Uncertainty principle for Wigner-Yanase-Dyson information in semifinite von Neumann algebras

Paolo Gibilisco∗ and Tommaso Isola†

December 21, 2007

Abstract

In [9] Kosaki proved an uncertainty principle for matrices, related to Wigner-Yanase-Dyson information, and asked if a similar inequality could be proved in the von Neumann algebra setting. In this paper we prove such an uncertainty principle in the semifinite case.

2000 Mathematics Subject Classification. Primary 62B10, 94A17; Secondary 46L30, 46L60.

Key words and phrases. Uncertainty principle, Wigner-Yanase-Dyson information.

1 Introduction

Let $M_n := M_n(\mathbb{C})$ (resp. $M_{n,sa} := M_n(\mathbb{C})_{sa}$) be the set of all $n \times n$ complex matrices (resp. all $n \times n$ self-adjoint matrices). Let \mathcal{D}_n^1 be the set of strictly positive density matrices namely

$$\mathcal{D}_n^1 = \{ \rho \in M_n : \text{Tr}\rho = 1, \rho > 0 \}.$$

Definition 1.1. For $A, B \in M_{n,sa}$ and $\rho \in \mathcal{D}_n^1$, define covariance and variance as

$$\text{Cov}_\rho(A, B) := \text{Tr}(\rho AB) - \text{Tr}(\rho A) \cdot \text{Tr}(\rho B)$$
$$\text{Var}_\rho(A) := \text{Tr}(\rho A^2) - \text{Tr}(\rho A)^2.$$

Then the well known Schrödinger and Heisenberg uncertainty principles are given in the following

Theorem 1.2. [8, 14]

For $A, B \in M_{n,sa}$ and $\rho \in \mathcal{D}_n^1$ one has

$$\text{Var}_\rho(A)\text{Var}_\rho(B) - |\text{Re Cov}_\rho(A, B)|^2 \geq \frac{1}{4}|\text{Tr}(\rho[A, B])|^2,$$

that implies

$$\text{Var}_\rho(A)\text{Var}_\rho(B) \geq \frac{1}{4}|\text{Tr}(\rho[A, B])|^2.$$

Recently a different uncertainty principle has been found [12, 10, 11, 9, 15].

Definition 1.3. For $A, B \in M_{n,sa}$, $\beta \in (0, 1)$, and $\rho \in \mathcal{D}_n^1$ define β-correlation and β-information as

$$\text{Corr}_{\rho,\beta}(A, B) := \text{Tr}(\rho AB) - \text{Tr}(\rho^\beta A\rho^{1-\beta}B)$$
$$I_{\rho,\beta}(A) := \text{Corr}_{\rho,\beta}(A, A) \equiv \text{Tr}(\rho A^2) - \text{Tr}(\rho^\beta A\rho^{1-\beta}A).$$

The latter coincides with the Wigner-Yanase-Dyson information.
Theorem 1.4.

\[
\text{Var}_\rho(A) \text{Var}_\beta(B) \geq |\text{Re Cov}_\rho(A, B)|^2 \geq I_{\rho, \beta}(A)I_{\rho, \beta}(B) - |\text{Re Cov}_{\rho, \beta}(A, B)|^2.
\]

Kosaki [9] asked if the previous inequality, which makes perfect sense in a von Neumann algebra setting, could indeed be proved. In the sequel, we provide such a proof in the semifinite case.

In closing, we mention that different generalizations of Theorem 1.4 have been recently obtained by the authors [2, 3, 4, 5, 6, 7].

2 Auxiliary lemmas

In all this Section we let \((M, \tau)\) be a semifinite von Neumann algebra with a n.s.f. trace, and denote by \(\text{Proj}(M)\) the set of orthogonal projections in \(M\), and by \(\overline{M}\) the topological *-algebra of \(\tau\)-measurable operators. We fix \(\rho, \sigma\), with spectral decompositions \(\rho = \int_{-\infty}^{+\infty} \lambda \, d\rho(\lambda)\), and \(\sigma = \int_{-\infty}^{+\infty} \lambda \, d\sigma(\lambda)\).

Finally, we denote by \(A\) the algebra generated by the sets \(\Omega_1 \times \Omega_2\), for \(\Omega_1, \Omega_2\) Borel subsets of \(R\), and observe that \(\sigma(A)\), the \(\sigma\)-algebra generated by \(A\), coincides with the Borel subsets of \(\mathbb{R}^2\).

Lemma 2.1. Let \(a, b \in \mathcal{M} \cap \mathcal{L}^2(M, \tau)\). Let \(\mu_{ab}(\Omega_1 \times \Omega_2) := \tau(e_\rho(\Omega_1)a^*e_\sigma(\Omega_2)b)\), for \(\Omega_1, \Omega_2\) Borel subsets of \(\mathbb{R}\). Then \(\mu_{ab}\) extends uniquely to a bounded Borel measure on \(\mathbb{R}^2\).

Proof. For \(\Omega \subset \mathbb{R}\) Borel subset, \(x \in \mathcal{L}^2(M, \tau)\), let \(P(\Omega)x := e_\rho(\Omega)x, Q(\Omega)x := xe_\sigma(\Omega)\). Then, \(P, Q\) are commuting Borel spectral measures on \(\mathcal{L}^2(M, \tau)\), and their product \(P \otimes Q(\Omega_1 \times \Omega_2) := P(\Omega_1)Q(\Omega_2)\) extends uniquely to a Borel spectral measure on \(\mathbb{R}^2\) ([1], Chapter 5). Observe that \(\mu_{ab}(\Omega_1 \times \Omega_2) = \tau(P \otimes Q(\Omega_1 \times \Omega_2)(a^*) \cdot b)\), and, if \(\{A_n\}\) is a sequence of disjoint Borel sets, then \(P \otimes Q(\bigcup A_n)(a^*) = \sum_n P \otimes Q(A_n)(a^*)\) converges in \(\mathcal{L}^2(M, \tau)\), so that \(\tau(P \otimes Q(\bigcup A_n)(a^*) \cdot b)\) is well defined. So \(\mu_{ab} = \tau(P \otimes Q(\cdot)(a^*) \cdot b)\) is the desired extension.

Observe now that \(\mu_{ab}\) is a bounded Borel (complex) measure on \(A\). Indeed, with \(A \in \mathcal{A}\),

\[
|\mu_{ab}(A)|^2 \leq (\tau(P \otimes Q(A)(a^*) \cdot b))^2 = \|P \otimes Q(A)(a^*)\|^2 \leq \|a\|^2 \|b\|^2.
\]

Therefore, by [13] Corollary 4.6, there is a unique extension of \(\mu_{ab}\) to a bounded (complex) measure on \(\sigma(A)\), the \(\sigma\)-algebra generated by \(A\), i.e. the Borel subsets of \(\mathbb{R}^2\).

Lemma 2.2. Let \(a, b \in \mathcal{M} \cap \mathcal{L}^2(M, \tau)\). Then

(i) \(\mu_{ab} = \frac{1}{4} \sum_{k=1}^4 (-i)^k \mu_{a+b, a+b}\),

(ii) if \(\sigma = \rho\), \(\mu_{aa}\) is a real positive measure,

(iii) if \(a, b\) are self-adjoint, \(\text{Re} \, \mu_{ab} = \text{Re} \, \mu_{ba}\).

Proof. (i) is standard.

(ii) Let \(\Omega_1, \Omega_2\) be Borel sets in \(\mathbb{R}\), and set \(e_j := e_\rho(\Omega_j)\), \(j = 1, 2\). Then \(\mu_{aa}(\Omega_1 \times \Omega_2) = \tau(e_1 a^*e_2 a) = \tau((e_2a e_1^*) e_2 a e_1) \geq 0\), and the thesis follows by uniqueness of the extension from \(A\) to \(\sigma(A)\).

(iii) Let \(\Omega_1, \Omega_2\) be Borel sets in \(\mathbb{R}\), and set \(e_1 := e_\rho(\Omega_1)\), \(e_2 := e_\rho(\Omega_2)\). Then \(\text{Re} \, \mu_{ab}(\Omega_1 \times \Omega_2) = \text{Re} \, \tau(e_1 e_2 b) = \text{Re} \, \tau(e_2 a e_1) = \text{Re} \, \tau(e_1 b e_2 a) = \text{Re} \, \mu_{ba}(\Omega_1 \times \Omega_2)\).

Lemma 2.3. Let \(a, b \in \mathcal{M} \cap \mathcal{L}^2(M, \tau)\). Let \(g, h: \mathbb{R} \rightarrow \mathbb{C}\) be bounded Borel functions. Then

\[
\tau(g(\rho)a^*h(\sigma)b) = \int \int g(x)h(y) \, d\mu_{ab}(x, y).
\]

Proof. We use notation as in the proof of Lemma 2.1. Let \(s = \sum_{i=1}^k s_i \chi_{A_i}\), \(t = \sum_{j=1}^k t_j \chi_{B_j}\) be simple Borel functions. Then

\[
\tau(s(\rho)a^*t(\sigma)b) = \sum_{i=1}^h \sum_{j=1}^k s_i t_j \tau(\chi_{A_i}(\rho)a^*\chi_{B_j}(\sigma)b) = \sum_{i=1}^h \sum_{j=1}^k s_i t_j \tau(P \otimes Q(A_i \times B_j)(a^*) \cdot b)
\]

\[
= \sum_{i=1}^h \sum_{j=1}^k s_i t_j \int \int \chi_{A_i \times B_j} \, d\mu_{ab} = \int \int s(x) t(y) \, d\mu_{ab}(x, y).
\]
Let now g, h be bounded Borel functions, and $\{s_n\}, \{t_n\}$ sequences of simple Borel functions such that $s_m \to g, t_n \to h$ and $|s_m| \leq |g|, |t_n| \leq |h|$. Denote $r_n(x, y) := s_n(x) t_n(y), k(x, y) := g(x) h(y)$. Then, by ([1], Theorem V.3.2), $s_n(\rho) a^* t_n(\sigma) = P \otimes Q(r_n)(a^*) = P \otimes Q(k)(a^*) = g(\rho) a^* h(\sigma)$ in $L^2(\mathcal{M}, \tau)$, so that $\tau(s_n(\rho) a^* t_n(\sigma)) \to \tau(g(\rho) a^* h(\sigma))$. Moreover, $\int r_n \, d\mu_{ab} \to \int k \, d\mu_{ab}$, because μ_{ab} is a bounded measure. The thesis follows.

Lemma 2.4. Let $a, b \in \mathcal{M} \cap L^2(\mathcal{M}, \tau), \rho \in L^1(\mathcal{M}, \tau)_+, \beta \in (0, 1)$. Then

$$
\tau(\rho^\beta a^* \rho^{1-\beta} b) = \iint_{(0, \infty)^2} x^\beta y^{1-\beta} \, d\mu_{ab}(x, y).
$$

Proof. Let $n \in \mathbb{N}$, and set

$$f_n(x) := \begin{cases} x, & 0 \leq x \leq n \\ 0, & \text{else} \end{cases} \quad f(x) := \begin{cases} x, & x \geq 0 \\ 0, & x < 0 \end{cases}$$

Then

$$\tau(f_n(\rho) a^* f_n(\rho) \rho^{1-\beta} b) = \int_{\mathbb{R}^2} f_n(x)^\beta f_n(y)^{1-\beta} \, d\mu_{ab}(x, y).$$

Observe now that $f_n(\rho)^\beta \to f(\rho)^\beta = \rho^\beta$ in $L^{1/(\beta)}(\mathcal{M}, \tau)$, so that $f_n(\rho)^\beta a^* f_n(\rho) \rho^{1-\beta} b \to \rho^\beta a^* \rho^{1-\beta} b$ in $L^1(\mathcal{M}, \tau)$, which implies

$$\tau(f_n(\rho) a^* f_n(\rho) \rho^{1-\beta} b) \to \tau(\rho^\beta a^* \rho^{1-\beta} b).$$

Moreover, in case $\sigma = \rho, \mu_{aa}$ is a positive measure, so that, by monotone convergence,

$$\int_{\mathbb{R}^2} f_n(x)^\beta f_n(y)^{1-\beta} \, d\mu_{aa}(x, y) \to \int_{(0, \infty)^2} x^\beta y^{1-\beta} \, d\mu_{aa}(x, y).$$

Therefore, the thesis holds for $a = b$. By polarization (Lemma 2.2 (i)) the result is true in general.

Lemma 2.5. Let $a, b \in \mathcal{M} \cap L^2(\mathcal{M}, \tau)$. Then,

$$\mu := \mu_{aa} \otimes \mu_{bb} + \mu_{bb} \otimes \mu_{aa} - 2 \text{Re} \mu_{ab} \otimes \text{Re} \mu_{ab}$$

is a real positive Borel measure on \mathbb{R}^4.

Proof. Indeed, if $\Omega_1, \ldots, \Omega_4 \subset \mathbb{R}$ are measurable subsets, and $E_j := e_{\sigma_j}(\Omega_j) \in \text{Proj}(\mathcal{M}), j = 1, 3, E_j := e_{\sigma}(\Omega_j) \in \text{Proj}(\mathcal{M}), j = 2, 4$, then

$$\mu(\Omega_1 \times \cdots \times \Omega_4) = \tau(E_1 a^* E_2 a) \cdot \tau(E_3 b^* E_4 b) + \tau(E_3 a^* E_4 a) \cdot \tau(E_1 b^* E_2 b)$$

$$- 2 \text{Re} \tau(E_1 a^* E_2 b) \cdot \text{Re} \tau(E_3 a^* E_4 b)$$

$$\geq \tau(E_1 a^* E_2 a) \cdot \tau(E_3 b^* E_4 b) + \tau(E_3 a^* E_4 a) \cdot \tau(E_1 b^* E_2 b)$$

$$- 2|\tau(E_1 a^* E_2 b)| \cdot |\tau(E_3 a^* E_4 b)|.$$

Moreover,

$$|\tau(E_1 a^* E_2 b)| = |\tau((E_2 a E_1)^* E_2 b E_1)|$$

$$\leq \tau((E_2 a E_1)^* E_2 a E_1)^{1/2} \tau((E_2 b E_1)^* E_2 b E_1)^{1/2}$$

$$= \tau(E_1 a^* E_2 a)^{1/2} \cdot \tau(E_1 b^* E_2 b)^{1/2}.$$
3 The main result

Let \((M, \tau)\) be a semifinite von Neumann algebra with a n.s.f. trace. Let \(\omega\) be a normal state on \(M\), and \(\rho_\omega \in L^1(M, \tau)\) be such that \(\omega(x) = \tau(\rho_\omega x)\), for \(x \in M\). Then, for any \(A, B \in M_{sa}\), \(\beta \in (0, 1)\), we set

Definition 3.1.

\[
\begin{align*}
\text{Cov}_\omega(A, B) &:= \omega(AB) - \omega(A)\omega(B) = \tau(\rho_\omega AB) - \tau(\rho_\omega A)\tau(\rho_\omega B), \\
\text{Var}_\omega(A) &:= \text{Cov}_\omega(A, A) = \omega(A^2) - \omega(A)^2 = \tau(\rho_\omega A^2) - \tau(\rho_\omega A)^2, \\
\text{Corr}_{\omega, \beta}(A, B) &:= \tau(\rho_\omega AB) - \tau(\rho_\omega A)\tau(\rho_\omega B) - \tau(\rho_\omega A^\beta B^\beta). \\
\omega, \beta(A) &:= \text{Corr}_{\omega, \beta}(A, A) = \omega(A^2) - \tau(\rho_\omega A^\beta A^\beta).
\end{align*}
\]

Proposition 3.2. Let \(A_0 := A - \omega(A)I\), \(B_0 := B - \omega(B)I\). Then

\[
\begin{align*}
\text{Cov}_\omega(A, B) &= \tau(\rho_\omega A_0B_0), \\
\text{Corr}_{\omega, \beta}(A, B) &= \tau(\rho_\omega A_0B_0) - \tau(\rho_\omega A_0\rho_\omega^1 \rho_\omega^\beta B_0).
\end{align*}
\]

Theorem 3.3. For any \(A, B \in M_{sa}\), \(\beta \in (0, 1)\), we have

\[
\begin{align*}
\text{Var}_\omega(A) \geq |\text{Re Corr}_{\omega, \beta}(A, B)|^2.
\end{align*}
\]

Proof. To start with, let us assume that \(A, B \in M \cap L^2(M, \tau)\). Set

\[
\mathcal{F} := \text{Var}_\omega(A) \text{Var}_\omega(B) - |\text{Re Corr}_{\omega, \beta}(A, B)|^2 - \text{I}_{\omega, \beta}(A)\text{I}_{\omega, \beta}(B) - |\text{Re Corr}_{\omega, \beta}(A, B)|^2.
\]

Then, using Lemma 2.4 and symmetries of the integrands, we obtain

\[
\begin{align*}
\mathcal{F}_1 &= \tau(\rho_\omega A_0^2) - \tau(\rho_\omega B_0^2) = \tau(\rho_\omega A_0^2) - \tau(\rho_\omega A_0\rho_\omega^1 \rho_\omega^\beta A_0) - \tau(\rho_\omega A_0\rho_\omega^1 \rho_\omega^\beta B_0) \\
&\quad - 2\text{Re} \tau(\rho_\omega A_0 B_0) \cdot \text{Re} \tau(\rho_\omega A_0^1 \rho_\omega^\beta B_0) + (\text{Re} \tau(\rho_\omega^1 \rho_\omega^\beta B_0))^2.
\end{align*}
\]

Then, using Lemma 2.5 and symmetries of the integrands, we obtain

\[
\begin{align*}
\mathcal{F}_2 &= 2\text{Re} \tau(\rho_\omega A_0 B_0) \cdot \text{Re} \tau(\rho_\omega^1 \rho_\omega^\beta B_0) - (\text{Re} \tau(\rho_\omega^1 \rho_\omega^\beta B_0))^2 \\
&\quad = \frac{1}{2} \int_{(0, \infty)^4} \left((\lambda_1 + \lambda_2)\lambda_3^2 \lambda_4 - \lambda_2 \lambda_3^2 \lambda_4 - 2\lambda_1 \lambda_2^2 \lambda_3 \lambda_4^2 \right) d\mu_{\rho_\omega A_0} \otimes \mu_{\rho_\omega A_0} (\lambda_1, \ldots, \lambda_4).
\end{align*}
\]

So that, using the notation of Lemma 2.5,

\[
\mathcal{F} = \mathcal{F}_1 - \mathcal{F}_2 = \frac{1}{4} \int_{(0, \infty)^4} \left((\lambda_1 + \lambda_2)\lambda_3^2 \lambda_4 + \lambda_1 \lambda_2^2 \lambda_3 \lambda_4 - 2\lambda_1 \lambda_2^2 \lambda_3^2 \lambda_4^2 \right) d\mu(\lambda_1, \ldots, \lambda_4).
\]

Since \(\mu\) is a real positive measure on \([0, \infty)^4\), because of Lemma 2.5, and

\[
\begin{align*}
(\lambda_1 + \lambda_2)(\lambda_3^2 \lambda_4 + \lambda_1 \lambda_2^2 \lambda_3 \lambda_4 - 2\lambda_1 \lambda_2^2 \lambda_3^2 \lambda_4^2) &= (\lambda_1 + \lambda_2 - \lambda_1^2 \lambda_2 \lambda_3 \lambda_4 + \lambda_1 \lambda_2 \lambda_3 + \lambda_1 \lambda_2 \lambda_4) \\
&\geq 0,
\end{align*}
\]
we get \(F \geq 0 \), which is what we wanted to prove.

Finally, to extend the validity of the inequality from \(\mathcal{M}_{sa} \cap L^2(\mathcal{M}, \tau) \) to \(\mathcal{M}_{sa} \), let us observe that \(\mathcal{M}_{sa} \cap L^2(\mathcal{M}, \tau) \) is \(\sigma \)-weakly dense in \(\mathcal{M}_{sa} \), and \(a \in \mathcal{M} \mapsto \tau(\rho_\omega ab) \), \(b \in \mathcal{M} \mapsto \tau(\rho_\omega ab) \), \(a \in \mathcal{M} \mapsto \tau(\rho^{a_\beta} b^{1-\beta}) \), and \(b \in \mathcal{M} \mapsto \tau(\rho^{a_\beta} b^{1-\beta}) \) are \(\sigma \)-weakly continuous. \(\square \)

Remark 3.4. Observe that, reasoning as in [9] Theorem 5, one can prove that the function

\[
g(\beta) := \text{Var}_\omega(A) \text{Var}_\omega(B) - |\Re \text{Cov}_\omega(A, B)|^2 - I_{\omega, \beta}(A) I_{\omega, \beta}(B) + |\Re \text{Corr}_\omega, \beta(A, B)|^2
\]

is monotone increasing on the interval \([\frac{1}{2}, 1)\). Therefore, the best bound in Theorem 3.3 is given by \(\beta = \frac{1}{2} \), i.e. by the Wigner-Yanase information.

References

