such that
H0 := ∪nenH is contained in the domains of S and T and eS|H0 = eT |H0 .
Strong sense operations are defined as T ⊕ S = (T + S)\, a � T = (aT )\. We
observe that when τ is faithful and S and T are closed S = T τ -a.e. implies
S = T [35]. Let us denote by M the von Neumann algebra πτ (A)′′, and by M
the algebra of measurable elements [35]. The following theorem holds:

3.4 Theorem. The set R is a τ -a.e. ∗-bimodule over R, namely it is closed
under the (strong sense) ∗-bimodule operations and the module identities hold
τ -a.e. The morphism ρπ extends to a (τ -a.e.) bimodule morphism from R to
M whose kernel consists exactly of the τ -a.e. null elements.

Now we can define singular traces at 0 on A as positive functionals on R
which are invariant under conjugation by unitaries in R and vanish on τ -finite
projections.

We define the non-increasing rearrangement of an element A ∈ R in terms
of ρπ as

µA(t) := µρπ(A)(t)

and call A eccentric at 0 accordingly (see the previous section).

3.5 Theorem. If T ∈ R is eccentric at 0 then T is singularly traceable, namely
there exists a singular trace defined on the sub-bimodule over R generated by
T . Such a trace may be defined as the pull back of the singular trace defined
on M. On the positive elements A of the R-bimodule generated by T , singular
traces may then be written as

τω(A) = ω

({
S0
A(tk)
S0
T (tk)

})
for a suitable sequence tk → 0 and any singular state ω on `∞.

4. Compact manifolds

In this section we briefly recall some aspects of the applications of singular
traces to noncommutative geometry. We refer the reader to [7,8,9,11] for basic
results and the latest developments in this context.

The first appearance of singular traces in geometry was by means of a result
by A. Connes in the late 1980’s [6], which was later used to define the dimen-
sion of a noncommutative compact manifold in terms of the Weyl asymptotics,
namely as the inverse of the order of growth of the eigenvalues of differential
operators of order one (the Dirac operator for example). Moreover Connes
observed that a noncommutative measure (trace) may be attached to such non-
commutative dimension via the Dixmier trace, setting τ(a) = Trω(a|D|−d),
where a is a “function” on the noncommutative manifold, D is the Dirac oper-
ator, d is the noncommutative dimension and Trω is the (logarithmic) Dixmier
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trace. According to the identification of the Dixmier trace with the Wodzicki
residue, such trace gives back the ordinary integration in the case of commuta-
tive Riemannian manifolds. To be more precise the following holds

4.1 Theorem. ([7], Proposition 5, p. 307) Let M be an n-dimensional com-
pact manifold and let T be a pseudodifferential operator of order −n acting on
sections of a complex vector bundle E on M . Then

(i) the corresponding operator on H := L2(M,E) belongs to the ideal L(1,∞)(H)
(ii) the (logarithmic) Dixmier trace Trω(T ) is independent of ω and is equal to

the Wodzicki residue Res(T ).

Recall that the Wodzicki residue Res(T ) is given by an explicit formula [40]
involving the principal symbol σ−n(T ), which is a homogeneous function of
degree −n on the cotangent bundle T ∗M of M

Res(T ) :=
1

n(2π)n

∫
S∗M

traceE(σ−n(T ))

where S∗M is the unit-sphere bundle induced by a Riemannian metric on M .
The same formula makes sense for pseudodifferential operators of arbitrary or-
der [40], and is independent of any choice of coordinate charts and metrics.
Wodzicki residue is the unique trace on the algebra of pseudodifferential oper-
ators which extends the Dixmier trace on operators of order ≤ −n.

The previous result applied to the Dirac operator on a compact spin manifold
M of dimension n, says that the inverse of the Dirac operator is an infinitesimal
of order n (cf [11] and also Section 2), henceD−n is in the domain of the Dixmier
trace.

Then Connes proposed a description of a noncommutative compact manifold
of dimension n in terms of a spectral triple (A,H, D) where the Dirac operator
D has to be an infinitesimal of order n. Of course this does not determine the
number n, in particular does not imply that the logarithmic Dixmier trace is
non trivial on D−n. Connes proposed a cohomological determination of the
dimension, and showed that in this case the Dixmier trace of D−n is not zero
[7, Corollary 10, p. 309].

However, in many cases, the dimension may be recovered as the order of
infinitesimal of D−1 defined in Section 2. Even though this dimension does
not guarantee that the logarithmic trace is non-zero on D−n, we remark that a
singular trace is nevertheless defined (and non-zero) on the ideal generated by
D−n (Proposition 2.5), hence a noncommutative integration may be defined in
full generality on the spectral triple.

Finally we mention that the notion of dimension has been refined introducing
the dimension spectrum, and refer the reader to [8,9,10,11] for details on this
argument.

5. Asymptotic dimension for metric spaces.

The definition of asymptotic dimension is given in the context of metric
dimension theory, as a suitable large scale analogue of the metric dimension of
Kolmogorov and Tihomirov [27]. The results of this section are from [24]. In
the following (X, δ) will denote a metric space, BX(x,R) the open ball in X
with centre x and radius R, and nr(Ω) the least number of open balls of radius
r which cover Ω ⊂ X.
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5.1 Definition. Let (X, δ) be a metric space. We call

d∞(X) := lim
r→∞

lim sup
R→∞

log nr(BX(x,R))
logR

,

the asymptotic dimension of X.

It is easy to show that d∞(X) does not depend on x. Moreover it is a
dimension, namely it satisfies

(i) If X ⊂ Y then d∞(X) ≤ d∞(Y ).
(ii) If X1, X2 ⊂ X then d∞(X1 ∪X2) = max{d∞(X1), d∞(X2)}.

(iii) If X and Y are metric spaces, then d∞(X × Y ) ≤ d∞(X) + d∞(Y ).
Now we give some examples.

(i) Rn has asymptotic dimension n.
(ii) Set X := ∪n∈Z{(x, y) ∈ R2 : δ((x, y), (n, 0)) < 1

4}, endowed with the Eu-
clidean metric, then d∞(X) = 1.

(iii) Let X be the unit ball in an infinite dimensional Banach space. Then
d∞(X) = 0.

(iv) Let Γ be a finitely generated discrete group. Then d∞(Γ) is equal to the
growth of Γ (cf. below and Section 6).
The asymptotic dimension is easier to compute when there is a uniformly

bounded Borel measure µ on X i.e. there are functions β1, β2, s.t. 0 < β1(r) ≤
µ(B(x, r)) ≤ β2(r), for all x ∈ X, r > 0. In this case

d∞(X) = lim sup
R→∞

logµ(B(x,R))
logR

.

In particular, if M is a complete Riemannian manifold of bounded geome-
try, namely it has positive injectivity radius, sectional curvature bounded from
above, and Ricci curvature bounded from below, then the volume form is a
uniformly bounded Borel measure. Compact Riemannian manifolds and their
universal coverings, leaves of a compact Riemannian manifold are in this class.

If M has bounded geometry, and satisfies Grigor’yan isoperimetric inequality
[20], then

d∞(M) = lim sup
t→∞

−2 log pt(x0, x0)
log t

,

where pt is the integral kernel of e−t∆ and ∆ the Laplace-Beltrami operator on
M .

This shows that d∞(M) is related to the dimension at infinity of the heat
semigroup defined by Varopoulos [39] (cf. next section).

A function f is called a rough isometry if f : X → Y s.t. a−1δX(x1, x2)−b ≤
δY (f(x1), f(x2)) ≤ aδX(x1, x2)+ b, for all x1, x2 ∈ X, and

⋃
x∈X BY (f(x), ε) =

Y , for some a ≥ 1, b, ε ≥ 0.
In [4] a notion of discretization of a manifold is introduced and it is proved

that complete Riemannian manifolds with Ricci curvature bounded from below
are roughly isometric to any of their discretizations, endowed with the combi-
natorial metric.

Since the asymptotic dimension is invariant under rough isometries, it may
be computed from any discretization of the manifold.
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In particular, if M is the universal covering of a compact manifold X, and
Γ := π1(X) is the fundamental group of X, each orbit of Γ is a discretisation
of M , hence

d∞(M) = d∞(Γ) = growth(Γ).

Our final examples are inspired by a recent work of E. B. Davies’ [12]. Let
E ⊂M be a cylindrical end of a Riemannian manifoldM , that is homeomorphic
to (1,∞)×A, where A is a compact Riemannian manifold. Set ∂E := {1}×A,
Er := {x ∈ E : δ(x, ∂E) < r}, where δ is the restriction of the metric in M .
Assume there are positive constants c,D s.t. c−1rD ≤ vol(Er) ≤ crD, for all
r ≥ 1. If the volume form on E is a uniformly bounded measure then d∞(E) =
D. A particular case is when the metric is given by ds2 = dx2 + f(x)2dω2,
where f is an increasing smooth function. Then the volume form is a uniformly
bounded measure, so that d∞(E) = D.

6. Singular traces on covering spaces

In this section we consider an open manifold M which is the universal cov-
ering of a compact manifold X, and denote by Γ the homotopy group of X.

In order to state an index theorem for covering manifolds, M. Atiyah [3]
had to measure the size of the kernel and the cokernel of elliptic differential
operators on M in spite of their infinite-dimensionality.

He observed that the Γ-invariant operators on L2(M) belong to a type II∞
von Neumann algebra, isomorphic to R(Γ)⊗B(L2(M/Γ)). Since Γ is discrete,
its von Neumann algebra is type II1 with a canonical trace, therefore a canonical
trace TrΓ is defined on Γ-invariant operators. Then the projections on the kernel
and the cokernel of an elliptic Γ-invariant operator D have finite Γ-trace, hence
the index of D can be defined as the Fredholm Γ-index of D.

Atiyah also observed that (finite) Betti – von Neumann numbers may be
defined as

βp := TrΓ(e{0}(∆p)),

where we denoted by eΩ(A) the spectral projection on the set Ω relative to the
operator A. It was proved by Dodziuk [15] that such numbers are homotopy
invariants on X.

Since M is not compact, the spectrum of ∆p is not necessarily discrete, hence
the function TrΓ(e[0,λ](∆p)) is not necessarily constant on a (right) neighbor-
hood of 0. In fact Novikov and Shubin [30] conjectured that the order of infin-
itesimal of TrΓ(e[0,λ](∆p))− βp, when λ→ 0, has a geometrical meaning.

The joint efforts of Novikov-Shubin [31] (cf. [16]), Lott [28] and Gromov-
Shubin [22] showed that the numbers, in Lott’s normalization,

αp = 2 lim inf
λ→0

log(Np(λ)− βp)
log λ

= 2 lim inf
t→∞

− log(ϑp(t)− βp)
log t

αp = 2 lim sup
λ→0

log(Np(λ)− βp)
log λ

α′p = 2 lim sup
t→∞

− log(ϑp(t)− βp)
log t

,
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where Np(λ) = TrΓ(e[0,λ](∆p)) and ϑp(t) = TrΓ(e−t∆p), are invariant under
homotopies of the base spaceM/Γ. Since then several papers have been devoted
to the study of these (and other L2) invariants on coverings, and we refer to
[18] for further references.

It is well known that if the limt→0 in the definition of the Novikov-Shubin
invariants is replaced by the limt→∞, one gets the dimension of the manifold.
Then one expects that the global invariants αp play the role of asymptotic
dimensions.

This interpretation is well motivated when p = 0.
It has been shown by Gromov [21] that a discrete group is quasi-nilpotent if

and only if the number γ(n) of distinct words of no more than n letters in the
generators grows polinomially. In this case γ(n) ' nd for some integer d, which
is called the growth of Γ. When Γ is the homotopy group of a compact manifold,
a result of Varopoulos [38] implies that N0(λ) ' λgrowth(Γ)/2 (cf. [28]), hence
α0 = α0 = α′0 = growth(Γ).

Moreover Varopoulos, Saloff-Coste and Coulhon [39] say that a semigroup Tt
has dimension at infinity equal to n if ‖Tt‖1→∞ ≤ Ct−n/2, t ≥ 1. The family
of such n’s being a left half line, it is determined by its supremum. Then we
may set

d∞(Tt) = sup{n > 0 : ‖Tt‖1→∞ ≤ Ct−n/2, t ≥ 1}.

Then the following holds.

6.1 Theorem. [26] Let M be the universal covering of a compact manifold
whose homotopy group is denoted by Γ. Then

d∞(M) = growth(Γ) = d∞(e−t∆).

The previous theorem shows in particular that α0(M) depends on M up to
rough isometries, hance is independent of the particular covering structure we
put on it.

We conclude this section giving an argument in favour of the dimensional
interpretation of the αp, p > 0.

In Alain Connes’ noncommutative geometry, the dimension is the exponent
to be given to a geometric pseudodifferential operator of order −1 in order to
obtain a singularly traceable operator. Such a property is enjoyed by the αp’s,
as the following corollary of Theorem 2.5 shows.

6.2 Theorem. Let M be the universal covering of a compact manifold X whose
homotopy group is denoted by Γ. Then if αp is finite, ∆−αp

2 is singularly trace-

able, namely a singular trace is defined on the bimodule generated by ∆−αp
2

on the von Neumann algebra of Γ-invariant operators on the L2 sections of
ΛpT ∗M .

7. Novikov-Shubin invariant for open manifolds.

In this section we define the 0-th Novikov-Shubin invariant for open man-
ifolds with bounded geometry and regular polynomial growth, showing that
this number carries a singular trace. Indeed it coincides with the asymptotic
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dimension on a suitable subclass of manifolds. The results in this section are
extracted from [24].

The trace which is to replace Atyiah’s trace is essentially the one constructed
by J. Roe in [33]. We need some regularizations in order to get a semicontinuous
semifinite trace on a C∗-algebra and therefore apply the results described in
Section 3.

A natural C∗-algebra of operators A on a manifold of bounded geometry
M is that of almost local operators, obtained as the norm closure of the ∗-
algebra of finite propagation speed operators, i.e. operators A ∈ B(L2(M)) for
which there is a constant u(A) > 0 s.t. for any compact subset K of M , any
ϕ ∈ L2(M), supp ϕ ⊂ K, we have supp Aϕ ⊂ {x ∈M : δ(x,K) ≤ u(A)}.
A contains any C0-functional calculus of the Laplace-Beltrami operator.

As concerns a trace on this C∗-algebra, its construction is more involved.
First we need to consider a more restricted class of manifolds that we call of
regular polynomial growth, that is

lim
r→∞

V (x, r +R)
V (x, r)

= 1

for all x ∈M , R > 0.
Recall that an operator T on L2(M) is called locally trace class if, for any

compact set K ⊂ M , EKTEK is trace class, where EK denotes the projection
given by the characteristic function of K. It is known that the functional
µT (K) := Tr(EKTEK) extends to a Radon measure on M .

Then consider the set J0+ of positive locally trace class operators T , such
that lim supr→∞

µT (B(x,r))
V (x,r) is finite and independent of x ∈M , which turns out

to be a hereditary (positive) cone in B(L2(M)).
Choose a translationally invariant state ω on L∞([0,∞)), and consider the

functional ϕ0 on B(L2(M))+ given by

ϕ0(A) :=

{
ω

(
µA(B(x,r))
V (x,r)

)
A ∈ J0+

+∞ A ∈ B(L2(M))+ \ J0+

Then ϕ0 is a weight on B(L2(M)) and does not depend on x ∈M .
The functional ϕ0 was considered by J. Roe in [33]. Indeed regular poly-

nomial growth implies that {B(x, kr)}k∈N is a regular exhaustion according to
[33]. The further hypothesis that ω is translationally invariant plays a crucial
role in our construction.

Applying results in [32] and classical results about traces on C∗-algebras, we
may produce a trace τ on A which is a semicontinuous semifinite regularisation
of ϕ0. It turns out that τ coincides with ϕ0 on operators with a suitably regular
kernel, such as the heat semigroup e−t∆.

The semicontinuous regularisation ϕ of ϕ0|A is given by

ϕ(A) := sup{ψ(A) : ψ ∈ A∗+, ψ ≤ ϕ0} ≡ sup
ψ∈F(ϕ0)

ψ(A),

where F(ϕ0) := {ψ ∈ A∗+ : ∃ ε > 0, (1 + ε)ψ < ϕ0}. ϕ is a trace on A.
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Finally τ is the semifinite extension of ϕ [14], obtained as the pull back
of the normal semifinite faithful trace on the weak closure of A in the GNS
representation induced by ϕ.

We can now define the 0-th Novikov-Shubin invariant of M as

7.1 Definition. Let M be an open manifold with bounded geometry and regular
polynomial growth. Then the (0-th) Novikov-Shubin invariant of M is defined
as

α0(M) = 2 lim sup
t→0

log(N(t))
log t

= 2 lim sup
t→∞

log(ϑ(t))
log 1

t

,

where N(t) and ϑ(t) are defined as in Section 6, the Γ-trace being replaced by
τ .

As illustrated in Section 3, this produces a singular trace on A.

7.2 Theorem. Let M be an open manifold with bounded geometry and regular
polynomial growth. Then there exists a singular trace on (the unbounded op-
erators affiliated to) A which is finite on the ∗-bimodule over A generated by
∆−α0(M)/2.

Finally, if M satisfies Grigor’yan isoperimetric inequality [20], Theorem 6.1
may be generalized as follows.

7.3 Theorem. Let M be an open manifold with bounded geometry, regular
polynomial growth and satisfying Grigor’yan isoperimetric inequality. Then

d∞(M) = α0(M).
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