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Abstract

Suppose that A1, ...AN are observables (selfadjoint matrices) and ρ is a state (density matrix).
In this case the standard uncertainty principle, proved by Robertson, gives a bound for the quantum
generalized variance, namely for det {Covρ(Aj , Ak)}, using the commutators [Aj , Ak]; this bound is
trivial when N is odd. Recently a different inequality of Robertson-type has been proved by the
authors with the help of the theory of operator monotone functions. In this case the bound makes
use of the commutators [ρ, Aj ] and is non-trivial for any N . In the present paper we generalize this
new result to the von Neumann algebra case. Nevertheless the proof appears to simplify all the
existing ones.
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1 Introduction

Suppose that A1, ..., AN are observables (self-adjoint matrices) and that ρ is a state (density matrix).
The uncertainty principle, in its more general form, is due to Robertson [23] and coincides with the
following inequality

det {Covρ(Aj , Ak)} ≥ det
{
− i

2
Tr(ρ[Aj , Ak])

}
, (1.1)

where Covρ(A,B) := 1
2Tr(ρ(AB + BA)) − Tr(ρA) · Tr(ρB). The relevance of the above inequality in

quantum physics is well-known and we refer the reader to [25, 26, 27, 4, 3, 13].
Since the matrix

{
− i

2Tr(ρ[Aj , Ak])
}

is antisymmetric, actually it is worth to write the inequality as

det {Covρ(Aj , Ak)} ≥

{
0, N = 2m + 1,

det{− i
2Tr(ρ[Aj , Ak])}, N = 2m.

(1.2)

This means that the standard uncertainty principle says nothing “quantum” for an odd number of
observables. In the case N = 1, a reasonable candidate for a lower bound is an expression involving
some commutation relation between A and ρ. An inequality of this kind, valid for any N , has been
recently proved in [1, 8] (see also [16, 17, 20, 18, 19, 15, 28, 9, 12, 6, 7]). To describe this result we need
the theory of operator monotone functions.

We denote by F the class of positive, symmetric, normalized, operator monotone functions on (0,∞).

We may associate to any f ∈ F another function f̃ ∈ F by the formula f̃(x) :=
1
2
(x+1)−(x−1)2 · f(0)

2f(x)
.
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If Lρ and Rρ denote the left and right multiplication operators (by ρ) define an f -correlation by the
formula

Corrf
ρ(A,B) :=

1
2
Tr(ρ(AB + BA))− Tr(Rρf̃(LρR

−1
ρ )(A) ·B).

The following inequality has been proved [8] for any f and for any N :

det{Covρ(Aj , Ak)} ≥ det{Corrf
ρ(Aj , Ak)}. (1.3)

Two are the main differences between inequality (1.3) and the standard uncertainty principle (1.2):
(i) the right hand side of (1.3) is not trivial also for an odd number of observables; (ii) using the the-
ory of quantum Fisher information (see [6, 21]) one can see that the right hand side is a function of
the commutators i[ρ,Aj ], which measure how different the quantum dynamics generated by the observ-
ables A1, ..., AN are. Therefore we suggest that inequality (1.3) could be named dynamical uncertainty
principle.

Having in mind the needs of quantum physics, it is natural to seek a generalization of the dynamical
uncertainty principle (1.3) that could hold in a setting more general then the matrix case. In the present
paper we prove that, with due modifications, inequality (1.3) is true on an arbitrary von Neumann
algebra. Despite the general setting, the proof we present here appears simpler than the existing ones
(see [8, 1]). Intermediate results have been previously proved by the authors [10, 11]. Notice that a
different generalization of inequality (1.3) has recently been proved in [5].

The structure of the paper is the following. In Section 2 we collect some preliminary notions. In
Section 3 we explain the relation of inequality (1.3) with quantum dynamics via the theory of quantum
Fisher information. In Section 4 we prove the main result.

2 Preliminaries

Denote by Mn the space of complex n × n matrices. Let us recall that a function f : (0,∞) → R
is said operator monotone if, for any n ∈ N, any A, B ∈ Mn such that 0 ≤ A ≤ B, the inequalities
0 ≤ f(A) ≤ f(B) hold. Note that f : (0,∞) → R is operator monotone iff for any A,B ∈ B(H) such that
0 ≤ A ≤ B, it holds f(A) ≤ f(B). An operator monotone function is said symmetric if f(x) := xf(x−1)
and normalized if f(1) = 1. We denote by F the class of positive, symmetric, normalized, operator
monotone functions.

We associate to f ∈ F a function f̃ ∈ F [6] defined by

f̃(x) :=
1
2

[
(x + 1)− (x− 1)2

f(0)
f(x)

]
, x > 0.

Definition 2.1. For A,B ∈ Mn,sa, f ∈ F, and density matrix ρ define the f -correlation and the
f -information (also known as metric adjusted skew information, see [12, 6]) as

Corrf
ρ(A,B) :=

1
2
Tr(ρ(AB + BA))− Tr(Rρf̃(LρR

−1
ρ )(A) ·B)

If
ρ (A) := Corrf

ρ(A,A).

Remark 2.2. The Wigner-Yanase-Dyson skew information is defined as Iρ,β(A) := Tr(ρA2)−Tr(ρβAρ1−βA).
It is easy to see that WYD-information is a particular case of the f -information defined above, which was
first shown in [22]. Indeed, if β ∈ (0, 1) and fβ(x) := β(1− β) (x−1)2

(xβ−1)(x1−β−1)
, then f̃β = 1/2(xβ + x1−β);

this implies that I
fβ
ρ (A) = Iρ,β(A).

Theorem 2.3. [8] For any N ∈ N, A1, . . . , AN ∈ Mn,sa, and any f ∈ Fop we have

det{Covρ(Aj , Ak)}j,k=1,...,N ≥ det{Corrf
ρ(Aj , Ak)}j,k=1,...,N .

In Section 4 we prove that the above inequality holds true in a general von Neumann algebra.
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3 Relation with quantum dynamics

Suppose that H is a positive (self-adjoint) operator. The associated Schrödinger equation for density
matrices has the form

ρ̇(t) =
d
dt

ρ(t) = i[ρ(t),H]. (3.1)

The solution of the evolution equation (3.1) is given by

ρH(t) := e−itHρeitH . (3.2)

Therefore the commutator i[ρ,H] appears as the tangent vector to the quantum trajectory (3.2)
(at the initial point ρ = ρH(0)) generated by H. Suppose we are considering two different evolutions
determined, through the Schrödinger equation, by H and K. If we want to quantify how “different” the
trajectories ρH(t), ρK(t) are, then it would be natural to measure the “area” spanned by the tangent
vectors i[ρ,H], i[ρ,K].

This is precisely what the right-hand side of inequality (1.3) measures. What follows explain this
point.

First of all let us recall that, to each f ∈ F, one associates a scalar product, on the tangent space to
the state manifold, that is a quantum version of Fisher information through the formula

〈A,B〉ρ,f := Tr(A ·mf (Lρ, Rρ)−1(B)).

In this formula mf (Lρ, Rρ) is the operator mean associated to f (see [21] [8] for extended explanations).
Let (V, g(·, ·)) be a real inner-product vector space. Define

Volg(v1, . . . , vN ) :=
√

det{g(vj , vk)}.

If the inner product depends on a further parameter so that g(·, ·) = gρ(·, ·), we write Volgρ(v1, . . . , vN ) =
Volg(v1, . . . , vN ). As an instance suppose that (Ω,G, ρ) is a probability space and let (V, gρ(·, ·)) =
(L2

R(Ω,G, ρ),Covρ(·, ·)). The number VolCov
ρ (A1, . . . , AN )2 is known as the generalized variance of the

random vector (A1, . . . , AN ).
Now we move to the noncommutative case. Here A1, . . . AN are self-adjoint matrices, ρ is a (faithful)

density matrix and g(·, ·) = Covρ(·, ·) has been defined in the Introduction. By Volfρ we denote the
volume associated to the quantum Fisher information 〈·, ·〉ρ,f given by a normalized symmetric operator
monotone function f ∈ F. For example,

If
ρ (A) =

f(0)
2

Volfρ(i[ρ,A]) =
f(0)

2
〈i[ρ,A], i[ρ,A]〉ρ,f .

With the above notation, the Robertson uncertainty principle (inequality (1.1)) takes the following
form

VolCov
ρ (A1, . . . , AN ) ≥

{
0, N = 2m + 1,

det{− i
2Tr(ρ[Aj , Ak])} 1

2 , N = 2m.

On the other hand one can prove that (see [6]) inequality (1.3) can be written as

VolCov
ρ (A1, . . . , AN ) ≥

(
f(0)

2

)N
2

Volfρ(i[ρ,A1], . . . , i[ρ,AN ]).

We see that the bound appearing in the right-hand side of inequality (1.3) measures the volume
spanned by the tangent vectors at time t = 0 to the trajectories associated to A1, . . . , AN , and this
explains the terminology we propose.
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4 The main result

Let M be a von Neumann algebra, and ω a normal faithful state on M, and denote by ξω the GNS
vector, and by Jω and ∆ω the modular conjugation and modular operator associated to ω. See [24] for
the general theory of von Neumann algebras.

The proof of the main result is divided in a series of Lemmas. In order to deal with unbounded
operators, we introduce some sesquilinear forms on Hω, and take [14] as our standard reference.

Definition 4.1. Let f ∈ F, and define the following sequilinear forms

E(ξ, η) := 〈∆1/2
ω ξ,∆1/2

ω η〉,
E1(ξ, η) := E(ξ, η) + 〈ξ, η〉,
Ff (ξ, η) := 〈f̃(∆ω)1/2ξ, f̃(∆ω)1/2η〉,

Gf (ξ, η) :=
1
2
E1(ξ, η)− Ff (ξ, η).

It follows from [14], Example VI.1.13, that E, E1, Ff are closed, positive and symmetric sesquilinear
forms.

Lemma 4.2. Let ξ, η ∈ D(∆1/2
ω ), and {ξn}, {ηn} ⊂ D(∆ω) be such that ξn → ξ, E(ξn − ξ, ξn − ξ) → 0,

n →∞, and analogously for ηn and η. Then

E(ξ, η) = lim
n→∞

E(ξn, ηn) = lim
n→∞

〈ξn,∆ωηn〉,

Ff (ξ, η) = lim
n→∞

Ff (ξn, ηn) = lim
n→∞

〈ξn, f̃(∆ω)ηn〉.

Proof. It follows from [14] Theorem VI.2.1 that D(∆ω) is a core for D(E) ≡ D(∆1/2
ω ), so that, from [14]

Theorem VI.1.21, for any ξ ∈ D(∆1/2
ω ) there is {ξn} ⊂ D(∆ω) such that ξn → ξ, and E(ξn−ξ, ξn−ξ) → 0,

n → ∞. Then E(ξn − ξm, ξn − ξm) → 0, m,n → ∞. Now observe that 0 ≤ f̃(x) ≤ 1
2 (x + 1), for x > 0

[6], so that

Ff (ξn − ξm, ξn − ξm) = 〈f̃(∆ω)1/2(ξn − ξm), f̃(∆ω)1/2(ξn − ξm)〉
= 〈ξn − ξm, f̃(∆ω)(ξn − ξm)〉

≤ 1
2
〈ξn − ξm, ξn − ξm〉+

1
2
〈ξn − ξm,∆ω(ξn − ξm)〉

=
1
2
‖ξn − ξm‖+

1
2
E(ξn − ξm, ξn − ξm) → 0, m, n →∞.

This implies ξ ∈ D(Ff ) and Ff (ξn − ξ, ξn − ξ) → 0, n →∞.
Therefore, if ξ, η ∈ D(∆1/2

ω ), and {ξn}, {ηn} ⊂ D(∆ω) approximate ξ, η in the above sense, we obtain,
from [14] Theorem VI.1.12, that Ff (ξ, η) = limn→∞ Ff (ξn, ηn), and analogously for E.

Lemma 4.3.

(i) D(Ff ) ⊃ D(∆1/2
ω ),

(ii) Gf is a symmetric sesquilinear form on D(Gf ) ⊃ D(∆1/2
ω ), which is positive on D(∆1/2

ω ).

Proof. (i) It follows from the proof of the previous Lemma.
(ii) We only need to prove positivity. To begin with, let ξ ∈ D(∆ω). Then, setting g(x) := 1

2 (x + 1)−
f̃(x) ≥ 0, for all x > 0, we have Gf (ξ, ξ) = 1

2E1(ξ, ξ) − Ff (ξ, ξ) = 1
2 〈ξ, ξ〉 + 1

2 〈ξ,∆ωξ〉 − 〈ξ, f̃(∆ω)ξ〉 =
〈ξ, g(∆ω)ξ〉 ≥ 0.

Moreover, if ξ ∈ D(∆1/2
ω ), and ξn ∈ D(∆ω) is such that ξn → ξ, and E(ξn − ξ, ξn − ξ) → 0, then,

from Lemma 4.2 it follows Gf (ξ, ξ) = limn→∞ Gf (ξn, ξn) ≥ 0.

We can now introduce the main objects of study.
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Definition 4.4. For any A,B∈̂Msa, such that ξω ∈ D(A) ∩ D(B), and any f ∈ F, we set A0 :=
A− 〈ξω, Aξω〉, B0 := B − 〈ξω, Bξω〉, and define the bilinear forms

Covω(A,B) := Re〈A0ξω, B0ξω〉,
Varω(A) := Covω(A,A),

Corrf
ω(A,B) := Re〈A0ξω, B0ξω〉 − Re〈f̃(∆ω)1/2A0ξω, f̃(∆ω)1/2B0ξω〉,

If
ω(A) := Corrf

ω(A,A).

Remark 4.5. Observe that, in case M = Mn, then ω = Tr(ρ·), for some ρ ∈ D1
n, and ∆ω = LρR

−1
ρ , so

that the previous Definition is a true generalization of covariance and f -correlation in the matrix case.

Lemma 4.6. For any A,B∈̂Msa, such that ξω ∈ D(A) ∩D(B), and any f ∈ F, we have

(i) Covω(A,B) = 1
2 Re E1(A0ξω, B0ξω) is a positive bilinear form,

(ii) Corrf
ω(A,B) = Re Gf (A0ξω, B0ξω) is a positive bilinear form.

Proof. (i) Observe that

〈B0ξω, A0ξω〉 = 〈B∗0ξω, A∗0ξω〉 = 〈Jω∆1/2
ω B0ξω, Jω∆1/2

ω A0ξω〉
= 〈∆1/2

ω A0ξω,∆1/2
ω B0ξω〉 = E(A0ξω, B0ξω).

The thesis follows from this and the fact that D(∆1/2
ω ) =

{
Tξω : T ∈̂M, ξω ∈ D(T ) ∩D(T ∗)

}
.

(ii) It follows from (i) and Lemma 4.3 (ii).

Remark 4.7. Observe that, for any A,B∈̂Msa, such that ξω ∈ D(A) ∩ D(B), and any f ∈ F, we have
Ff (B0ξω, A0ξω) = Ff (A0ξω, B0ξω). Indeed,

Ff (B0ξω, A0ξω) = 〈f̃(∆ω)1/2B0ξω, f̃(∆ω)1/2A0ξω〉 = 〈f̃(∆ω)1/2Jω∆1/2
ω B0ξω, f̃(∆ω)1/2Jω∆1/2

ω A0ξω〉
= 〈Jω f̃(∆ω)1/2Jω∆1/2

ω A0ξω, Jω f̃(∆ω)1/2Jω∆1/2
ω B0ξω〉

= 〈f̃(∆−1
ω )1/2∆1/2

ω A0ξω, f̃(∆−1
ω )1/2∆1/2

ω B0ξω〉
= 〈f̃(∆ω)1/2A0ξω, f̃(∆ω)1/2B0ξω〉 = Ff (A0ξω, B0ξω),

where in the last but one equality we used f̃(x−1) = x−1f̃(x), for x > 0.

Lemma 4.8. Let X, Y ∈ Mn be positive self-adjoint matrices. Then det(X + Y ) ≥ det X + detY .

Proof. It is a particular case of [2], Theorem VI.7.1.

Theorem 4.9. For any N ∈ N, A1, . . . , AN ∈̂Msa, such that ξω ∈ D(Aj), j = 1, . . . , N , and any f ∈ F
we have

det{Covω(Aj , Ak)}j,k=1,...,N ≥ det{Corrf
ω(Aj , Ak)}j,k=1,...,N

+ det{Covω(Aj , Ak)− Corrf
ω(Aj , Ak)}j,k=1,...,N .

In particular,
det{Covω(Aj , Ak)}j,k=1,...,N ≥ det{Corrf

ω(Aj , Ak)}j,k=1,...,N .

Proof. Set X =
{
A∈̂Msa : ξω ∈ D(A)

}
. Then the map (A,B) ∈ X×X → Covω(A,B)−Corrf

ω(A,B) ∈ R
is a positive bilinear form. Therefore, we can apply Lemma 4.8 to the Gram matrices {Corrf

ω(Aj , Ak)}j,k=1,...,N

and {Covω(Aj , Ak)− Corrf
ω(Aj , Ak)}j,k=1,...,N to show the claim.

Moreover, using the same techniques, one can prove the following monotonicity property.
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Proposition 4.10. For any N ∈ N, A1, . . . , AN ∈̂Msa, such that ξω ∈ D(Aj), j = 1, . . . , N , and any
f, g ∈ F we have

f(0)
f(x)

≥ g(0)
g(x)

, x > 0 ⇐⇒ f̃ ≤ g̃ =⇒

det{Corrf
ω(Aj , Ak)}j,k=1,...,N ≥ det{Corrg

ω(Aj , Ak)}j,k=1,...,N

+ det{Corrf
ω(Aj , Ak)− Corrg

ω(Aj , Ak)}j,k=1,...,N .

Proof. The equivalence f(0)
f(x) ≥

g(0)
g(x) , x > 0 ⇐⇒ f̃ ≤ g̃ is proved in [6], Proposition 5.7. It is easy to

see that f̃ ≤ g̃ implies that (A,B) ∈ X×X → Corrf
ω(A,B)−Corrg

ω(A,B) is a positive bilinear form, so
the proof follows from Lemma 4.8.
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