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Abstract

We prove a discrete version of Stam inequality for random variables taking values on a finite
group.
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1 Introduction

The Fisher information IX of a real random variable (with strictly positive differentiable density function
f) is defined as

IX :=
∫

f ′(x)2

f(x)
dx. (1.1)

If X, Y are independent random variables such that IX , IY < ∞, Stam was able to prove the inequality

1
IX+Y

≥ 1
IX

+
1
IY

, (1.2)

where equality holds iff X, Y are Gaussian (see [17, 1]).
This result has been very useful in a manifold of different areas: analysis, probability, statistics,

information theory, statistical mechanics and so on (see [2, 4, 10, 5, 18]). Therefore it is not surprising
that different proofs and generalizations appear in the recent literature on the subject (see for example
[20, 14]).

A free analogue of Fisher information has been introduced in free probability. Also in this case one
can prove a Stam-like inequality. The equality case characterizes the Wigner distribution that, in many
respects, is the free analogue of the Gaussian distribution (see [19]).

Discrete versions of Fisher information and the Stam inequality are well-known. On the integers
Z, equality characterizes the Poisson distribution, while on the cyclic group Zn, equality occurs for the
uniform distribution (see [9, 16, 11, 12, 13, 15, 6]).

It has been observed that there are group-theoretical features in the proof of Stam inequality (see
[11]). Nevertheless, up to now, inequality (1.2) has been proved only on specific groups like R, Z and
Zn. In this paper we consider the family of all finite groups and we show that, mutatis mutandis one
can introduce Fisher information and prove Stam inequality on an arbitrary finite group.

2 Preliminaries

We recall the formulation of Stam inequality in the known cases, where it has already been proved.
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†Dipartimento di Matematica, Università di Roma “Tor Vergata”, Via della Ricerca Scientifica, 00133 Rome, Italy.

Email: isola@mat.uniroma2.it – URL: http://www.mat.uniroma2.it/∼isola

1



2

2.1 Stam inequality on R and Rn

Let f : R → R be a differentiable, strictly positive density. One may define the Fisher f -score Jf : R → R
by

Jf :=
f ′

f
.

Let (Ω,F, p) be a probability space. In general, if X : (Ω,F, p) → R is a random variable with density
f we write JX = Jf and define the Fisher information as

IX := Varf (Jf ) = Ef (J2
f );

namely,

IX =
∫

R
(f ′(x)/f(x))2f(x)dx. (2.1)

Theorem 2.1. [17, 1] If X, Y : (Ω,F, p) → R are independent random variables such that IX , IY < ∞,
then

1
IX+Y

≥ 1
IX

+
1
IY

, (2.2)

with equality if and only if X, Y are Gaussian (with the same covariance).

The same result holds for random vectors. Let f : Rn → R be a differentiable, strictly positive density.
We use the notation fxi

= ∂f
∂xi

. One may define the Fisher f -score (in the direction xi) Jxi

f : Rn → R by

Jxi

f :=
fxi

f
.

Let (Ω,F, p) be a probability space. In general, if X : (Ω,F, p) → Rn is a random vector with density f
we write Jxi

X = Jxi

f and define the Fisher information as (see p.201 in [2] and p. 838 in [3])

IX :=
n∑

i=1

Ef [(Jxi

f )2].

Note that in this case IX is the trace of the Fisher information matrix

Ef

[
∂ log(f)

∂xi

∂ log(f)
∂xj

]
i, j = 1, ..., n

Theorem 2.2. If X, Y : (Ω,F, p) → Rn are independent random vectors such that IX , IY < ∞, then

1
IX+Y

≥ 1
IX

+
1
IY

, (2.3)

with equality if and only if X, Y are Gaussian (with the same covariance matrix).

2.2 Stam inequality on Z
Let f : Z → R be a (discrete) density. We say that f belongs to the class RSP (right side positivity) if

f(k) > 0 =⇒ f(k + 1) > 0.

If f ∈ RSP , then we may define the Fisher f -score by

Jf (k) =

{
f(k)−f(k−1)

f(k) f(k) > 0,

0 f(k) = 0.

If X : (Ω,F, p) → Z is a random variable with (discrete) density f ∈ RSP we write JX = Jf and
define the Fisher information as

IX := Varf (Jf ) = Ef (J2
f ).
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Theorem 2.3. [16, 11] If X, Y : (Ω,F, p) → Z are independent random variables with densities in RSP
and such that IX , IY < ∞, then

1
IX+Y

≥ 1
IX

+
1
IY

, (2.4)

with equality if and only if X, Y have (possibly shifted) Poisson distribution.

2.3 Stam inequality on Zn

Let f : Zn → R be a (discrete) density that is strictly positive. We define the Fisher f -score by

Jf (k) =
f(k)− f(k − 1)

f(k)

If X : (Ω,F, p) → Zn is a random variable with positive (discrete) density f we write JX = Jf and
define the Fisher information as

IX := Varf (Jf ) = Ef (J2
f ).

Theorem 2.4. [6] If X, Y : (Ω,F, p) → Z are independent random variables with positive densities then

1
IX+Y

≥ 1
IX

+
1
IY

, (2.5)

with equality if and only if X and Y have uniform distribution.

In the following section we generalize this result to an arbitrary finite group.

3 Stam inequality on a finite group

Let G be a finite group. Introduce the class P of strictly positive densities, that is

P :=
{

f : G → R
∣∣∣ ∑

j∈G

f(j) = 1, f(k) > 0 ∀k ∈ G

}
.

We assume, from now on, that all densities belong to P.
Let f ∈ P, g ∈ G. In analogy with the previous definitions, we may introduce Jg

f : G → R, the
f -score in the direction g, by

Jg
f (k) :=

f(k)− f(g−1k)
f(k)

.

Then, Jg
f is an f -centered random variable

Ef [Jg
f ] :=

∑
k∈G

Jg
f (k)f(k) = 0. (3.1)

If X : (Ω,F, p) → G is a random variable with density fX(k) := p(X = k), and if fX ∈ P, define the
score Jg

X := Jg
f .

Lemma 3.1. Let g ∈ G, X, Y : (Ω,F, p) → G be two independent random variables with densities
fX , fY ∈ P and let Z := XY . Then,

Jg
Z(Z) = Ep[J

g
X(X)|Z] = Ep[J

g
Y (Y )|Z].

Proof. Let fZ be the density of Z; namely,

fZ(k) =
∑
j∈G

fX(j)fY (j−1k), k ∈ G,
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so that fZ ∈ P. Then,

fZ(k)− fZ(g−1k) =
∑
j∈G

fX(j)fY (j−1k)−
∑
j∈G

fX(j)fY (j−1g−1k)

=
∑
j∈G

(
fX(j)− fX(g−1j)

)
fY (j−1k).

Therefore, for k ∈ G,

Jg
Z(k) =

fZ(k)− fZ(g−1k)
fZ(k)

=
∑
j∈G

fX(j)fY (j−1k)
fZ(k)

fX(j)− fX(g−1j)
fX(j)

=
∑
j∈G

Jg
X(j)p(X = j|Z = k)

= EfX
[Jg

X |Z = k]
= Ep[J

g
X(X)|Z = k].

Similarly, by symmetry of the convolution formula one obtains

Jg
Z(k) = Ep[J

g
Y (Y )|Z = k], k ∈ G,

proving the claim.

Lemma 3.2. Let g ∈ G, X, Y : (Ω,F, p) → G be two independent random variables with densities
fX , fY ∈ P and let Z := XY . Then, for any a, b ∈ R, we have

(a + b)2Ep[J
g
Z(Z)2] ≤ a2Ep[J

g
X(X)2] + b2Ep[J

g
Y (Y )2]. (3.2)

Moreover, if equality holds in (3.2) then Jg
X , Jg

Y are constant on G.

Proof. By Lemma 3.1

Ep[aJg
X(X) + bJg

Y (Y )|Z] = aEp[J
g
X(X)|Z] + bEp[J

g
Y (Y )|Z] = (a + b)Jg

Z(Z). (3.3)

Hence, by applying Jensen’s inequality it holds

Ep[(aJg
X(X) + bJg

Y (Y ))2] = Ep[Ep[(aJg
X(X) + bJg

Y (Y ))2|Z]]

≥ Ep[Ep[aJg
X(X) + bJg

Y (Y )|Z]2] (3.4)

= Ep[(a + b)2Jg
Z(Z)2]

= (a + b)2Ep[J
g
Z(Z)2],

and thus

(a + b)2Ep[J
g
Z(Z)2] ≤ Ep[(aJg

X(X) + bJg
Y (Y ))2]

= a2Ep[J
g
X(X)2] + 2abEp[J

g
X(X)Jg

Y (Y )] + b2Ep[J
g
Y (Y )2]

= a2Ep[J
g
X(X)2] + b2Ep[J

g
Y (Y )2],

where the last equality follows from independence and due to (3.1).
We now consider the case of equality in (3.2). Set c = a + b, and let us prove that equality in (3.2)

holds iff
aJg

X(X) + bJg
Y (Y ) = cJg

Z(XY ). (3.5)

Indeed, let H := aJg
X(X) + bJg

Y (Y ); then equality in (3.4) occurs if and only if

Ep[H2|Z] = (Ep[H|Z])2,
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i.e.
Ep[(H − Ep[H|Z])2|Z] = 0.

Therefore, H = Ep[H|Z], so that

Ep[aJg
X(X) + bJg

Y (Y )|Z] = aJg
X(X) + bJg

Y (Y ) = cJg
Z(Z),

due to (3.3). Conversely, if (3.5) holds, then by applying the squared power and the expectation operator
we obtain equality in (3.2).

Using (3.5), we now prove the last statement of the Lemma. Let us choose a set of generators of the
group G, i.e. Γ := {γ1, . . . , γn} ⊂ G such that the subgroup generated by them is the whole G. Let us
also denote by Γ−1 := {γ−1

1 , . . . , γ−1
n }. Let now x, y ∈ G; because of independence, for any γ ∈ Γ∪Γ−1,{

p(X = xγ, Y = y) = p(X = xγ) · p(Y = y) > 0
p(X = x, Y = γy) = p(X = x) · p(Y = γy) > 0.

Thus, it makes sense to write equality (3.5) on A := {X = xγ}∩ {Y = y} and on B := {X = x}∩ {Y =
γy}, so that {

aJg
X(xγ) + bJg

Y (y) = cJg
Z(xγy)

aJg
X(x) + bJg

Y (γy) = cJg
Z(xγy).

Subtracting these relations one has

a[Jg
X(xγ)− Jg

X(x)] = b[Jg
Y (γy)− Jg

Y (y)], ∀x, y ∈ G.

Therefore, for any γ ∈ Γ ∪ Γ−1, there is a(γ) ∈ R such that Jg
X(xγ) − Jg

X(x) = a(γ), for any x ∈ G.
Thus, if n is the order of γ in G, i.e. γn = e, the identity of G, then Jg

X(x) = Jg
X(xγn) = Jg

X(x)+na(γ),
for any x ∈ G, which implies a(γ) = 0. Therefore

Jg
X(xγ) = Jg

X(x), x ∈ G, γ ∈ Γ ∪ Γ−1. (3.6)

Since any k ∈ G, k 6= e, can be written as a product of elements in Γ ∪ Γ−1, i.e. k = γi1γi2 · · · γi`
, for

γij
∈ Γ ∪ Γ−1, we can use (3.6) iteratively, and obtain

Jg
X(xk) = Jg

X(xγi1γi2 · · · γi`
) = Jg

X(xγi1γi2 · · · γi`−1) = . . . = Jg
X(x), x ∈ G.

In particular, for x = e we obtain Jg
X(k) = Jg

X(e), for any k ∈ G, i.e. Jg
X is constant on G. The proof

for Jg
Y is analogous.

Let us now fix a set of generators of the group G, i.e. Γ := {γ1, . . . , γn} ⊂ G such that the subgroup
generated by them is the whole G. If X : (Ω,F, p) → G is a random variable with density fX ∈ P, define
the Fisher information

IX :=
∑
γ∈Γ

Ef [(Jγ
f )2] =

∑
γ∈Γ

∑
k∈G

(f(k)− f(γ−1k)
f(k)

)2

f(k).

Note that, due to the finiteness of G, the condition IX < ∞ always holds. However, we cannot ensure
in general that IX 6= 0. In fact, it is easy to characterize this degenerate case.

Lemma 3.3. The following conditions are equivalent

(1) X has uniform distribution;

(2) Jγ
X = 0, for any γ ∈ Γ;

(3) IX = 0;

(4) Jγ
X is constant, for any γ ∈ Γ.
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Proof. The implications (1) =⇒ (2) =⇒ (4) are immediately proved. The equivalence of (2) and (3)
is also easy to show.
Therefore, it is enough to prove that (4) implies (1). So, for any γ ∈ Γ there is a(γ) ∈ R such that
Jγ

X(x) = a(γ), for any x ∈ G, i.e., with f ≡ fX , f(x)−f(γ−1x)
f(x) = a(γ), for any x ∈ G, which is equivalent

to
(1− a(γ))f(x) = f(γ−1x), x ∈ G. (3.7)

Thus, if n is the order of γ−1 in G, i.e.γ−n = e, the identity of G, then

(1− a(γ))nf(x) = (1− a(γ))n−1f(γ−1x) = . . . = f(γ−nx) = f(x),

for any x ∈ G, which implies a(γ) = 0. Therefore,

f(γ−1x) = f(x), x ∈ G, γ ∈ Γ. (3.8)

From this it also follows
f(γx) = f(x), x ∈ G, γ ∈ Γ. (3.9)

Since any k ∈ G, k 6= e, can be written as a product of elements in Γ ∪ Γ−1, i.e. k = γi1γi2 · · · γi`
, for

γij ∈ Γ ∪ Γ−1, we can use (3.8) and (3.9) iteratively, and obtain

f(kx) = f(γi1γi2 · · · γi`
x) = f(γi2 · · · γi`

x) = . . . = f(x), x ∈ G.

In particular, for x = e we obtain f(k) = f(e), for any k ∈ G, i.e. f is constant on G, that is, X is
uniform. This concludes the proof.

Let us recall also the following result that is immediate by using the convolution formula.

Proposition 3.4. If X, Y : (Ω,F, p) → G are independent random variables and X is uniform then also
Z = XY is uniform.

Proposition 3.5. Let X, Y : (Ω,F, p) → be independent random variables such that their densities
belong to P. If X or Y has uniform distribution, then

1
IXY

=
1

IX
+

1
IY

,

in the sense that both sides of equality are equal to infinity.

Proof. Let Z = XY . If X is uniform, then Z is uniform by Proposition 3.4 and we are done by Lemma
3.3.

Because of the above proposition, it remains to consider random variables with strictly positive Fisher
information.

We are ready to prove the main result.

Theorem 3.6. Let X, Y : (Ω,F, p) → G be two independent random variables such that IX , IY > 0.
Then

1
IXY

>
1

IX
+

1
IY

. (3.10)

Proof. Define Z := XY , and let a, b ∈ R. Then, for any γ ∈ Γ we have from (3.2)

(a + b)2Ep[J
γ
Z(Z)2] ≤ a2Ep[J

γ
X(X)2] + b2Ep[J

γ
Y (Y )2]. (3.11)

Summing up over γ ∈ Γ, we obtain

(a + b)2IZ = (a + b)2
∑
γ∈Γ

Ep[J
γ
Z(Z)2] ≤ a2

∑
γ∈Γ

Ep[J
γ
X(X)2] + b2

∑
γ∈Γ

Ep[J
γ
Y (Y )2] = a2IX + b2IY .
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Now, take a := 1/IX and b := 1/IY ; then we obtain(
1

IX
+

1
IY

)2

IZ ≤ 1
IX

+
1
IY

.

It remains to be proved that the equality sign cannot hold in (3.10). To this purpose, define c := a+b,
where, again, a = 1/IX and b = 1/IY ; then equality holds if and only if

c2IZ = a2IX + b2IY .

This implies equality in (3.11), for any γ ∈ Γ. From Lemma 3.2 it follows that Jγ
X , Jγ

Y are constant on
G, for any γ ∈ Γ. But then, from Lemma 3.3, IX = IY = 0, which is absurd. So equality cannot hold
in (3.10).
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