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Abstract

Recently Kosaki proved in [8] an inequality for matrices that can be seen as a kind of new
uncertainty principle. Independently, the same result was proved by Yanagi et al. in [13]. The new
bound is given in terms of Wigner-Yanase-Dyson informations. Kosaki himself asked if this inequality
can be proved in the setting of von Neumann algebras. In this paper we provide a positive answer to
that question and moreover we show how the inequality can be generalized to an arbitrary operator
monotone function.
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1 Introduction
If A, B are selfadjoint matrices and p is a density matrix, define

Cov,(A, B) := Re{Tr(pAB) — Tr(pA) - Tr(pB)}
Var,(A) := Cov,(A, A).

The uncertainty principle reads as
1
Var, (4)Var,(B) > £ [Tr(pl4, B)P
This inequality can be refined as

Var,(A)Var,(B) — Cov,(A, B)?> > ~|Tr(p[A, B])|?,

A~

(see [5, 12]). Recently a different uncertainty principle has been found [11, 9, 10, 8, 13]. For 8 € (0,1)
define (-correlation and S-information as

COI‘I'pwg(A’ B) = RQ{TI‘(pAB) — Tr(pﬂApl—ﬂB)}
1,,5(A) i= Corry,5(A, A) = Tr(pA?) — Tr(p 4p' P 4),

where the latter coincides with the Wigner-Yanase-Dyson information. It has been proved that

Var,(A) Var,(B) — Cov,(A, B)? > 1, 3(A)1, 3(B) — Corr, 5(A, B)*. (1.1)
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The quantities involved in the previous inequality make a perfect sense in a von Neumann algebra
setting (see for example [7]). In ref. [8] Kosaki asked if the inequality (1.1) is true in this more general
setting.

In this paper we provide a positive answer to Kosaki question and moreover we show that, once
the inequality is formulated in the context of operator monotone functions, the result can be greatly
generalized.

2 Preliminaries

Denote by M, s, the space of complex self-adjoint n x n matrices, and recall that a function f : (0, 00) —
R is said operator monotone if, for any n € N, any A, B € M, 5, such that 0 < A < B, the inequalities
0 < f(A) < f(B) hold. Then, f: (0,00) — R is operator monotone iff for any A, B € B(H) such that
0 < A< B, it holds f(A) < f(B). An operator monotone function is said symmetric if f(z) := xf(z~1)
and normalized if f(1) = 1. We denote by § the class of positive, symmetric, normalized, operator
monotone functions.

Examples of operator monotone functions are the so-called Wigner-Yanase-Dyson functions

(2~ 1)
(@ — (a7~ 1)

fo(@) = B(1-p) Be(0,1).

Returning to a general f € §, we associate to it a function f € § [2] defined by

F(z) = %((m—&— 1) — (z — 1)2;8), x> 0.

For example

= 1

Fola) = 50 +210),
Definition 2.1. For A,B € M, 5., f € §, and p a faithful density matrix, define f-correlation and
f-information as

Corr/ (A, B) := Re{Tr(pAB) — Tx(R,f(L,R,")(A) - B)},
f — f
I7(A) := Corry, (A, A).

Recall that f-information is also known as metric adjusted skew information (see [4]). The following
generalization of inequality (1.1) is proved in [2].

Theorem 2.2.

Var,(A) Var,(B) — Cov,(A, B)* > IT(A)I](B) — Corr/ (A, B)*.
In the next Section we prove that the above inequality holds true in a general von Neumann algebra,
thus answering, in particular, the question raised by Kosaki in [8], and recalled above. A different
generalization of Theorem 2.2 has been proved in [3].

3 The main result

Let M be a von Neumann algebra, and w a normal faithful state on M, and denote by H,, and &, the
GNS Hilbert space and vector, and by S,,, J, and A, the modular operators associated to w.

The proof of the main result is divided in a series of Lemmas. In order to deal with unbounded
operators, we introduce some sesquilinear forms on H,,, and take [6] as our standard reference.



Definition 3.1. Let f € §, and define the following sequilinear forms

(6.n) 1= (AL, AY),
E1(&,m) = E(&m) +(&m),
F (&, m) i:< F(AL)Y2€, F(AL)Y ),
5/ (& n) = 581(5,77) —F (& ).

It follows from [6], Example VI.1.13, that €, &, F/ are closed, positive and symmetric sesquilinear
forms.

Lemma 3.2. Let £, € D(AL?), and {€.}, {na} € D(A,) be such that &, — €, E(&n — &6, —€) = 0,
n — 00, and analogously for n, and n. Then

8(5777) = 7}520 8(€n777n) = nh—>H<§o<€n’ Awnn>7

Proof. Tt follows from [6] Theorem VI.2.1 that D(A,) is a core for D(E) = D(A 1/2)7 so that, from [6]
Theorem VI.1.21, for any £ € D(Aiﬂ) thereis {£,,} € D(A,) such that §, — £, and 8(5 f £n—¢€) —
n — 0o. Then &(&, — &my&n — Em) — 0, m,n — oo. Now observe that 0 < f(z) < 3(xz+1), for z > 0
[2], so that
H:f(gn - gmagn - gm) = <f~(Aw)1/2(§n - fm)a f(Aw)l/z(gn - Em»
= <€n - gma JE(Aw)(gn - fm)>

S %@n - gmvgn - §m> + %@n - Ema Aw(fn - gm)>

1 1
= 5“5” - ETHH + 58@” —&m>&n — fm) — 0, m,n — oo.

This implies & € D(F/) and FF (&, — &, &, — &) — 0, n — oo.
Therefore, if £, 1 € 'D(Ai)m), and {&,}, {n.} C D(A,) approximate &, in the above sense, we obtain,
from [6] Theorem VI.1.12, that F7(¢,1) = lim, oo F¥(&,,7n), and analogously for €. O

Lemma 3.3.
() DF) > D(AL?),
(i) G/ is a symmetric sesquilinear form on D(G') D @(A}/Z), which is positive on D(A}Um),

Proof. (i) Tt follows from the proof of the previous Lemma.
(#4) We only need to prove positivity. To begin with, let £ € D(A,). Then, setting g(x) := 5(x + 1) —

) 3
f(x) >0, for all 2 > 0, we have G/(&,€) = £€1(£,€) — FF(£,6) = $(5,6) + 5(&, Au) — (& F(AL)E) =
(& 9(A )§> >0.
Moreover, if £ € D(AY?), and &, € D(A,) is such that &, — &, and (&, — &,&, — &) — 0, then,
from Lemma 3.2 it follows G7 (¢, &) = lim, oo G7 (&, &) > 0. O

We can now introduce the main objects of study. In the sequel, we denote by TEéM the fact that T
is a closed, densely defined, linear operator on H,,, and is affiliated with M.

Definition 3.4. For any A, BEM,,, such that &, € D(A) N D(B), and any f € F, we set Ay :=
A — (&, AL,), By := B — (&, B, ), and define the bilinear forms

COVw(A B) = Re<A0§w7 BO§w>7
Var, (A) := Cov, (A4, A),
COI‘I‘ ( ) Re <A0€wa BO£w> - Re<f(Aw)1/2A0§wa f(Aw)1/2B0€w>a
IS (A) = Corrf,(A, A).



Remark 3.5. Observe that in the matrix case w = Tr(p-), for some density matrix p, and A, = L,;R,jl7
so that the previous Definition is a true generalization of covariance and f-correlation in the matrix case.

For the reader’s convenience, we prove the following folklore result.
Lemma 3.6. D(AY?) = {T¢, : TEM, &, € D(T) N D(T*)}.

Proof. (1) Let us first prove that D(A}uﬂ) C {T¢, : TEM, &, € D(T)ND(T*)}. Indeed, let 1 € D(Ai,/z),
and define the linear operator Ty : 2'&, € M'E, — x'n € H,,, which is densely defined, and affiliated
with M. Let us show that is preclosed: indeed, if 2/ £, — 0, and z/,7 — ¢, then, for any 3" € M’, we get

(/&) = lim (z)n,y'€u) = lim (n,27"y'6,) = lim (n, ST(y" 2,80))

o0

= lim (y"2/&,,S,n) = lim (2 &,,y'S,n) =0,
n—oo n—oo

which shows that Tj is preclosed. Let T;, := Ty. Then, TnéM, and T,&, = 1. It remains to be proved

that §, € D(T};). Since Syn € D(A&,/z), we can also consider Ts,,. Let us show that Ts,, C 7).
Indeed, for any 2,y € M/, we have

<TSunx/€way/€w> = <x/sw777yl§w> = <Sw77a-r/*y/§w> = <y'*$/§w,77> = <$/€w’y/77> = <x/§waTny/£w>~

Then, &, € D(Ts,y) C D(T};), which shows that D(Ai/Q) C{T¢, : TEM, &, € D(T) N D(T*)}.

(2) Let us now prove that @(A}/Q) D {T¢, : TEM, &, € D(T) N D(T*)}. Indeed, if TEM is such
that £, € D(T) N D(T*), we can consider its polar decomposition T' = v|T'|, and let e, := X[o,»(|T]),
T, := v|T|ey, for any n € N. Since £, € D(T), we have T,§, = ve,|T|,, — TE,. Moreover, since
& € D(T™), we have T, = |T|epv*é, = e, T*E, — T*E,. Since S, is a closed operator, it follows that
T¢, € D(S,) = ‘D(Ai/g) [and S,T¢, = T*E,], which is what we wanted to prove. O

Lemma 3.7. For any A, BEM,,, such that &, € D(A)ND(B), and any f € F, we have
(i) Covy (A, B) = § Re &1 (Ao&w, Bo&) is a positive bilinear form,
(i7) Corr! (A, B) = Re §/ (Ao&.,, Boty) is a positive bilinear form.
Proof. (i) Observe that

(Botuw: Aokw) = (Bibu, Ajbe) = (JuAL* Bobu, JuAL? Aety)

= (A% Aot Alf? Botu) = E(Aoku, Boku).

The thesis follows from this and the fact that D(A}U/Z) = {T¢, : TEM, &, € D(T) N D(T*)}.
(#3) Tt follows from (i) and Lemma 3.3 (ii). O

Lemma 3.8. Let £, € H,, A, = foootde(t), and define, for Q a Borel subset of [0,00), pen(2) ==
Re(€, e(Q)n), and
1= e © oy + fon @ flee — 2fien © Hen-

Then, 1 is a bounded positive Borel measure on [0,00)2.

Proof. Let Q1,4 be Borel subsets of [0,00), and set e; := e(€;), j = 1,2. Observe that |Re({, e1n) -
Re(€, ean)| < [lead]| - len]] - [le2€]l - [le2n]], so that

P x Q2) > [leré]]? - lleanl| + lle2€l| - llernl|* — 2ller]| - llean]l - lle2€]l - leznl| = 0.
The thesis follows by standard measure theoretic arguments. O

Theorem 3.9. For any A, BEM,,, such that &, € D(A) ND(B), and any f € F, we have

Var, (A) Var,,(B) — Cov,, (A4, B)? > I} (A)IZ(B) — Corr! (A, B)?.



I5(A)I(B) + Cortl (A, B)?
2

— Cov,(A,B)?* - 17
(Bo&w, Bo&w) — (% Re El(Aofw,Bofw))

Proof. Set
(Boo, Buk) = 5 (Bogu, Boti))

G(A, B) := Var,(A) Var,(B)

a 1
@ ) E1(Aokw, Aoky) - 53

- (iel(Aofw, Aok) = T (Ao, Acte) ) (581
(5 Re1(Aoku, Bo) — Re (Aot Bote,) )

1
+ 5 1
=E€1(Aoéw; Aos) - F (Bobu, Boku) + %?f(Aofw, Ao&y) - €1(Bow, Boéw)
Reé& (Anga Bofw) ‘Re fff (AO&M BOEw)

2
— F (Ao, Aok - F (Bou, Bou)

+ (Re F/ (Aot Bo§w))27
where in (a) we have used Lemma 3.7. Let us now introduce the function, for £,n € @(AI/ 2),
)= (£,6)-F7 (n,m)—Re &1(&,m) Re F/ (&, m)+(Re F7 (£,m))",

1 1
H(&,m) = 5&1(&, €T (0, m)+557 (€,€)-€1(n,m)—
and recall that ‘D(Al/Z) = {T¢, : TEM, &, € D(T) N D(T*)}, so that, if A, B are as in the statement
H(Ap., Bo&,), and to prove the theorem it suffices to show that

1mu+A>»@f@

HE 1) = 506 (1+AL)8) - 0, F(A)n) + 51
) = Relg, (14 Au)n) - Rele, f(A

— (6. F(A)8) - (n. f(A
2/ s) dpge (s

1/OO(SJrl)duﬁs / F(#) dpiny (t) /
/Oo 1) dpgn (s / t) dpen(t)
0,

of the Theorem, we obtain G(A4, B) =
(&,n) >0, for all &,n € D(A 1/2) Observe that, for £,n € D(A,), we get
F(AL)E)
2
o)1)+ (Re(€, F(AL)n))
(t+1) dpyy(t)

®)

t) dpuen (t

/ F(5) dnee(s / Ft) it

5 | F6 dney(s) [ ey~ [ F6)dueyls

:%/ ((s + 1) F(8) + (¢ + 1) F(5) = 2 () F(£)) dpsee @ (s, 1)
[0,00)2

fg/' (s + D) F @) + (t+ D F(s) = 2f(5) (1)) dpey © pey (s.1)
[0,00)

= 1 7
where we used in (b) notation as in Lemma 3.8, in (¢) Fubini-Tonelli Theorem, and in (d) the symmetries
(s) >0,

+(t+1-Ff)f

of the first integrand and notation as in Lemma 3.8

(s+1— () /()

Since p is a positive measure, and
t =

(s+1)f(t) +

we obtain H(&,n) > 0, for any &,n € D(A,,)
It follows from Lemma 3.2 that, for any &,n € D(Aw/ ), we have H(&,n) = limy,— o0 H(nyMn) > 0,
O

(t+1)f(s) = 2f(s) f ()

which ends the proof.
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