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Abstract. Singular traces are constructed on a general semifinite von Neumann al-
gebra, thus generalizing the result of Dixmier [6]. Moreover our technique produces
singular traces on type II1 factors. Such traces, though vanishing on all bounded
operators, are non trivial on the ∗-algebra of affiliated unbounded operators.

On a semifinite factor, we show that all traces are given by a dilation invariant
functional on the cone of positive decreasing functions on [0,∞), and we prove that
the existence of a singular trace which is non trivial on a given operator is equivalent
to an eccentricity condition on the singular values function, a result which generalizes
the theorem given in [1] for B(H).

Introduction
The solution of the conjecture on the uniqueness of the trace on B(H) given by

Dixmier in 1966, in which he showed the existence of non normal traces, had important
consequences in the applications, as it is shown by the extensive use of Dixmier traces
in Alain Connes’ non commutative geometry [4], and opened some lines of research
in the general setting, i.e. the description, or classification, of non normal traces.
The present work belongs to the second context, generalizing previous constructions
to semifinite von Neumann algebras, finding new types of singular traces, and also
clarifying the role of some general properties.

In his remarkable paper, Dixmier [6] observed that traces, being unitarily invariant
positive functionals, should be given by a positive function of the singular values.
Therefore the problem was to exhibit functions which give rise to linear functionals.
Dixmier’s construction may be easily described: choose a normalizing sequence with
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a suitable asymptotic behavior, divide the partial sums of the singular values by the
given normalizing sequence, apply to the resulting sequence a two-dilation invariant
state on `∞. This procedure gives a linear functional on positive operators, which is
therefore a trace. The normalizing sequence may be identified with the partial sums of
the singular values of a reference operator, on which the trace takes value 1. Dixmier
traces are singular, i.e. they vanish on finite rank operators. In fact they vanish on all
trace class operators.

In a paper by Varga [15], the asymptotic condition on the normalizing sequence is
replaced by a weaker condition, the irregularity of the reference operator a, and such
condition is proven to be equivalent to the traceability of a, i.e. the existence of a
trace which takes value 1 on a. Irregularity turns out to be a weak form of dilation
invariance, therefore the ideal generated by an irregular operator inherits some form
of invariance. This allows Varga to do without the dilation invariance of the state,
but his functionals are traces only when restricted to a smaller domain. The traces
constructed by Varga vanish on trace class operators, too.

Then, in [1], it was noted that the irregularity condition, which is trivial on trace
class operators, may be replaced by a stricter condition, which we call eccentricity.
If Dixmier (or Varga) procedure is suitably refined, eccentric sequences, not only re-
produce Dixmier traces, but also give rise to a new class of singular traces, whose
domain is contained in L1(H). Moreover, it is proven in [1] that eccentricity condition
is equivalent to singular traceability, i.e. the existence of a singular trace which takes
value 1 on the given operator.

In this paper we extend the theory of singular traces to semifinite von Neumann
algebras. As a first result, such an extension produces a new phenomenon, that is the
existence of singular traces on bimodules of measurable operators affiliated to a given
von Neumann algebra which depend only on the behavior of the “large eigenvalues”,
therefore vanishing on all bounded operators. Such traces are present when the al-
gebra has a non trivial continuous part, therefore we produce, in particular, singular
traces on type II1 factors. More precisely, the domain of such traces is a bimodule of
measurable operators affiliated to the given factor, and they necessarily vanish on the
whole algebra. As a further result, the key role of some properties appears in its full
generality in this context.

The main technical point is the extensive use of the notion of the (trace-) decreasing
rearrangement of an operator [7], which substitutes the sequence of the singular values
in the general setting. In fact, on a semifinite factor, both a bimodule and a trace
are rearrangement invariant objects, therefore all relevant properties concerning these
objects should admit a description in terms of the decreasing rearrangement. More
precisely, unitarily invariant spaces (such as ideals or bimodules) may be expressed in
terms of the corresponding spaces of decreasing rearrangements, and unitarily invariant
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functionals (such as traces) may be expressed in terms of functionals on the decreasing
rearrangements.

As already pointed out, the non trivial property to prove when using rearrange-
ments is linearity. Following Dixmier, it is natural to think that dilation invariance is
the counterpart of linearity on the space D of decreasing rearrangements. We show
that this is precisely the case for bimodules on semifinite factors, i.e. bimodules are in
1−1 correspondence with dilation invariant faces in D. As far as traces are concerned,
we are not able to produce such a complete description. Indeed we prove that dilation
invariance is a necessary condition, and it becomes sufficient when a further positivity
property (monotonicity) is assumed. Further results on this topic are contained in [2],
where it is proven that monotonicity is not a necessary property.

As we mentioned before, the counterpart of singular traceability in terms of rear-
rangements is eccentricity, i.e. the two conditions are equivalent on a semifinite factor,
but the explicit construction of traces on bimodules generated by eccentric operators
works on a general semifinite von Neumann algebra.

This paper is divided into “commutative” sections, in which the properties of
the space of rearrangements are analyzed, and “non commutative” ones, in which
“commutative” results are applied to operator algebras.

In section 1 the main inequalities concerning the behavior of rearrangements, or
better their integrals, w.r.t. the additive structure of operators, are proved.

In section 2 the relation between linearity and dilation invariance is proven in a
commutative setting, the general form of a dilation invariant functional is described and
a sort of commutative Calkin theorem is proven for dilation invariant faces. Monotone
dilation invariant functionals are also described. These results are used in section 3
and 4 to get a complete description of bimodules on semifinite factors, together with
a generalized Calkin theorem, and to give a general description of singular traces on
measurable operators affiliated to semifinite factors via dilation invariant functionals.
Also, it is proven that monotone dilation invariant functionals always give rise to traces
on a semifinite von Neumann algebra.

Section 5 is dedicated to the relationships between eccentric functions and dilation
invariant functionals, thus bringing in section 6 to the singular traceability theorem
and to the explicit construction of singular traces on semifinite von Neumann algebras.

To better illustrate the unifying role played by the notion of decreasing rearrange-
ment, most of the statements are given for a general semifinite factor (or von Neumann
algebra), even though analogous results in the type I case are already contained in [1]
or [15]. The hypotheses of factoriality and σ-finiteness are often assumed, but they are
not needed in the explicit construction of singular traces.
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Section 1. Rearrangements on von Neumann algebras.
In this section (M, tr) is a pair consisting of a semifinite von Neumann algebra with

a normal semifinite faithful trace. We refer the reader to [14] for the general theory of
von Neumann algebras. Let M̃ be the collection of the closed, densely defined operators
on H affiliated with M . Then, ∀x =

∫∞
0

t dex(t) ∈ M̃+, E ⊂ R→ νx(E) := tr(ex(E))
is a Borel measure on R, and tr(x) :=

∫∞
0

t dνx(t) is a faithful extension of tr to M̃+.
Define

M := {x ∈ M̃ : tr(e|x|(t,∞)) < ∞ for some t > 0}.

Then M , equipped with strong sense operations [11] and with the topology of con-
vergence in measure ([13], [9]), becomes a topological ∗-algebra, called the algebra of
tr-measurable operators.

1.1 Remark. If M := L∞(X, m) and tr(f) :=
∫

fdm, then M̃ is the ∗-algebra of m-
measurable functions that are finite m-a.e., and M is the ∗-subalgebra of M̃ consisting
of functions that are bounded except on a set of finite m-measure.

1.2 Definition. [7] Let a ∈ M , and define, for all t ≥ 0,

(i) λa(t) := tr(e|a|(t,∞)), the distribution function of a w.r.t. tr,

(ii) µa(t) := inf{s ≥ 0 : λa(s) ≤ t}, t > 0, the decreasing rearrangement of a w.r.t. tr,

(iii) σa(t) :=
∫ t

0
µa(r)dr,

(iv) ςa(t) :=
∫∞

t
µa(r)dr.

1.3 Remarks. (i) If M = B(H) and tr is the usual trace, then µa =
∑∞

n=0 snχ[n,n+1),
where {sn} is the sequence of singular values of the operator a, arranged in decreasing
order and counted with multiplicity. [12]
(ii) If M := L∞(X, m) and tr(f) :=

∫
fdm, then, ∀f ∈ M , µf ≡ f∗, the classical

decreasing rearrangement of f [3]. Observe that, in this setting, one defines the de-
creasing rearrangement also for f ∈ M̃ , and for such f the following are equivalent (i)
f ∈ M , (ii) ∃s0 > 0 s.t. λf (s0) < ∞, (iii) lims→∞ λf (s) = 0, (iv) f∗(t) < ∞, ∀t > 0.

1.4 Proposition. [7] Let a, b, c ∈ M , e ∈ Proj(M) then

(i) The function µa is non-increasing and right-continuous. Moreover limt↓0 µa(t) =
‖a‖ ∈ [0,∞],

(ii) µa = µ|a| = µa∗ and µαa = |α|µa for α ∈ C,

(iii) µa+b(s + t) ≤ µa(s) + µb(t), s, t > 0,

(iv) µabc ≤ ‖a‖‖c‖µb,

(v) µae(t) = 0, for t ≥ tr(e),
(vi) tr(|a|) =

∫∞
0

µa(t)dt,

(vii) µa(t) = inf{‖ap‖ : p ∈ Proj(M), tr(p⊥) ≤ t}.
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1.5 Definition. The pair (S, e), given by a subset S of the interval [0, tr(1)) and

an increasing map e from S to the projections in M , is called a (partial) trace family
when tr(e(t)) = t, t ∈ S.

We observe that the set of trace families is not empty since S := {0}, e(0) = 0 is
a trace family. This set admits a natural order relation given by (S1, e1) ≺ (S2, e2) if
S1 ⊂ S2 and e2|S1 ≡ e1. In this case (S2, e2) is also called an extension of (S1, e1). A
trace family is called global if S ≡ [0, tr(1)), and is specified, in this case, only by the
map e. A global trace family is called complete if sup e(t) = 1.

1.6 Proposition. Let M have no minimal projection. Then each trace family (S0, e0)
admits a global extension. In particular, there exists a global trace family, and any

such family is strongly continuous. If M is σ-finite, there exist global, complete trace

families.

Proof. It is easy to see that we may apply Zorn lemma to the ordered set {(S, e) :
(S, e) � (S0, e0)}, therefore we get a maximal element (S, e). Since the continuous
extension of e to the closure S of S in [0, tr(1)) is a trace family, we get, by maximality,
S = S. Finally let (α, β) be a maximal open interval in Sc. Since (S, e) is maximal,
e(β)− e(α) is a minimal projection, i.e. α = β and (S, e) is global.
Now we set

e(t±0 ) := lim
t→t±0

e(t)

and, since e is increasing and tr is positive, we get tr(e(t−0 )) = tr(e(t+0 )). Because tr

is faithful we get strong continuity of e.
If M is σ-finite, there exists an increasing sequence of projections with finite trace {en}
such that sup en = 1. Then set S := {tr(en) : n ∈ N}, e(tr(en)) := en. Each global
extension of such an (S, e) is complete.

ut

1.7 Proposition. Let M have no minimal projection, and set M := L∞(0,∞).
There exists a (non unital) normal isomorphism i : M→ M such that

tr(i(f)) =
∫

fdm , f ∈M+.

If M is σ-finite, i may be chosen unital.

Proof. Let e be a global trace family in M . Then the map

i(f) :=
∫

f(t)de(t)
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gives the desired isomorphism. If M is σ-finite, we can choose a complete e, therefore
the isomorphism is unital.

ut

1.8 Lemma. Let M have no minimal projection, a ∈ M+. Then for all r ∈ (0, tr(1)),
∃pr ∈ Proj(M) s.t. tr(pr) = r, [a, pr] = 0,

µapr
= µaχ[0,r),

and

µap⊥r
(t) = µa(t + r), t > 0.

Proof. Let a =
∫∞
0

tde(t) be the spectral decomposition of a and set S := {tr(e[t,∞))
: t > 0}\{∞}, and, for all s ∈ S, f(s) := e[t,∞), where e[t,∞) is the unique projection
s.t. tr(e[t,∞)) = s. Then (S, f) is a trace family and, by proposition 1.6, admits
a global extension that we denote again by (S, f). Let us set pr := f(r), so that
tr(pr) = r, and, as there exists t > 0 s.t. e(t,∞) ≤ pr ≤ e[t,∞), because a global
trace family is increasing, we easily get [a, pr] = 0. Besides λapr (s) = tr(e(s,∞)pr) =
tr(e(s,∞)) ∧ r = λa(s) ∧ r, and λap⊥r

(s) = λa(s)− λapr
(s) = (λa(s)− r) ∨ 0, so that

µapr
(s) = inf{v ≥ 0 : λapr

(v) ≤ s}
= inf{v ≥ 0 : λa(v) ∧ r ≤ s}
= µa(s)χ[0,r)(s),

and
µap⊥r

(s) = inf{v ≥ 0 : λap⊥r
(v) ≤ s}

= inf{v ≥ 0 : λa(v)− r ≤ s}
= µa(r + s).

ut

1.9 Lemma. Let M have no minimal projection, a ∈ M . Then we have

(i) ‖a‖ = sup0<tr(q)<∞
tr(|a|q)
tr(q) , where q ∈ Proj(M),

(ii) for all t ∈ [0, tr(1)),

µa(t) = inf
tr(p)≤t

sup
q≤p⊥

tr(|a|q)
tr(q)

,

where p, q ∈ Proj(M), 0 < tr(q) < ∞,

(iii) for all r ∈ [0, tr(1)), s ∈ (0, tr(1)− r],∫ r+s

r

µa(t)dt = inf
tr(p)≤r

sup
q≤p⊥,tr(q)≤s

tr(|a|q),
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where p, q ∈ Proj(M),
(iv) in particular σa(t) = suptr(p)≤t tr(|a|p) and ςa(t) = inftr(p)≤t tr(|a|p⊥).

Proof. As µa = µ|a| we can assume that a > 0. Let a =
∫∞
0

s dea(s) be the spectral
decomposition.
(i) Suppose first that a is unbounded, so that ‖a‖ = ∞. As a is tr-measurable, there
exists s0 > 0 s.t. tr(ea(s,∞)) < ∞, for all s > s0. Then we have tr(aea(s,∞)) ≥
s tr(ea(s,∞)), so that sup0<tr(q)<∞

tr(aq)
tr(q) ≥ s, for all s > s0, and the thesis follows.

Therefore we can suppose that a ∈ M . As tr(aq) ≤ ‖a‖tr(q), for all q ∈ Proj(M),
there follows sup tr(aq)

tr(q) ≤ ‖a‖.
For the opposite inequality let, for all r ∈ (0, tr(1)), pr ∈ Proj(M) be as in lemma
1.8. Then tr(apr) =

∫ tr(1)

0
µapr (s)ds =

∫ r

0
µa(s)ds. For all ε > 0, there is rε > 0

s.t. µa(s) ≥ ‖a‖ − ε, ∀s ∈ [0, rε], because of right-continuity of µa. Then we get
tr(aprε

) =
∫ rε

0
µa(s)ds ≥ rε(‖a‖− ε), so that tr(aprε )

tr(prε ) ≥ ‖a‖− ε, and the thesis follows
from the arbitrariness of ε.
(ii) Observe that µa(t) = inftr(p)≤t ‖ap⊥‖ so the thesis follows from (i).
(iii) Let us first suppose that s < ∞. Then for all p ∈ Proj(M), tr(p) ≤ r one has∫ r+s

r

µa(t)dt ≤ µa(r)s ≤ s‖ap⊥‖ = s sup
q

tr(aq)
tr(q)

= sup
q

tr(aq)
s

tr(q)
≤ sup

q
tr(aq),

where the sup is taken over all q ∈ Proj(M), 0 < tr(q) ≤ s, q ≤ p⊥, so that∫ r+s

r

µa(t)dt ≤ inf
tr(p)≤r

sup
tr(q)≤s,q≤p⊥

tr(aq). (1.1)

Observe that from the above one gets∫ ∞

r

µa(t)dt ≤ inf
tr(p)≤r

sup
q≤p⊥

tr(aq),

that is (1.1) for s = ∞.
For the opposite inequality, let pr ∈ Proj(M) be as in lemma 1.8; then we get, for all
q ∈ Proj(M), tr(q) ≤ s, q ≤ p⊥r ,

tr(aq) =
∫ tr(1)

0

µaq(t)dt =
∫ s

0

µaq(t)dt

=
∫ s

0

µaqp⊥r
(t)dt ≤

∫ s

0

µap⊥r
(t)dt =

∫ r+s

r

µa(t)dt,
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from which the thesis follows.
(iv) The result for σa is immediate from (iii) (see [7] for a direct proof). As far as ςa
is concerned, from (iii) we get

ςa(t) =
∫ tr(1)

t

µa(r)dr

= inf
tr(p)≤t

sup
tr(q)≤tr(1)−t,q≤p⊥

tr(aq)

≤ inf
tr(p)≤t

tr(ap⊥),

but for p = pt of lemma 1.8 we get
∫ tr(1)

t
µa(r)dr = tr(ap⊥t ), and the thesis follows.

ut

1.10 Proposition. Let M be a semifinite von Neumann algebra, tr a n.s.f. trace on

M , a, b ∈ M+. Then, for all 0 ≤ t ≤ tr(1),
(i) σa+b(t) ≤ σa(t) + σb(t) ≤ σa+b(2t),

(ii) ςa+b(t) ≥ ςa(t) + ςb(t) ≥ ςa+b(2t).

Proof. The inequalities are trivial for t = 0, so we suppose t > 0, and set, for the
sake of brevity, Pr := {p ∈ Proj(M) : tr(p) ≤ r}, for r > 0.
(i) Let us first suppose that M has no minimal projection. Then the first inequality is
in [7]. For the second we get from lemma 1.9(iv),

σa+b(s + t) = sup
e∈Ps+t

tr((a + b)e)

= sup
p∈Ps,q∈Pt

tr(a(p ∨ q)) + tr(b(p ∨ q))

≥ sup
p∈Ps,q∈Pt

tr(ap) + tr(bq)

= σa(s) + σb(t).

Choosing s = t we get the thesis.
If now M has minimal projections, embed M in M ⊗L∞(0, 1) equipped with the trace
tr⊗

∫
. Then, by [7, p. 286], we get σa+b(2t) = σ̃a+b(2t) ≥ σ̃a(t)+ σ̃b(t) = σa(t)+σb(t),

where σ̃a(t) =
∫ t

0
µ̃a(s)ds and µ̃a is the rearrangement of a w.r.t. tr ⊗

∫
.

(ii) Consider first the case when M has no minimal projections. Then, from lemma
1.9(iv), we get

ςa+b(t) = inf
e∈Pt

tr((a + b)e⊥)

≥ inf
p∈Pt

tr(ap⊥) + inf
q∈Pt

tr(bq⊥)

= ςa(t) + ςb(t)
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and, for all s, t ≥ 0, we get

ςa+b(s + t) = inf
e∈Ps+t

tr((a + b)e⊥)

= inf
p∈Ps,q∈Pt

tr((a + b)(p ∨ q)⊥)

≤ inf
p∈Ps,q∈Pt

tr(ap⊥) + tr(bq⊥)

= ςa(s) + ςb(t).

Choosing s = t we get the result.
If now M has minimal projections, we can proceed as in (i), if we observe that ς̃a(t) =
ςa(t), where ς̃a(t) =

∫ tr(1)

t
µ̃a(s)ds.

ut

Section 2. Dilation invariance on R+.
Let us denote by D the convex cone of positive measurable functions on R+ ≡

(0,∞) which are finite, non increasing and right continuous. If Ω is a closed subset of
R+, D(Ω) will denote the subset of D whose elements are constant on the connected
components of R+ \ Ω and are zero after supΩ. We note that functions in D(Ω) are
determined by their restriction to Ω. As a consequence, we shall identify D(N) with
the set of positive non increasing sequences.

We shall denote by Db, resp. D∞, resp. D0 the set of functions in D which are
bounded, resp. infinitesimal, resp. with compact support in [0,∞), and by Db,∞, Db,0

the corresponding intersections. These sets are indeed faces, i.e. hereditary subcones,
of D. M denotes the von Neumann algebra L∞(R+), therefore M denotes, according
to section 1, the space of (equivalence classes of) measurable functions on R+ which
are finite almost everywhere and bounded on the complement of a set of finite measure.

Let us consider the action λ → fλ of the multiplicative group R+ on D given by:

fλ(t) = λf(λt) , λ, t ∈ R+ (2.1)

2.1 Definition. A face F in D is called dilation invariant if f ∈ F ⇒ fλ ∈ F ,

λ ∈ R+.

A positive linear functional ϕ on D is called dilation invariant if ϕ(f) = ϕ(fλ), f ∈ D,

λ ∈ R+.

Let us note that D0, D∞, etc. are dilation invariant faces in D.
We recall that a positive linear functional on a convex cone C is a positive ho-

mogeneous, additive function with values in [0,+∞]. If C is the positive cone of an

9



ordered vector space V , we say ϕ is a positive linear functional on V if it is a positive
linear functional on C. We denote by the same symbol the linear extension of ϕ to the
linear span of {v ∈ C : ϕ(v) < +∞}. Now we show that there is a relation between
dilation invariance on the space D and linearity on M.

2.2 Proposition.
(a) Let F be a subset of D such that

F∗ := {f ∈M+ : f∗ ∈ F}

is a face in M+. Then F is a dilation invariant face in D.

(b) Let ϕ be a positive functional on D such that the functional ϕ∗ given by

ϕ∗(f) := ϕ(f∗) , f ∈M+

is a positive linear functional on M. Then its domain F := {f ∈ D : ϕ(f) < ∞} is a

dilation invariant face in D and ϕ is a positive linear, dilation invariant functional on

D.

Proof. Let 0 < λ ≤ 1, f a λZ-valued function in D. Then f may be written as

ϕ ≡
∑
m∈Z

λmχ[αm,αm+1)

where αm is a non decreasing sequence of positive numbers. Now we fix n ∈ N, and
consider the functions

f (i) :=
∑
m∈Z

λmχ[βm,i−1,βm,i) , βm,i := nαm + i(αm+1 − αm)

f(i) : =
∑
m∈Z

λmχ[γm,i−1,γm,i) , γm,i := αm +
i

n
(αm+1 − αm)

i = 1 . . . n

and note that
(i) (f (i))∗ ≡ f , 1 ≤ i ≤ n, which implies 1

n

∑
i(f

(i))∗ ≡ f ,
(ii) 1

n

∑
i f (i) ≡ f1/n,

(iii)
∑

i f(i) ≡ f and in particular f(i) ≤ f ,
(iv) (f(i))∗ ≡ 1

nfn, 1 ≤ i ≤ n, which implies
∑

i(f(i))∗ ≡ fn.
By (i) and (ii) we get f ∈ F ⇒ f (i) ∈ F∗, i = 1, . . . , n ⇒ f1/n ∈ F , and ϕ(f) =
1/n

∑
i ϕ∗(f (i)) = ϕ(f1/n). Analogously, by (iii) and (iv) we get f ∈ F ⇒ f(i) ∈ F∗,

i = 1, . . . , n ⇒ fn ∈ F and ϕ(f) =
∑

i ϕ∗(f(i)) = ϕ(fn).
As a consequence, for all λZ-valued function f ∈ D, λ > 0, and all rational numbers
r, we get ϕ(f) = ϕ(fr) and f ∈ F ⇐⇒ fr ∈ F .
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Now we define the ε-approximation fε of a function f ∈ D. For a fixed positive λ, let
us consider the function ıλ on [0,+∞) defined as follows: ıλ(x) is the greatest integer
power of λ which is strictly lower then x when x > 0, and ıλ(0) := 0. Then we observe
that

ıλ(x) ≤ x ≤ λıλ(x) . (2.2)

Therefore fε := ı1+ε(f) is an (1 + ε)Z-valued function in D and, by (2.2), f ∈ F
iff fε ∈ F , and ϕ(fε) ≤ ϕ(f) ≤ (1 + ε)ϕ(fε). These relations imply that F and ϕ

are invariant under rational dilations. Finally, if α is irrational and r, s are rational
numbers verifying r < α < s, we have

r

s
fs < fα <

s

r
fr , ∀f ∈ D. (2.3)

Therefore, by the face property of F , resp. the positivity of ϕ, we obtain the dilation
invariance for F , resp. ϕ.

ut

2.3 Remark. Let D# be a the dilation invariant subface of D, e.g. Db, D∞, D0 and
their intersections Db,∞, Db,0. It is clear that if F is a face in D#, it is also a face in
D, and if it is dilation invariant in D# it is a fortiori a dilation invariant face in D.
In the same way, if ϕ is a positive linear functional on D#, it uniquely extends to a
positive linear functional on D with the same domain, and if ϕ is dilation invariant,
also its extension is. Therefore the results on faces and functionals on D apply to faces
and functionals on D#.

2.4 Proposition. Each non zero dilation invariant face F in D contains Db,0.

Moreover, either F ⊂ D∞ or F ⊃ Db.

Proof. If F 3 f 6= 0 then, by face property, F contains χ[0,ε] for a suitably small ε,
and therefore, by dilation invariance, ε

αχ[0,α] ∈ F for each positive α. Again by face
property F contains each bounded function with compact support.
Now let F contain f 6∈ D∞. Then infR+ f(x) = α > 0, which implies, by face property,
F ⊃ Db.

ut

2.5 Lemma. Let ϕ be a positive linear dilation invariant bounded functional on Db,0.

Then ϕ coincides with the Lebesgue integral ϕL on R+ up to a positive constant.

Proof. Let us denote by ϕ̃ the linear extension of the restriction of ϕ to the contin-
uous non increasing functions with compact support in [0,∞). Since each real valued
continuous function with compact support in [0,∞) may be uniquely decomposed into
a difference of two continuous non increasing functions with compact support in [0,∞),
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by Riesz theorem, ϕ̃ is given by the integral w.r.t. a Borel measure ν on [0,∞). Now
we observe that the Dirac measure on {0} is not dilation invariant according to defi-
nition 2.1, therefore ϕ̃ is determined by its behavior on the continuous functions with
compact support in R+. Then we note that dilation invariance for ϕ̃ is equivalent
to the fact that dh(t) := dν(t)

t is the Haar measure on R+ (with the multiplicative
structure), indeed∫

R+

f(t)dh(t) =
∫
R+

f(t)
t

dν(t) =
∫
R+

λ
f(λt)

λt
dν(t) =

∫
R+

f(λt)dh(t).

As a consequence ν is the Lebesgue measure (up to a positive constant k). Since
for each function f ∈ Db,0 and for each ε > 0 we may find two continuous functions
f1, f2 ∈ Db,0 such that f1 ≤ f ≤ f2 and

∫
f2 ≤ ε +

∫
f1, ϕ ≡ kϕL by positivity.

ut

2.6 Proposition. Let ϕ be a non trivial dilation-invariant positive linear functional

on D. Then ϕ is uniquely decomposed in

ϕ = ϕ0 + ϕ∞ + kϕL, (2.4)

where ϕ0, ϕ∞, ϕL are dilation-invariant positive linear functionals on D, ϕ0 is identi-

cally zero on Db, ϕ∞ is identically zero on D0, k ≥ 0, and ϕL is the Lebesgue integral

on R+.

Proof. By proposition 2.2 the domain of ϕ is a dilation invariant face, and it contains
Db,0 by lemma 2.4, since ϕ is non trivial. Then, by lemma 2.5, ϕ restricted to Db,0

coincides with kϕL for a suitable constant k. By the inner regularity of the Lebesgue
measure and the positivity of ϕ we get, for each f ∈ D,

kϕL(f) = sup
g ∈ Db,0

g ≤ f

kϕL(g) = sup
g ∈ Db,0

g ≤ f

ϕ(g) ≤ ϕ(f)

i.e. ϕ − kϕL is a dilation invariant positive linear functional on D which vanishes on
Db,0.
Now let us denote by ϕ∞ the functional on D which coincides with ϕ − kϕL on Db

and vanishes on all functions with compact support. It is easy to see that ϕ∞ enjoys
all the requested properties, moreover, by definition, ϕ∞ ≤ ϕ − kϕL. Then we set
ϕ0 := ϕ− αϕL − ϕ∞ and the proof is complete.

ut

Now we consider a special class of positive linear functionals on D. Such function-
als, which we call monotone, obey a stronger form of positivity. Let us consider the
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following relations between functions in D, 0 ≤ α < β ≤ +∞:

f ≺
α↑β

g ⇐⇒
∫ t

α

f(s)ds ≤
∫ t

α

g(s)ds, ∀t ∈ (α, β),

f ≺
α↓β

g ⇐⇒
∫ β

t

f(s)ds ≤
∫ β

t

g(s)ds, ∀t ∈ (α, β).

(2.5)

They are pre-order relations (i.e. not necessarily antisymmetric) and are weaker than
the usual one. Now let ϕ be a positive linear functional on D, 0 ≤ α < β ≤ +∞. ϕ is
called (α, β)-increasing if it satisfies

f ≺
α↑β

g ⇒ ϕ(f) ≤ ϕ(g). (2.6)

ϕ is called (α, β)-decreasing if it satisfies

f ≺
α↓β

g ⇒ ϕ(f) ≤ ϕ(g). (2.7)

2.7 Lemma. Let ϕ be a (0,∞)-increasing (resp. -decreasing) dilation invariant

positive linear functional on D. Then ϕ0 is (0, 1)-increasing (resp. -decreasing) and

ϕ∞ is (1,∞)-increasing (resp. -decreasing), where ϕ0, ϕ∞ refer to the decomposition

(2.4).

Proof. First suppose ϕ is (0,∞)-increasing. We prove that ϕ∞ is (1,∞)-increasing
by contradiction. Indeed, let Iϕ be the domain of ϕ, and let f , g ∈ Iϕ be s.t. f ≺

0↑∞
g

but ϕ∞(f) − ϕ∞(g) =: ε > 0. If the constant k in formula (2.4) is not zero, which
implies Iϕ ⊆ L1(R+), we set δ := ε

2k and find t0 ∈ R+ s.t.
∫∞

t0
f and

∫∞
t0

g are less
than δ

4 . Then let us define

f̃(t) :=


f(t0) ∨ g(t0) + δ

t0
0 ≤ t < t0

2

f(t0) ∨ g(t0) t0
2 ≤ t < t0

f(t) t0 ≤ t

and

g̃(t) :=

 f(t0) ∨ g(t0) + δ
t0

0 ≤ t < t0

g(t) t0 ≤ t

.

It is easy to see that ϕ∞(f) = ϕ∞(f̃), ϕ∞(g) = ϕ∞(g̃), f̃ ≺
0↑∞

g̃, ϕ0(f̃) = ϕ0(g̃) = 0,∫
g̃ − f̃ ≤ δ

2 . Then, we get

ϕ(g̃)− ϕ(f̃) = kϕL(g̃ − f̃) + ϕ∞(g)− ϕ∞(f) < 0
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that is, ϕ is not (0,∞)-increasing. If k = 0, i.e. the Lebesgue integral does not appear
in the decomposition of ϕ, we set t0 = 1 and δ = 0 in the preceding construction. As
before we get ϕ∞(f) = ϕ∞(f̃), ϕ∞(g) = ϕ∞(g̃), f̃ ≺

0↑∞
g̃, ϕ0(f̃) = ϕ0(g̃) = 0, and,

trivially,
ϕ(g̃)− ϕ(f̃) = ϕ∞(g)− ϕ∞(f) < 0.

Analogously, we prove that ϕ0 is increasing. The decreasing case is proved in the same
way.

ut

2.8 Lemma. Let ϕ be a dilation invariant, positive linear functional, α > 0, β < ∞.

Then

(a) The following are equivalent

(i) ϕ is (α,∞)-increasing (resp. decreasing)

(ii) ϕ is (1,∞)-increasing (resp. decreasing)

(iii) ϕ vanishes on D0 and ϕ|Db
is (0,∞)-increasing (resp. decreasing).

In this case, ϕ is determined by its restriction to Db and ϕ|Db
vanishes on (resp.

its domain is contained in) L1 ∩ D.

(b) The following are equivalent

(i) ϕ is (0, β)-increasing (resp. decreasing)

(ii) ϕ is (0, 1)-increasing (resp. decreasing)

(iii) ϕ vanishes on Db and ϕ|D0 is (0,∞)-increasing (resp. decreasing).

In this case, ϕ is determined by its restriction to D0 and the domain of ϕ|D0 is

contained in (resp. ϕ|D0 vanishes on) L1 ∩ D.

(c) The Lebesgue integral is (0,∞)-increasing and (0,∞)-decreasing.

Proof. (a), increasing case. First observe that, if ϕ is (α,∞)-increasing, then ϕ

vanishes on D0. Indeed if f ∈ D with support in [0, α], we get ϕ ≺
α↑∞

0, therefore
ϕ(f) = 0, and, by dilation invariance, we get the result.
(ii) ⇒ (iii) Let us show that ϕ|Db

is (0,∞)-increasing. Let f ≺
0↑∞

g, f, g ∈ Db. By a
straightforward computation, it follows that f ≺

1↑∞
g̃, where

g̃ := g + ‖g − f‖L∞[0,2]χ[0,2).

Then ϕ(f) ≤ ϕ(g̃) = ϕ(g) because ϕ vanishes on compact support functions, i.e. the
thesis.
(iii) ⇒ (ii) It follows from lemma 2.7.
(ii) ⇐⇒ (i) It is analogous to the case (ii) ⇒ (iii).
Finally let ϕ be (1,∞)-increasing. Since any function in D may be decomposed in a
sum of a function in D0 and a function in Db (see e.g. proposition 5.3), ϕ is determined
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by its restriction to Db. Besides, for all f ∈ D ∩ L1(R+), we may find a g ∈ D0 such
that f ≺

1↑∞
g, which implies that ϕ is zero on integrable functions.

The proof for the decreasing case and the proof of statement (b) are analogous. State-
ment (c) is trivial.

ut

Motivated by the preceding lemmas, we give the following definition:

2.9 Definition. A dilation invariant positive linear functional ϕ on D is called

increasing, resp. decreasing, if ϕ0 is (0, 1)-increasing, resp. decreasing, and ϕ∞ is

(1,∞)-increasing, resp. decreasing. The functional ϕ is called monotone if it is in-

creasing or decreasing.

We note that, by lemma 2.8, the only “constant” (i.e. increasing and decreasing)
dilation invariant functional is the Lebesgue integral.

As will be shown in section 4, monotonicity plays an important role in constructing
traces. Concrete examples of monotone, dilation invariant, positive linear functionals
will be given in section 5.

In the rest of the section we discuss the results on dilation invariance for functions
with different domains.

On the space D(0, 1), the dilations described in (2.1) make sense only for λ ≥ 1.
A face in D(0, 1) resp. functional on D(0, 1) is called dilation invariant if it is invariant
under these dilations.

2.10 Remark. Each dilation invariant face in D(0, 1) gives rise to a dilation invariant
face in D0 and each dilation invariant face in D0 determines, by restriction, a dilation
invariant face in D(0, 1). In fact, D(0, 1) modulo dilations coincides with D0 modulo
dilations. In the same way, a dilation invariant functional on D(0, 1) uniquely extends
to a dilation invariant functional on D0 and vice versa.
Therefore all the properties on dilation invariant faces, resp. functionals, we proved
for D apply to D(0, 1). In particular proposition 2.4 implies that each non zero face
in D(0, 1) contains Db(0, 1). If ϕ is a dilation invariant positive linear functional on
D(0, 1), the part ϕ∞ in the decomposition given by proposition 2.6 does not appear.

2.11 Remark. For D(N), the dilations described in (2.1) make sense only for
λ ∈ N, therefore a face, resp. a functional on D(N) is called dilation invariant if it
is invariant under these dilations. Let us define DN as the minimal dilation invariant
face in D which contains D(N). It is easy to see that dilation invariant faces, resp.
functionals on D(N), are in one to one correspondence with the dilation invariant faces,
resp. functionals, on DN . Again the results we proved for D apply to D(N). Since
DN ⊂ Db, we have that each non zero face in D(N) contains D0(N) and the part ϕ0
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in the decomposition given by proposition 2.6 does not appear. Finally we note that
DN is strictly contained in Db.

Section 3. Bimodules of measurable operators on semifinite
factors.

In this section M will be a semifinite factor and tr the normal trace on it (standard
normalization for the trace is assumed). We denote by d(M) the set {tr(e) : e finite
projection}. The set d(M) is a measure space w.r.t. the measure dm given by the
counting (resp. Lebesgue measure) in the type I (resp. type II) case.

3.1 Proposition. Let M be a σ-finite, semifinite factor, and M := L∞(d(M), dm).
There exists a normal isomorphism i : M→ M such that

tr(i(f)) =
∫

fdm , f ∈M+

Proof. Type I case. Let {en}n∈N be a maximal orthonormal sequence of minimal
projections in M . The map

i({cn}) :=
∑

n

cnen

satisfies the requests.
The type II case follows by proposition 1.7.

ut

3.2 Corollary. Let M be a σ-finite, semifinite factor. Then

{µa : a ∈ M} ≡ D(d(M))

Proof. It follows by proposition 1.4(i) and the definition of D that µa ∈ D, ∀a ∈ M .
If M is finite, by proposition 1.4(v) we get µa(t) = 0 if t ≥ tr(1). If M is type I (and
the trace of a minimal projection is 1), then µa(t) is constant on the intervals [n, n+1),
n ∈ N. Therefore we have proved that µa ∈ D(d(M)) when a ∈ M . The converse
follows by proposition 3.1 because, for each f ∈ D(d(M)), the element i(f) satisfies
µi(f) = f .

ut

In the following we shall consider the ∗-algebra M of (trace-)measurable operators
on a semifinite factor as a bimodule on M . A measurable bimodule X on M is a
vector subspace of M which is a bimodule on M . We observe that if X is contained
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in M , bimodule property corresponds to two-sided ideal property. We note also that
∗-invariance for X is implied by the bimodule property. The space of compact operators

KM := {a ∈ M : µa ∈ D∞}

and the space of finite-rank operators

FM := {a ∈ M : µa ∈ D0}

are measurable bimodules on M .

3.3 Proposition. Let M be a semifinite (not necessarily σ-finite) factor. A vector

subspace X of M is a measurable bimodule on M iff its positive part is a unitarily

invariant face in M+. As a consequence, each unitarily invariant face is invariant under

partial isometries.

Proof. Let X be a measurable bimodule on M , a2 ∈ X+, 0 ≤ b2 ≤ a2. Then we take
the function κ : [0,+∞) → [0,+∞) given by

κ(x) =

{ 1
x x > 0

0 x = 0

and observe that κ(a) ∈ M and κ(a)a2κ(a) = e, where e is the support of a. Hence
κ(a)b2κ(a) ≤ κ(a)a2κ(a) ≤ 1, which implies κ(a)b, bκ(a) ∈ M . Since the support of b

is contained in the support of a, b2 = bκ(a)a2κ(a)b ∈ X+ by the bimodule property.
Then X+ is a hereditary cone in M+, and unitary invariance is obvious.
Now let F be a unitarily invariant face in M+. Then the proof follows by classical
arguments (see e.g. Theorem 2.5.2 [10]).

ut

A subset S of M is called rearrangement invariant if a ∈ S and µa = µb im-
ply b ∈ S. We recall that elements which have the same rearrangement are called
equimeasurable.

3.4 Lemma. Let a1, a2 be positive equimeasurable elements of KM with discrete

spectrum. Then there exists a (partial) isometry u such that ua1u
∗ = a2, u∗a2u = a1.

Proof. By hypothesis there exist sequences {ei
n} of finite, mutually orthogonal pro-

jections such that ai =
∑

n αnei
n, i = 1, 2, tr(e1

n) = tr(e2
n), n ∈ N, therefore we find

partial isometries vn s.t. vne1
nv∗n = e2

n. By construction, u :=
∑

n vn is a (partial)
isometry that satisfies ua1u

∗ = a2 and u∗a2u = a1.
ut

17



3.5 Remark. Proposition 3.3 implies that in a type I factor two positive compact
operators are unitarily equivalent if and only if they have the same rearrangement. This
is no longer true in the type II case, in fact there exist maximal abelian subalgebras of
a type II1 factor which are not even conjugate (hence not unitarily conjugate) [5], and
it is easy to find generators of such algebras with the same rearrangement. In spite
of this, when positivity or facial property is assumed, rearrangement invariance and
unitary invariance coincide, as it is shown by propositions 3.6 and 4.2.3.

3.6 Proposition. Let M be a σ-finite, semifinite factor. A face in M is unitarily

invariant if and only if it is rearrangement invariant. As a consequence bimodules on

M are determined by their image under the rearrangement operation.

Proof. (⇒) First we use the function ıλ defined in the proof of proposition 2.2, and
define the ε approximation of an element a ∈ M as ı1+ε(a), and observe that

ıε(a) ≤ a ≤ (1 + ε)ıε(a).

Therefore, due to the face property, we may restrict to elements with discrete spectrum.
Now let a, b with discrete spectrum in the face F , µa = µb. If a ∈ KM then, by
lemma 3.4 and proposition 3.3, unitary invariance implies rearrangement invariance.
If a 6∈ KM , then a majorizes an infinite projection (up to a positive constant), hence, by
σ-finiteness, unitary equivalence and face property, M+ ⊆ F . Then, since a ∈ M , there
exists t ∈ R+ s.t ea(t, +∞) is finite. As a ea(t,+∞) and b eb(t, +∞) are equimeasurable
and belong to KM , b eb(t,+∞) ∈ F . On the other hand b eb[0, t] is bounded, therefore
is in F , which implies b = b eb[0, t] + b eb(t,+∞) ∈ F .
(⇐) Since the trace is unitarily invariant, the (trace-)rearrangement is unitarily invari-
ant. Therefore unitarily equivalent elements have the same (trace-) rearrangement.

ut
As the preceding proposition shows, a measurable bimodule is determined by its

image in D via decreasing rearrangement. Now we show that a subset in D comes from
a bimodule iff it is a dilation invariant face. Partial results for the type I case are
already contained in [15].

3.7 Theorem. Let M be a semifinite factor, F be a subset of D(d(M)). Then

X := {a ∈ M : µa ∈ F}

is a measurable bimodule if and only if F is a dilation invariant face.

Proof. (⇒) Let us consider the set

F∗ := {f ∈M+ : f∗ ∈ F}.
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Since i(f) ∈ X+ ⇐⇒ µi(f) ∈ F and µi(f) = f∗, we get

F∗ ≡ {f ∈M+ : i(f) ∈ X+},

therefore F∗ is a face in M+. The result follows by proposition 2.2.
(⇐) We have only to show that X+ is a unitarily invariant face. Let a, b ∈ X+, then,
from 1.4(ii)− (iii),

µαa+βb(t) ≤ αµa(t/2) + βµb(t/2) ∈ F , α, β ∈ R+

i.e. X+ is a cone. Then inequality µa ≤ µb if 0 ≤ a ≤ b implies X+ is a face. Unitary
invariance of the rearrangement operation completes the proof.

ut

3.8 Corollary. Let M be a σ-finite, semifinite factor. Then the map

F ⊂ D(d(M)) → X := {a ∈ M : µa ∈ F} (3.1)

is a one to one correspondence between dilation invariant faces in D(d(M)) and mea-

surable bimodules in M .

We give the correspondence between faces and bimodules in some particular cases:

D ↔ M
Db ↔ M
D∞ ↔ KM

D0 ↔ FM

Db,∞ ↔ KM

Db,0 ↔ FM

and we observe that ( ) makes no difference for type I factors and M ≡ KM ≡ FM for
finite factors. Then corollary 3.8 and proposition 2.4 immediately imply the following

3.9 Generalized Calkin Theorem. Let M be a semifinite factor. Then

(a) Each non-zero measurable bimodule X on M contains FM , the two-sided ideal of

bounded, finite-rank elements. In particular, if M is finite, X ⊇ M .

(b) Let M be an infinite σ-finite factor. Then each measurable bimodule X satisfies

either X ⊆ KM or X ⊇ M .

Some known results may be seen as consequences of this theorem. In particular,
each type II1 factor is algebraically simple and each two-sided ideal in a type I∞ factor
is contained in the compact operators. Condition (b) of the preceding theorem may
also be seen as a characterization of σ-finiteness.
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3.10 Proposition. Let M be an infinite, semifinite factor. Then the following are

equivalent:

(i) M is σ-finite

(ii) each measurable bimodule X satisfies either X ⊆ KM or X ⊇ M

(iii) KM is the unique non trivial norm closed ideal in M

(iv) two projections are equivalent ⇐⇒ they have the same trace.

Proof. (i) ⇒ (ii) Follows by 3.9(b).
(ii) ⇒ (iii) From (ii) it follows that each non trivial ideal is contained in KM . As FM

is norm dense in KM , by theorem 3.9(a) each non trivial norm closed ideal coincides
with KM .
(iii) ⇒ (i) Indeed, if M is not σ-finite, the closed ideal generated by all σ-finite
projection is a proper ideal which is not compact.
(iv) ⇐⇒ (i) Trivial.

ut
When M is not σ-finite, dilation invariant faces F ⊂ D give still rise to measurable

bimodules on M via map (3.1), but this map is not surjective. More precisely the
bimodules generated by such a map are characterized by condition (ii) of the preceding
proposition. For instance, the ideal generated by all σ-finite projections cannot be
described via a dilation invariant face in D.

Section 4. Traces and dilation invariance.

4.1. Traces on semifinite factors. In the following we denote by τ a (non normal)
trace on a semifinite factor M .

4.1.1 Lemma. Let τ be a trace on a factor M , e an infinite projection. Then τ(e)
is zero or +∞.

In particular, the domain of a non trivial trace on a σ-finite semifinite factor is contained

in KM .

Proof. Since e is infinite, we may find two orthogonal subprojections of e which are
equivalent to e, hence τ(e) = 2τ(e).
Now, if M is σ-finite, 1 is equivalent to all infinite projections, therefore if τ is non
zero it is infinite on all non-compact operators.

ut

4.1.2 Proposition. Let τ be a trace on a σ-finite, semifinite factor M , a, b ∈ M be

equimeasurable positive elements. Then τ(a) = τ(b).

Proof. Due to the previous lemma, we may suppose a, b ∈ K. Making use of the
ε approximation and the positivity of τ we may restrict to positive operators with
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discrete spectrum, as it was done in the proof of proposition 3.6. Then we apply
lemma 3.4 and the proof is concluded.

ut

4.1.3 Corollary. Let (M, tr) be a semifinite σ-finite factor with a normal semifinite

faithful trace. Then a positive linear functional τ on M is a trace if and only if it

is rearrangement invariant. As a consequence, τ defines, and is determined by, the

functional ϕτ : Db(d(M)) → R+ given by

ϕτ (µa) := τ(a), a ∈ M+. (4.1.1)

Proof. Since tr is unitarily invariant, its rearrangement operation is unitarily in-
variant, as a consequence rearrangement invariant functionals are unitarily invariant.
The converse follows by proposition 4.1.2. Since the space of rearrangements of M is
Db(d(M)) (see corollary 3.2), the theorem follows.

ut

4.1.4 Theorem. Let M be a semifinite factor, ϕ a functional on Db(d(M)) such that

τϕ(a) := ϕ(µa), a ∈ M+ is a trace on M . Then ϕ is a positive linear dilation invariant

functional.

Proof. Let us define the functional ϕ∗(f) := τϕ(i(f)), f ∈ L∞(d(M))+. By defini-
tion, ϕ∗ is linear. Since µi(f) = f∗, we get

ϕ∗(f) = τϕ(i(f)) = ϕ(µi(f)) = ϕ(f∗).

Then the thesis follows by theorem 2.2(b) and remark 2.3.
ut

We note that proposition 2.6 together with the preceding theorem implies that
each trace on a finite factor is normal.

Corollary 4.1.3, theorem 4.1.4 and remarks 2.10 and 2.11 prove that the map

ϕ → τϕ

where τϕ(a) = ϕ(µa) is a one to one correspondence between a suitable class of dilation
invariant positive linear functionals on Db and the traces on a σ-finite semifinite factor.
Now we show that dilation invariance is a sufficient condition for monotone functionals.

4.1.5 Lemma. Let ϕ be a dilation invariant monotone functional on Db which

vanishes on D0. Then τϕ(a) := ϕ(µa) is additive on positive elements.

Proof. The identity

σa(λt) =
∫ t

0

µλ
a(t)dt,
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where µλ
a is the λ dilation of µa, implies that the inequalities in proposition 1.10 may

be rephrased as
µa+b

≺
0↑∞

µa + µb
≺

0↑∞
µ2

a+b,

µ2
a+b

≺
0↓∞

µa + µb
≺

0↓∞
µa+b.

By definition 2.9 and lemma 2.7 ϕ is (0,∞)-decreasing or (0,∞)-increasing, therefore
the thesis trivially holds.

ut

4.1.6 Theorem. Let M be a semifinite factor and ϕ a positive linear monotone

functional on Db. Then τ(a) := ϕ(µa), a > 0, is a trace on M if and only if ϕ is

dilation invariant.

Proof. The implication (⇒) is a consequence of theorem 4.1.4.
(⇐) We observe that the only non trivial property is τ(a+ b) = τ(a)+τ(b), a, b ∈ M+.
By lemma 2.7, we only need to prove that the functional τ∞ induced by the ϕ∞
component of decomposition (2.4) is additive, and this follows by lemma 4.1.5.

ut

4.2. Traces on measurable bimodules over a semifinite factor. In this
subsection we extend previous results to traces on the bimodule M of trace-measurable
operators on a semifinite factor M .

4.2.1 Definition. Let M be a semifinite factor. A positive linear functional on M

is said a trace if, for each unitary element u ∈ M ,

τ(a) = τ(uau∗), ∀a ∈ M+ . (4.2.1)

Making use of polar decomposition, it is easy to show that equation (4.2.1) is
equivalent to

τ(a∗a) = τ(aa∗) ∀a ∈ M . (4.2.2)

The vector space X given by the linear span of the set X+ := {a ∈ M : τ(a) < ∞} is
called the domain of τ .

4.2.2 Proposition. The domain of a trace on M is a measurable bimodule X on M

and the linear extension of τ to X is well defined and verifies

τ(ac) = τ(ca) ∀a ∈ X, c ∈ M. (4.2.3)

Moreover, a finite positive linear functional τ on a measurable bimodule X on M which

satisfies (4.2.3) gives rise to a trace on M according to the above definition.

Proof. Since τ is finite and positive linear on X+, it extends uniquely to X. More-
over, by the properties of τ , X+ is a unitarily invariant face in M , therefore, by
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proposition 3.3, X is a bimodule on M . As a consequence, left and right hand side
of equation (4.2.3) are defined and, since each c ∈ M is a finite linear combination of
unitary elements and each a ∈ M is a finite linear combination of positive elements,
equation (4.2.3) holds.
On the other hand, if τ is a finite positive linear functional on a measurable bimodule
X which satisfies equation (4.2.3), equation (4.2.1) holds for each a ∈ X+. Setting
τ(a) = +∞ when a ∈ M+ \X+, we get a positive linear functional on M+ which still
verifies (4.2.1) because X+, and therefore M+ \X+, is unitarily invariant.

ut

4.2.3 Theorem. Let M be a semifinite σ-finite factor. Then, a positive linear

functional τ on M is a trace iff it is rearrangement invariant. As a consequence τ

determines, and is determined by, a positive linear functional ϕ on D via the equation

τ(a) = ϕ(µa). Moreover, ϕ is dilation invariant.

Proof. It is analogous to that of the corresponding statements of the preceding sub-
section.

ut

4.2.4 Lemma. Let ϕ be a monotone functional on D0 which vanishes on Db. Then

τϕ(a) := ϕ(µa) is additive on positive elements.

Proof. Since ϕ is (0,∞)-increasing or (0,∞)-decreasing by lemma 2.8, the thesis
follows as in lemma 4.1.5.

ut

4.2.5 Theorem. Let M be a semifinite σ-finite factor and ϕ a dilation invariant

monotone positive linear functional on D. Then the functional τ given by

τ(a) := ϕ(µa), a ∈ M+ (4.2.4)

is a trace on M .

Proof. By definition, τ is a positive, positively homogeneous, rearrangement invari-
ant functional on M+. Applying lemmas 2.8, 4.1.5 and 4.2.4 we obtain that both ϕ0

and ϕ∞ in the decomposition (2.4) give rise to additive functionals, therefore the thesis
follows.

ut

4.2.6 Remark. Even though all traces on a finite factor are normal (cf. preceding
subsection), previous discussion shows that monotone dilation invariant functionals of
type ϕ0 give rise to traces on M when M is a type II1 factor. Such traces necessarily
vanish on M , but are non trivial on suitable elements affiliated to M . The explicit
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construction of monotone dilation invariant functionals (cf. sections 5 and 6) gives rise
to the first examples of singular traces on a type II1 factor.

4.3. Traces on measurable bimodules over a semifinite von Neumann al-
gebra. In this subsection (M, tr) denotes a semifinite von Neumann algebra with
a normal semifinite faithful trace. By rearrangement we shall always mean the tr-
rearrangement.

4.3.1 Proposition. Let τ be a rearrangement invariant positive linear functional on

M . Then τ is a trace.

Proof. It is analogous to that of corollary 4.1.3.
ut

We denote by ΦM the set of positive linear dilation invariant functionals on D
such that τϕ(a) := ϕ(µa) is a trace on M . Now we give a result that concerns the
decomposition of the traces coming from functionals in ΦM , thus generalizing proposi-
tion 2.3 in [1]. Here, the singular part, i.e the part which vanishes on finite projections,
is further decomposed into a trace which is sensitive to the behavior at infinity and a
trace which is sensitive to the behavior in zero.

4.3.2 Theorem. Let (M, tr) be a semifinite von Neumann algebra with n.s.f. trace,

and choose ϕ ∈ ΦM . Then τ ≡ τϕ is uniquely decomposed as τ = τ0 + τ∞ + k tr,

where τ0 is identically zero on M , τ∞ is identically zero on FM , and k ≥ 0.

Proof. By construction, the functional ϕ0, resp. ϕ∞ in the decomposition given in
proposition 2.6 gives rise to a trace vanishing on M , resp. on FM , while ϕL gives rise
to the normal trace.

ut

We note that the τ∞ part necessarily vanishes on finite factors, while the τ0 part
vanishes on type I factors.

If M is a σ-finite semifinite factor all traces come from dilation invariant function-
als, therefore the decomposition in theorem 4.3.2 always applies. If in particular M is
of type II∞ we get that traces on M may be completely described in terms of traces
on M and traces on eMe, where eMe is the type II1 factor obtained by restriction via
a finite projection e.

4.3.3 Theorem. Let (M, tr) be a semifinite von Neumann algebra with a n.s.f. trace,

ϕ a monotone dilation invariant positive linear functional on D. Then τϕ(a) := ϕ(µa)
is a trace on M .

Proof. It is analogous to that of theorem 4.2.5.
ut
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In this section we did not give concrete examples of non normal traces: this
amounts to show that there exist non constant monotone, positive linear, dilation
invariant functionals on D, and will be done in the following sections.

Section 5. Eccentric functions and dilation-invariant function-
als.

Throughout the following we use the notation

S∞f (t) :=


∫ t

0
f(s)ds f ∈ Db \ L1

∫∞
t

f(s)ds f ∈ Db ∩ L1,

and

S0
f (t) :=


∫ t

0
f(s)ds f ∈ D0 ∩ L1

∫∞
t

f(s)ds f ∈ D0 \ L1.

5.1 Definition. Let f ∈ D and g ∈ D0, h ∈ Db be s.t. f = g + h. Then f is said

0-eccentric if 1 is a limit point of {S0
g(2t)

S0
g(t) } when t → 0, and ∞-eccentric if h 6∈ D0 and

1 is a limit point of {S∞h (2t)
S∞

h
(t) }, when t →∞.

5.2 Remark. Every f ∈ Db0 is not eccentric. Indeed it is not ∞-eccentric, by

definition, and, as limt→0
S0

f (2t)

S0
f
(t)

= 2, it is not 0-eccentric.

Observe that definition 5.1 is well posed. Indeed we have

5.3 Proposition.
(i) For all f ∈ D there are g ∈ D0, h ∈ Db s.t. f = g + h

(ii) If f = g + h = g′ + h′, with g, g′ ∈ D0, h, h′ ∈ Db, then g is 0-eccentric ⇐⇒ g′

is, and h is ∞-eccentric ⇐⇒ h′ is. As a consequence, eccentricity of f does not

depend on the decomposition.

Proof. (i) Indeed define

g(t) :=

{
f(t)− f(1) 0 < t < 1

0 t ≥ 1
h(t) :=

 f(1) 0 < t < 1

f(t) t ≥ 1.

(ii) Indeed g′ − g = h− h′ =: λ is a bounded right-continuous function with compact
support, so that g ∈ L1 ⇐⇒ g′ ∈ L1, h ∈ L1 ⇐⇒ h′ ∈ L1 and there is s > 0 s.t.
h(t) = h′(t), t ≥ s.
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Suppose first that h, h′ ∈ L1, then S∞h′ (t) = S∞h (t), t ≥ s and the thesis follows easily.
If h, h′ 6∈ L1, then S∞h′ (t) = S∞h (t) + c, t ≥ s, where c := −

∫ s

0
λ(r)dr. Therefore, if h

is ∞-eccentric, there is a sequence tk ↗∞ s.t. S∞h (2tk)
S∞

h
(tk) → 1, so that,

S∞h′ (2tk)
S∞h′ (tk)

=
S∞h (2tk)
S∞

h
(tk) + c

S∞
h

(tk)

1 + c
S∞

h
(tk)

→ 1

as c
S∞

h
(tk) → 0, that is h′ is ∞-eccentric. Reversing the argument we get the desired

equivalence for h, h′.

Let now g be 0-eccentric, so that there is a sequence tk ↘ 0 s.t. S0
g(2tk)

S0
g(tk) → 1. Suppose

first that g, g′ 6∈ L1. Then S0
g′(t) = S0

g(t) +
∫∞

t
λ(r)dr, so that

S0
g′(2tk)

S0
g′(tk)

=

S0
g(2tk)

S0
g(tk) +

∫∞
2tk

λ(r)dr

S0
g(tk)

1 +

∫∞
tk

λ(r)dr

S0
g(tk)

→ 1

as S0
g(t) →∞, t → 0, and we get the thesis.

Finally, if g, g′ ∈ L1, then S0
g′(t) = S0

g(t) +
∫ t

0
λ(r)dr, so that

S0
g′(2tk)

S0
g′(tk)

=

S0
g(2tk)

S0
g(tk) +

∫ 2tk

0
λ(r)dr

S0
g(tk)

1 +
∫ tk

0
λ(r)dr

S0
g(tk)

→ 1

as
∫ t

0
|λ(r)|dr

S0
g(t) ≤ sup |λ|

g(t) → 0 if g is 0-eccentric (see remark 5.2) and we get the thesis.
ut

5.4 Lemma. Let f ∈ Db \ D0, then the following are equivalent

(i) 1 is a limit point of {S∞f (2t)

S∞
f

(t) }, when t →∞

(ii) ∃{tk}, tk ↗∞, s.t. limk→∞
S∞f (ktk)

S∞
f

(tk) = 1

(iii) if f 6∈ L1, inft>0
S∞f (kt)

S∞
f

(t) < 3, ∀k ∈ N;

if f ∈ L1, supt>0
S∞f (kt)

S∞
f

(t) > 1/3, ∀k ∈ N.

Proof. We give the proof only in the case f 6∈ L1, the other case being analogous.
Let us set, for the sake of simplicity, S ≡ S∞f and observe that S is concave and
increasing.
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(i) ⇒ (ii) From the concavity of S it follows S(2t) ≥ 1
k−1S(kt) + k−2

k−1S(t), so that,

with simple manipulations, one has 0 ≤ S(kt)
S(t) −1 ≤ (k−1)(S(2t)

S(t) −1). Let now tk ↗∞

be s.t. 0 ≤ S(2tk)
S(tk) − 1 ≤ 1

k2 , then 0 ≤ S(ktk)
S(tk) − 1 ≤ k−1

k2 , and the thesis follows.

(ii) ⇒ (iii) Let k0 ∈ N be s.t. S(ktk)
S(tk) < 3, for all k ≥ k0. Let now k < k0, then

S(ktk0 )

S(tk0 ) ≤
S(k0tk0 )

S(tk0 ) < 3. Then inft>0
Sf (kt)
Sf (t) < 3, ∀k ∈ N.

(iii) ⇒ (i) Let us prove that inft>0
S∞f (kt)

S∞
f

(t) = 1, ∀k ∈ N, from which the thesis follows

easily. Suppose on the contrary that there exists k ∈ N s.t. inft>0
S(kt)
S(t) =: α > 1.

Then ∃n ∈ N s.t.

S(knt)
S(t)

=
S(knt)

S(kn−1t)
. . .

S(k2t)
S(kt)

S(kt)
S(t)

≥ αn > 3,

so that inft>0
S(knt)

S(t) > 3.

ut

5.5 Lemma. Let f ∈ D0 then the following are equivalent

(i) 1 is a limit point of {S0
f (2t)

S0
f
(t)
}, when t → 0

(ii) ∃{tk}, ktk ↘ 0, s.t. limk→∞
S0

f (ktk)

S0
f
(tk)

= 1

(iii) if f ∈ L1, inft>0
S0

f (kt)

S0
f
(t)

< 3, ∀k ∈ N;

if f 6∈ L1, supt>0
S0

f (kt)

S0
f
(t)

> 1/3, ∀k ∈ N.

Now we show the deep relationship between eccentricity and dilation-invariance.

5.6 Proposition. Let f ∈ D and ϕ a dilation-invariant positive linear functional on

D, which vanishes on D0, and s.t. ϕ(f) = 1. Then f is ∞-eccentric.

Proof. Let us first observe that we may assume f ∈ Db \ D0. Set S := S∞f and, for
all k ∈ N,

gk(t) :=


f(1) 0 ≤ t < 1∫ ık(kt)

ık(t)
f(s)ds

ık(kt)−ık(t) t ≥ 1,

where ık is defined in section 2 (see equation (2.2)) and verifies ık(kt) = kık(t). Then
f(ık(kt)) ≤ gk(t) ≤ f(ık(t)), t ≥ 1, so that f(kt) ≤ gk(t) ≤ f( t

k ), t ≥ 1, that is
1
kfk ≤ gk ≤ kf

1
k in [1,∞). From the hypotheses on ϕ, we get 1

kϕ(f) = 1
kϕ(fk) ≤
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ϕ(gk) ≤ kϕ(f
1
k ) = kϕ(f), so that ϕ is trivial on f (i.e. either ϕ(f) = 0 or ϕ(f) = ∞)

⇐⇒ ϕ is trivial on gk.
We want to proceed by contradiction. Let us first suppose that f ∈ L1(1,∞). As f

is not ∞-eccentric, there exists k ∈ N s.t. supt>0{
S(kt)
S(t) } ≤

1
3 . Then 3S(kt) ≤ S(t) so

that, with t ∈ [kn, kn+1), we get

S(ık(t))− S(ık(
t

k
)) = S(kn)− S(kn−1)

= 3S(kn)− S(kn−1)− 2S(kn) ≤ −2S(kn)

≤ −2S(kn) + 2S(kn+1) = 2{S(ık(kt))− S(ık(t))}.

Therefore

gk(t) =
S(ık(t))− S(ık(kt))

ık(kt)− ık(t)

≥ 2
S(ık(kt))− S(ık(k2t))

ık(kt)− ık(t)

= 2gk(kt)
ık(k2t)− ık(kt)
ık(kt)− ık(t)

= 2kgk(kt)

for all t ≥ 1, that is gk ≥ 2gk
k in [1,∞), which implies ϕ(gk) ≥ 2ϕ(gk

k) = 2ϕ(gk), i.e. ϕ

is trivial on gk.
Suppose now that f 6∈ L1(1,∞). As f is not ∞-eccentric, there exists k ∈ N s.t.
inft>0{S(kt)

S(t) } ≥ 3. Then S(kt) ≥ 3S(t) so that, with t ∈ [kn, kn+1), we get

S(ık(kt))− S(ık(t)) = S(kn+1)− S(kn)

= S(kn+1)− 3S(kn) + 2S(kn)) ≥ 2S(kn)

≥ 2S(kn)− 2S(kn−1) = 2{S(ık(t))− S(ık(
t

k
))}.

Therefore, proceeding as above, we get gk
k ≥ 2gk in [1,∞), which implies the thesis.

ut

5.7 Proposition. Let f ∈ D and ϕ a dilation-invariant positive linear functional on

D, which vanishes on Db, and s.t. ϕ(f) = 1. Then f is 0-eccentric.

Proof. As this proof is very similar to that of proposition 5.6, we will be sketchy.
Let us observe that we can assume that f ∈ D0 and suppf ⊂ [0, 1]. Set S := S0

f and,
for all k ∈ N,

gk(t) :=

∫ ηk(t)

ηk( t
k )

f(s)ds

ηk(t)− ηk( t
k )

, t ∈ (0, 1],
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where ηk := ı 1
k
, so that ηk( t

k ) = 1
kηk(t), for t > 0. Then 1

kfk ≤ gk ≤ kf
1
k in (0, 1

k ).
From the hypotheses on ϕ, we get ϕ is trivial on f ⇐⇒ ϕ is trivial on gk.
We want to proceed by contradiction. Let us first suppose that f 6∈ L1(0, 1). As f is
not 0-eccentric, there exists k ∈ N s.t. supt>0{

S(kt)
S(t) } ≤

1
3 . Then 3S(kt) ≤ S(t) so that

S(ηk(t))− S(ηk( t
k )) ≤ 2{S(ηk(kt))− S(ηk(t))}, t ∈ (0, 1

k ). Therefore we get gk ≥ 2gk
k

in (0, 1
k ), which implies ϕ(gk) ≥ 2ϕ(gk

k) = 2ϕ(gk), i.e. ϕ is trivial on gk.
Suppose now that f ∈ L1(0, 1). As f is not 0-eccentric, there exists k ∈ N s.t.
inft>0{S(kt)

S(t) } ≥ 3. Then S(kt) ≥ 3S(t) so that S(ηk(kt)) − S(ηk(t)) ≥ 2{S(ηk(t)) −
S(ηk( t

k ))}, t ∈ (0, 1
k ). Therefore we get gk

k ≥ 2gk in (0, 1
k ), which implies the thesis.

ut

Let us set F(f0) := {f ∈ D : ∃β, ` > 0 s.t. f ≤ `fβ
0 }, the dilation-invariant face

generated by f0 ∈ D.

5.8 Proposition. Let f0 ∈ Db be ∞-eccentric, {tk} the sequence of lemma 5.4, ω a

singular state on `∞ (i.e. vanishing on c0). Then

ϕ(f) :=


ω

({
S∞f (ktk)

S∞
f0

(ktk)

})
f ∈ F(f0)

+∞ f ∈ D \ F(f0),

is a dilation-invariant monotone positive linear functional on D.

Proof. It is easy to see that, if f0 ∈ L1, then [F(f0) ⊂ L1 and] ϕ is (0,∞)-decreasing,
whereas, if f0 6∈ L1, then ϕ [vanishes on Db ∩L1 and] is (0,∞)-increasing. So we must
only prove invariance. Let us observe that S∞f (αt) = S∞fα(t) so that

ϕ(fα) = ω

({
S∞fα(ktk)
S∞f0

(ktk)

})

= ω

({
S∞f (αktk)
S∞f0

(ktk)

})

= ω

({
S∞f (ktk)
S∞f0

(ktk)

})
+ ω

({
S∞f (αktk)− S∞f (ktk)

S∞f0
(ktk)

})

= ϕ(f) + ω

({
S∞f (αktk)− S∞f (ktk)

S∞f0
(ktk)

})
.

We want to prove that ω

({
S∞f (αktk)−S∞f (ktk)

S∞
f0

(ktk)

})
= 0, if f ∈ F(f0).
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Let f ∈ F(f0) so that there exist β, ` > 0 s.t. f ≤ `fβ
0 . Let us set γ := min{1, β, 1

α},
then, for k ≥ max{ 1

γ , 1
αγ }, we get, if α > 1,

|S∞f (αktk)− S∞f (ktk)| =
∫ αktk

ktk

f(s)ds

≤
∫ 1

γ ktk

1
γ tk

f(s)ds

≤ `′
∫ k

tk
γ

tk
γ

γf0(γs)ds

= `′
∫ ktk

tk

f0(r)dr

= `′|S∞f0
(ktk)− S∞f0

(tk)|,

where `′ := β
γ `. Analogously if α < 1. So that we get

∣∣∣∣∣S∞f (αktk)− S∞f (ktk)
S∞f0

(ktk)

∣∣∣∣∣ ≤ `′

∣∣∣∣∣1− S∞f0
(tk)

S∞f0
(ktk)

∣∣∣∣∣→ 0,

that is
{

S∞f (αktk)−S∞f (ktk)

S∞
f0

(ktk)

}
∈ c0 and the thesis follows.

ut

5.9 Proposition. Let f0 ∈ D0 be 0-eccentric, {tk} the sequence of lemma 5.4, ω a

singular state on `∞. Then

ϕ(f) :=


ω

({
S0

f (ktk)

S0
f0

(ktk)

})
f ∈ F(f0)

+∞ f ∈ D \ F(f0),

is a dilation-invariant monotone positive linear functional on D.

Proof. It is easy to see that, if f0 ∈ L1, then [F(f0) ⊂ L1 and] ϕ is (0,∞)-increasing,
whereas, if f0 6∈ L1, then ϕ [vanishes on D0 ∩ L1 and] is (0,∞)-decreasing. The proof
of the invariance of ϕ is analogous to proposition 5.8.

ut
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Section 6. Examples of singular traces and traceability condi-
tions.

In this section we explicitly construct singular traces on semifinite algebras, and
relate the traceability with the eccentricity of an operator.

6.1 Definition. Let (M, tr) be a semifinite algebra with a normal semifinite faithful

trace. An element a ∈ M is called 0-eccentric [resp. ∞-eccentric] if its decreasing

tr-rearrangement µa is a 0-eccentric [resp. ∞-eccentric] function. The element a is

called eccentric if it is 0 or ∞ eccentric.

We remark that the notion of eccentricity in a von Neumann algebra depends
on the chosen trace. Our notion is more general than the usual notion of eccentric
operator in B(H) (cf. [8]). Now we give the description of singular traces announced
in section 4.

Let M be a type II∞ factor. Then definition 6.1, together with lemma 5.4 imply
that a ∈ M+ is ∞-eccentric if there is a sequence {tk} such that tk ↗ +∞ for which

lim
k∈N

σa(ktk)
σa(tk)

= 1 if a 6∈ L1(M, tr)

lim
k∈N

ςa(ktk)
ςa(tk)

= 1 if a ∈ L1(M, tr)

Now let a ∈ M+ be ∞-eccentric, {tk} as before, X(a) the ideal generated by a and ω

a singular state on `∞(N). If a 6∈ L1(M, tr), we consider the positive functional

τ(i)(b) :=


ω

(
σb(ktk)
σa(ktk)

)
b ∈ X(a)+

+∞ b ∈ M+ \X(a)

(6.1)

If a ∈ L1(M, tr), we consider the positive functional

τ(d)(b) :=


ω

(
ςb(ktk)
ςa(ktk)

)
b ∈ X(a)+

+∞ b ∈ M+ \X(a)

(6.2)

6.2 Proposition. The functional τ(i) [resp. τ(d)] described in formula (6.1) [resp.

(6.2)] is a singular trace on M whose domain is X(a). In particular, τ(a) = 1.

Proof. We note that the functional τ(i) [resp. τ(d)] is written in terms of the posi-
tive linear functional described in proposition 5.8, which is monotone increasing [resp.
decreasing] and dilation invariant. Then the thesis follows by theorem 4.1.6.

ut
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Now let M be a type II1 factor. It is easy to see that a positive a ∈ M is 0-eccentric
if there is a sequence {tk} such that ktk ↘ 0 for which

lim
k∈N

σa(ktk)
σa(tk)

= 1 if a ∈ L1(M, tr)

lim
k∈N

ςa(ktk)
ςa(tk)

= 1 if a 6∈ L1(M, tr)

If a ∈ L1(M, tr) [resp. a 6∈ L1(M, tr)] we consider the positive functional τ(i) [resp.
τ(d)] given by (6.1) [resp (6.2)]. Then we have

6.3 Proposition. Let a ∈ M be an eccentric operator. Then, if a ∈ L1(M, tr) [resp.

a 6∈ L1(M, tr)] the functional τ(i) [resp. τ(d)] is a singular trace on M whose domain is

the bimodule X(a) generated by a. In particular, τ(a) = 1.

Proof. It is analogous to that of proposition 6.2.
ut

The previous constructions parallel the construction of singular traces on type I
factors, as it has been done in [15], [1]. Indeed, the possibility of constructing traces
whose domain is generated by eccentric operators does not depend on the fact that M

is a factor.

6.4 Theorem. Let (M, tr) be a semifinite von Neumann algebra with a semifinite

normal faithful trace, a an eccentric element of M+. Then there exists a trace τ whose

domain is the measurable bimodule generated by a and such that τ(a) = 1. Such a

trace is singular, i.e. it vanishes on projections which are finite w.r.t. tr.

Proof. It follows from propositions 5.8-5.9 and theorem 4.3.3.
ut

In particular, previous theorem states that an eccentric element a ∈ M is singularly
traceable, i.e. there exists a singular trace which takes value 1 on this element. These
conditions are equivalent on a factor.

6.5 Theorem. Let M be a semifinite factor, a ∈ M+. Then a is eccentric if and

only if it is singularly traceable.

Proof. The implication ⇒ follows by Theorem 6.4. Now suppose that M is σ-finite.
If a is singularly traceable, by theorem 4.2.3 there exists a positive linear, dilation
invariant functional on D, associated with the singular trace, which takes value 1 on
µa. Then, by propositions 5.6 and 5.7 and definition 6.1, a is eccentric. If M is not
σ-finite, and τ is a singular trace such that τ(a) = 1, we observe that decomposition
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τ = τ0 + τ∞ still holds. If τ0(a) 6= 0, since τ0 is determined by its restriction to FM ,
the preceding argument applies and a is 0-eccentric. If τ0(a) = 0 we may restrict to the
case a ∈ M . The theorem is proved if we show that τ is determined by its restriction to
a σ-finite (non unital) subalgebra, i.e. if we show that if τ takes a finite non zero value
on some operator, then it is infinite on all infinite projections. Suppose on the contrary
that τ vanishes on some infinite projection but τ(a) = 1 for some positive a ∈ M . We
note that in this case τ vanishes on all σ-finite projections. First, via discretization,
we may restrict to the case that a has finite spectrum, then, since a countable sum of
finite projections is σ-finite, to the case that all eigenprojections are infinite. Finally,
decomposing each eigenprojection in a sum of two projections equivalent to the original
one, we easily get τ(a) = 2τ(a), which completes the proof.

ut
It is possible to prove that if (M, tr) is a semifinite von Neumann algebra with

a normal semifinite faithful trace, there exists an element a ∈ M+ s.t. a is eccentric
w.r.t. tr. Moreover, if M is not finite of type I, it is possible to find an a which is
algebraically eccentric, i.e. is eccentric w.r.t. all the semifinite normal faithful traces.
The traces associated with such an element are algebraically singular, i.e. they vanish
on all projections which are finite in the sense of Murray von Neumann.

Then we recall that eccentricity gives some information on the decreasing rate of
µ(t), cf. [1].

Finally we observe that the traces we exhibited are strictly non trivial, i.e. they
take finite non-zero values on some elements. We may consider also quasi-trivial traces,
i.e. traces with range {0,+∞}. Such traces are determined by their domain, which
in this case coincides with their kernel. Indeed they are in one-to-one correspondence
with the measurable bimodules on M .
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