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Abstract

Recently Kosaki proved in [8] an inequality for matrices that can be seen as a kind of new
uncertainty principle. Independently, the same result was proved by Yanagi et al. in [13]. The new
bound is given in terms of Wigner-Yanase-Dyson informations. Kosaki himself asked if this inequality
can be proved in the setting of von Neumann algebras. In this paper we provide a positive answer to
that question and moreover we show how the inequality can be generalized to an arbitrary operator
monotone function.
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1 Introduction

If A,B are selfadjoint matrices and ρ is a density matrix, define

Covρ(A,B) := Re{Tr(ρAB)− Tr(ρA) · Tr(ρB)}
Varρ(A) := Covρ(A,A).

The uncertainty principle reads as

Varρ(A)Varρ(B) ≥ 1
4
|Tr(ρ[A,B])|2.

This inequality can be refined as

Varρ(A)Varρ(B)− Covρ(A,B)2 ≥ 1
4
|Tr(ρ[A,B])|2,

(see [5, 12]). Recently a different uncertainty principle has been found [11, 9, 10, 8, 13]. For β ∈ (0, 1)
define β-correlation and β-information as

Corrρ,β(A,B) := Re{Tr(ρAB)− Tr(ρβAρ1−βB)}
Iρ,β(A) := Corrρ,β(A,A) = Tr(ρA2)− Tr(ρβAρ1−βA),

where the latter coincides with the Wigner-Yanase-Dyson information. It has been proved that

Varρ(A)Varρ(B)− Covρ(A,B)2 ≥ Iρ,β(A)Iρ,β(B)− Corrρ,β(A,B)2. (1.1)
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The quantities involved in the previous inequality make a perfect sense in a von Neumann algebra
setting (see for example [7]). In ref. [8] Kosaki asked if the inequality (1.1) is true in this more general
setting.

In this paper we provide a positive answer to Kosaki question and moreover we show that, once
the inequality is formulated in the context of operator monotone functions, the result can be greatly
generalized.

2 Preliminaries

Denote by Mn,sa the space of complex self-adjoint n×n matrices, and recall that a function f : (0,∞) →
R is said operator monotone if, for any n ∈ N, any A,B ∈ Mn,sa such that 0 ≤ A ≤ B, the inequalities
0 ≤ f(A) ≤ f(B) hold. Then, f : (0,∞) → R is operator monotone iff for any A,B ∈ B(H) such that
0 ≤ A ≤ B, it holds f(A) ≤ f(B). An operator monotone function is said symmetric if f(x) := xf(x−1)
and normalized if f(1) = 1. We denote by F the class of positive, symmetric, normalized, operator
monotone functions.

Examples of operator monotone functions are the so-called Wigner-Yanase-Dyson functions

fβ(x) := β(1− β)
(x− 1)2

(xβ − 1)(x1−β − 1)
, β ∈ (0, 1).

Returning to a general f ∈ F, we associate to it a function f̃ ∈ F [2] defined by

f̃(x) :=
1
2

(
(x + 1)− (x− 1)2

f(0)
f(x)

)
, x > 0.

For example

f̃β(x) =
1
2
(xβ + x1−β).

Definition 2.1. For A,B ∈ Mn,sa, f ∈ F, and ρ a faithful density matrix, define f -correlation and
f -information as

Corrf
ρ(A,B) := Re{Tr(ρAB)− Tr(Rρf̃(LρR

−1
ρ )(A) ·B)},

If
ρ (A) := Corrf

ρ(A,A).

Recall that f -information is also known as metric adjusted skew information (see [4]). The following
generalization of inequality (1.1) is proved in [2].

Theorem 2.2.

Varρ(A) Varρ(B)− Covρ(A,B)2 ≥ If
ρ (A)If

ρ (B)− Corrf
ρ(A,B)2.

In the next Section we prove that the above inequality holds true in a general von Neumann algebra,
thus answering, in particular, the question raised by Kosaki in [8], and recalled above. A different
generalization of Theorem 2.2 has been proved in [3].

3 The main result

Let M be a von Neumann algebra, and ω a normal faithful state on M, and denote by Hω and ξω the
GNS Hilbert space and vector, and by Sω, Jω and ∆ω the modular operators associated to ω.

The proof of the main result is divided in a series of Lemmas. In order to deal with unbounded
operators, we introduce some sesquilinear forms on Hω, and take [6] as our standard reference.
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Definition 3.1. Let f ∈ F, and define the following sequilinear forms

E(ξ, η) := 〈∆1/2
ω ξ,∆1/2

ω η〉,
E1(ξ, η) := E(ξ, η) + 〈ξ, η〉,
Ff (ξ, η) := 〈f̃(∆ω)1/2ξ, f̃(∆ω)1/2η〉,

Gf (ξ, η) :=
1
2
E1(ξ, η)− Ff (ξ, η).

It follows from [6], Example VI.1.13, that E, E1, Ff are closed, positive and symmetric sesquilinear
forms.

Lemma 3.2. Let ξ, η ∈ D(∆1/2
ω ), and {ξn}, {ηn} ⊂ D(∆ω) be such that ξn → ξ, E(ξn − ξ, ξn − ξ) → 0,

n →∞, and analogously for ηn and η. Then

E(ξ, η) = lim
n→∞

E(ξn, ηn) = lim
n→∞

〈ξn,∆ωηn〉,

Ff (ξ, η) = lim
n→∞

Ff (ξn, ηn) = lim
n→∞

〈ξn, f̃(∆ω)ηn〉.

Proof. It follows from [6] Theorem VI.2.1 that D(∆ω) is a core for D(E) ≡ D(∆1/2
ω ), so that, from [6]

Theorem VI.1.21, for any ξ ∈ D(∆1/2
ω ) there is {ξn} ⊂ D(∆ω) such that ξn → ξ, and E(ξn−ξ, ξn−ξ) → 0,

n → ∞. Then E(ξn − ξm, ξn − ξm) → 0, m,n → ∞. Now observe that 0 ≤ f̃(x) ≤ 1
2 (x + 1), for x > 0

[2], so that

Ff (ξn − ξm, ξn − ξm) = 〈f̃(∆ω)1/2(ξn − ξm), f̃(∆ω)1/2(ξn − ξm)〉
= 〈ξn − ξm, f̃(∆ω)(ξn − ξm)〉

≤ 1
2
〈ξn − ξm, ξn − ξm〉+

1
2
〈ξn − ξm,∆ω(ξn − ξm)〉

=
1
2
‖ξn − ξm‖+

1
2
E(ξn − ξm, ξn − ξm) → 0, m, n →∞.

This implies ξ ∈ D(Ff ) and Ff (ξn − ξ, ξn − ξ) → 0, n →∞.
Therefore, if ξ, η ∈ D(∆1/2

ω ), and {ξn}, {ηn} ⊂ D(∆ω) approximate ξ, η in the above sense, we obtain,
from [6] Theorem VI.1.12, that Ff (ξ, η) = limn→∞ Ff (ξn, ηn), and analogously for E.

Lemma 3.3.

(i) D(Ff ) ⊃ D(∆1/2
ω ),

(ii) Gf is a symmetric sesquilinear form on D(Gf ) ⊃ D(∆1/2
ω ), which is positive on D(∆1/2

ω ).

Proof. (i) It follows from the proof of the previous Lemma.
(ii) We only need to prove positivity. To begin with, let ξ ∈ D(∆ω). Then, setting g(x) := 1

2 (x + 1)−
f̃(x) ≥ 0, for all x > 0, we have Gf (ξ, ξ) = 1

2E1(ξ, ξ) − Ff (ξ, ξ) = 1
2 〈ξ, ξ〉 + 1

2 〈ξ,∆ωξ〉 − 〈ξ, f̃(∆ω)ξ〉 =
〈ξ, g(∆ω)ξ〉 ≥ 0.

Moreover, if ξ ∈ D(∆1/2
ω ), and ξn ∈ D(∆ω) is such that ξn → ξ, and E(ξn − ξ, ξn − ξ) → 0, then,

from Lemma 3.2 it follows Gf (ξ, ξ) = limn→∞ Gf (ξn, ξn) ≥ 0.

We can now introduce the main objects of study. In the sequel, we denote by T ∈̂M the fact that T
is a closed, densely defined, linear operator on Hω, and is affiliated with M.

Definition 3.4. For any A,B∈̂Msa, such that ξω ∈ D(A) ∩ D(B), and any f ∈ F, we set A0 :=
A− 〈ξω, Aξω〉, B0 := B − 〈ξω, Bξω〉, and define the bilinear forms

Covω(A,B) := Re〈A0ξω, B0ξω〉,
Varω(A) := Covω(A,A),

Corrf
ω(A,B) := Re〈A0ξω, B0ξω〉 − Re〈f̃(∆ω)1/2A0ξω, f̃(∆ω)1/2B0ξω〉,

If
ω(A) := Corrf

ω(A,A).
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Remark 3.5. Observe that in the matrix case ω = Tr(ρ·), for some density matrix ρ, and ∆ω = LρR
−1
ρ ,

so that the previous Definition is a true generalization of covariance and f -correlation in the matrix case.

For the reader’s convenience, we prove the following folklore result.

Lemma 3.6. D(∆1/2
ω ) = {Tξω : T ∈̂M, ξω ∈ D(T ) ∩D(T ∗)}.

Proof. (1) Let us first prove that D(∆1/2
ω ) ⊂ {Tξω : T ∈̂M, ξω ∈ D(T )∩D(T ∗)}. Indeed, let η ∈ D(∆1/2

ω ),
and define the linear operator T0 : x′ξω ∈ M′ξω 7→ x′η ∈ Hω, which is densely defined, and affiliated
with M. Let us show that is preclosed: indeed, if x′nξω → 0, and x′nη → ζ, then, for any y′ ∈ M′, we get

〈ζ, y′ξω〉 = lim
n→∞

〈x′nη, y′ξω〉 = lim
n→∞

〈η, x′n
∗
y′ξω〉 = lim

n→∞
〈η, S∗ω(y′∗x′nξω)〉

= lim
n→∞

〈y′∗x′nξω, Sωη〉 = lim
n→∞

〈x′nξω, y′Sωη〉 = 0,

which shows that T0 is preclosed. Let Tη := T0. Then, Tη∈̂M, and Tηξω = η. It remains to be proved
that ξω ∈ D(T ∗η ). Since Sωη ∈ D(∆1/2

ω ), we can also consider TSωη. Let us show that TSωη ⊂ T ∗η .
Indeed, for any x′, y′ ∈ M′, we have

〈TSωηx′ξω, y′ξω〉 = 〈x′Sωη, y′ξω〉 = 〈Sωη, x′
∗
y′ξω〉 = 〈y′∗x′ξω, η〉 = 〈x′ξω, y′η〉 = 〈x′ξω, Tηy′ξω〉.

Then, ξω ∈ D(TSωη) ⊂ D(T ∗η ), which shows that D(∆1/2
ω ) ⊂ {Tξω : T ∈̂M, ξω ∈ D(T ) ∩D(T ∗)}.

(2) Let us now prove that D(∆1/2
ω ) ⊃ {Tξω : T ∈̂M, ξω ∈ D(T ) ∩ D(T ∗)}. Indeed, if T ∈̂M is such

that ξω ∈ D(T ) ∩ D(T ∗), we can consider its polar decomposition T = v|T |, and let en := χ[0,n](|T |),
Tn := v|T |en, for any n ∈ N. Since ξω ∈ D(T ), we have Tnξω = ven|T |ξω → Tξω. Moreover, since
ξω ∈ D(T ∗), we have T ∗nξω = |T |env∗ξω = enT ∗ξω → T ∗ξω. Since Sω is a closed operator, it follows that
Tξω ∈ D(Sω) = D(∆1/2

ω ) [and SωTξω = T ∗ξω], which is what we wanted to prove.

Lemma 3.7. For any A,B∈̂Msa, such that ξω ∈ D(A) ∩D(B), and any f ∈ F, we have

(i) Covω(A,B) = 1
2 Re E1(A0ξω, B0ξω) is a positive bilinear form,

(ii) Corrf
ω(A,B) = Re Gf (A0ξω, B0ξω) is a positive bilinear form.

Proof. (i) Observe that

〈B0ξω, A0ξω〉 = 〈B∗
0ξω, A∗0ξω〉 = 〈Jω∆1/2

ω B0ξω, Jω∆1/2
ω A0ξω〉

= 〈∆1/2
ω A0ξω,∆1/2

ω B0ξω〉 = E(A0ξω, B0ξω).

The thesis follows from this and the fact that D(∆1/2
ω ) = {Tξω : T ∈̂M, ξω ∈ D(T ) ∩D(T ∗)}.

(ii) It follows from (i) and Lemma 3.3 (ii).

Lemma 3.8. Let ξ, η ∈ Hω, ∆ω =
∫∞
0

t de(t), and define, for Ω a Borel subset of [0,∞), µξη(Ω) :=
Re〈ξ, e(Ω)η〉, and

µ := µξξ ⊗ µηη + µηη ⊗ µξξ − 2µξη ⊗ µξη.

Then, µ is a bounded positive Borel measure on [0,∞)2.

Proof. Let Ω1,Ω2 be Borel subsets of [0,∞), and set ej := e(Ωj), j = 1, 2. Observe that |Re〈ξ, e1η〉 ·
Re〈ξ, e2η〉| ≤ ‖e1ξ‖ · ‖e1η‖ · ‖e2ξ‖ · ‖e2η‖, so that

µ(Ω1 × Ω2) ≥ ‖e1ξ‖2 · ‖e2η‖2 + ‖e2ξ‖2 · ‖e1η‖2 − 2‖e1ξ‖ · ‖e1η‖ · ‖e2ξ‖ · ‖e2η‖ ≥ 0.

The thesis follows by standard measure theoretic arguments.

Theorem 3.9. For any A,B∈̂Msa, such that ξω ∈ D(A) ∩D(B), and any f ∈ F, we have

Varω(A) Varω(B)− Covω(A,B)2 ≥ If
ω(A)If

ω(B)− Corrf
ω(A,B)2.
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Proof. Set

G(A,B) := Varω(A) Varω(B)− Covω(A,B)2 − If
ω(A)If

ω(B) + Corrf
ω(A,B)2

(a)
=

1
2
E1(A0ξω, A0ξω) · 1

2
E1(B0ξω, B0ξω)−

(1
2

Re E1(A0ξω, B0ξω)
)2

−
(1

2
E1(A0ξω, A0ξω)− Ff (A0ξω, A0ξω)

)(1
2
E1(B0ξω, B0ξω)− Ff (B0ξω, B0ξω)

)
+

(1
2

Re E1(A0ξω, B0ξω)− Re Ff (A0ξω, B0ξω)
)2

=
1
2
E1(A0ξω, A0ξω) · Ff (B0ξω, B0ξω) +

1
2
Ff (A0ξω, A0ξω) · E1(B0ξω, B0ξω)

− Ff (A0ξω, A0ξω) · Ff (B0ξω, B0ξω)− Re E1(A0ξω, B0ξω) · Re Ff (A0ξω, B0ξω)

+
(
Re Ff (A0ξω, B0ξω)

)2
,

where in (a) we have used Lemma 3.7. Let us now introduce the function, for ξ, η ∈ D(∆1/2
ω ),

H(ξ, η) :=
1
2
E1(ξ, ξ)·Ff (η, η)+

1
2
Ff (ξ, ξ)·E1(η, η)−Ff (ξ, ξ)·Ff (η, η)−Re E1(ξ, η)·Re Ff (ξ, η)+

(
Re Ff (ξ, η)

)2
,

and recall that D(∆1/2
ω ) = {Tξω : T ∈̂M, ξω ∈ D(T ) ∩D(T ∗)}, so that, if A,B are as in the statement

of the Theorem, we obtain G(A,B) = H(A0ξω, B0ξω), and to prove the theorem it suffices to show that
H(ξ, η) ≥ 0, for all ξ, η ∈ D(∆1/2

ω ). Observe that, for ξ, η ∈ D(∆ω), we get

H(ξ, η) =
1
2
〈ξ, (1 + ∆ω)ξ〉 · 〈η, f̃(∆ω)η〉+

1
2
〈η, (1 + ∆ω)η〉 · 〈ξ, f̃(∆ω)ξ〉

− 〈ξ, f̃(∆ω)ξ〉 · 〈η, f̃(∆ω)η〉 − Re〈ξ, (1 + ∆ω)η〉 · Re〈ξ, f̃(∆ω)η〉+
(
Re〈ξ, f̃(∆ω)η〉

)2

(b)
=

1
2

∫ ∞

0

(s + 1) dµξξ(s)
∫ ∞

0

f̃(t) dµηη(t) +
1
2

∫ ∞

0

f̃(s) dµξξ(s)
∫ ∞

0

(t + 1) dµηη(t)

−
∫ ∞

0

f̃(s) dµξξ(s)
∫ ∞

0

f̃(t) dµηη(t)− 1
2

∫ ∞

0

(s + 1) dµξη(s)
∫ ∞

0

f̃(t) dµξη(t)

− 1
2

∫ ∞

0

f̃(s) dµξη(s)
∫ ∞

0

(t + 1) dµξη(t)−
∫ ∞

0

f̃(s) dµξη(s)
∫ ∞

0

f̃(t) dµξη(t)

(c)
=

1
2

∫
[0,∞)2

(
(s + 1)f̃(t) + (t + 1)f̃(s)− 2f̃(s)f̃(t)

)
dµξξ ⊗ µηη(s, t)

− 1
2

∫
[0,∞)2

(
(s + 1)f̃(t) + (t + 1)f̃(s)− 2f̃(s)f̃(t)

)
dµξη ⊗ µξη(s, t)

(d)
=

1
4

∫∫
[0,∞)2

(
(s + 1)f̃(t) + (t + 1)f̃(s)− 2f̃(s)f̃(t)

)
dµ(s, t),

where we used in (b) notation as in Lemma 3.8, in (c) Fubini-Tonelli Theorem, and in (d) the symmetries
of the first integrand and notation as in Lemma 3.8.
Since µ is a positive measure, and

(s + 1)f̃(t) + (t + 1)f̃(s)− 2f̃(s)f̃(t) =
(
s + 1− f̃(s)

)
f̃(t) +

(
t + 1− f̃(t)

)
f̃(s) ≥ 0,

we obtain H(ξ, η) ≥ 0, for any ξ, η ∈ D(∆ω).
It follows from Lemma 3.2 that, for any ξ, η ∈ D(∆1/2

ω ), we have H(ξ, η) = limn→∞H(ξn, ηn) ≥ 0,
which ends the proof.
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