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Abstract. A family of inequalities, related to the uncertainty principle, has

been recently proved by S. Luo, Z. Zhang, Q. Zhang, H. Kosaki, K. Yanagi,

S. Furuichi and K. Kuriyama. We show that the inequalities have a geometric

interpretation in terms of quantum Fisher information. Using this formulation

one may naturally ask if this family of inequalities can be further extendend,

for example to the RLD quantum Fisher information. We show that this is

impossible by producing a family of counterexamples.
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1. Introduction

Noncommutativity in quantum probability has far-reaching consequences. One of the

most important is the Heisenberg uncertainty principle

Varρ(A) ·Varρ(B) ≥ 1

4
|Tr(ρ[A,B])|2.

No such lower bound for the variance of pairs of random variables exists in classical

probability. Schrödinger proved a stronger inequality involving covariance

Varρ(A) · Varρ(B) − |Re{Covρ(A,B)}|2 ≥ 1

4
|Tr(ρ[A,B])|2.

Recently S. Luo and Q. Zhang proved a different kind of uncertainty principle (see

Luo and Q.Zhang (2004), Theorem 2), in the Schrödinger form, where the lower bound

appears because the variables A,B do not commute with the state ρ (in contrast with

the standard uncertainty principle where the bound depends on the commutator [A,B]).

The inequality was conjectured by S. Luo himself and Z. Zhang in a previous pa-

per (Luo and Z.Zhang (2004)). These authors suggest there that “the result may be

interpreted as a quantification of certain aspect of the Wigner-Araki-Yanase theorem

for quantum measurement, which states that observables not commuting with a con-

served quantity cannot be measured exactly” (see Wigner (1952), Araki and Yanase

(1960), Ozawa (2002)). The inequality has been recently generalized in Kosaki (2005)

and Yanagi-Furuichi-Kuriyama (2005). The final result is

Varρ(A) · Varρ(B)− |Re{Covρ(A,B)}|2 ≥ Iρ,β(A)Iρ,β(B)− |Re{Corrρ,β(A,B)}|2

where I and Corr are given by the Wigner-Yanase-Dyson skew information (see Section

3. below).

The purpose of this paper is to put the above inequality in a more geometric form by

means of quantum Fisher information (namely the monotone metrics classified by Petz).
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In this way the lower bound will appear as a simple function of the area spanned by

the commutators i[A, ρ], i[B,ρ] in the tangent space to the state ρ, provided the state

space is equipped with a suitable monotone metric (see Theorem 6.1). At this point it is

natural to ask whether such an inequality holds for other quantum Fisher informations

in the Wigner-Yanase-Dyson class (like the RLD-metric for example). The answer turns

out to be negative and a general counterexample is given in Proposition 4.1.

In the final section we discuss some open problems related to the subject.

2. Schrödinger and Heisenberg Uncertainty Principles

Let Mn := Mn(C) (resp.Mn,sa := Mn(C)sa) be the set of all n × n complex matrices

(resp. all n×n self-adjoint matrices). We shall denote general matrices by X,Y, ... while

letters A,B, ... will be used for self-adjoint matrices. Let Dn be the set of strictly positive

elements of Mn while D1
n ⊂ Dn is the set of strictly positive density matrices namely

D1
n = {ρ ∈ Mn|Trρ = 1, ρ > 0}.

Proposition 2.1. The correspondence

Mn × Mn 3 (X,Y ) → 〈X,Y 〉 := Tr(ρXY ∗) − Tr(ρX) · Tr(ρY )

is a positive sesquilinear form.

As usual commutators and anticommutators are defined as [X,Y ] = XY −Y X , {X,Y } =

XY + Y X.

Definition 2.1. Suppose that ρ ∈ D1
n is fixed. Define X0 := X − Tr(ρX)I.

Definition 2.2. For A,B ∈ Mn,sa and ρ ∈ D1
n define covariance and variance as

Covρ(A,B) := 〈A,B〉 = Tr(ρAB)− Tr(ρA) · Tr(ρB) = Tr(ρA0B0)
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Varρ(A) := 〈A,A〉 = Tr(ρA2) − Tr(ρA)2 = Tr(ρA2
0).

Note that for A,B ∈ Mn,sa and ρ ∈ D1
n one has

Re(Tr(ρAB)) =
1

2
Tr(ρ{A,B}) Im(Tr(ρAB)) =

1

2i
Tr(ρ[A,B]).

Since Covρ(A,B) = Covρ(B,A) then

2Re {Covρ (A,B)} = Covρ(A,B) + Covρ(B,A).

As a consequence of Cauchy-Schwartz inequality one can derive the Schrödinger and

Heisenberg Uncertainty Principles that are given in the following

Theorem 2.1. (see Schrödinger (1930)) For A,B ∈ Mn,sa and ρ ∈ D1
n one has

Varρ(A) · Varρ(B) − |Re{Covρ(A,B)}|2 ≥ 1

4
|Tr(ρ[A,B])|2

that implies

Varρ(A) ·Varρ(B) ≥ 1

4
|Tr(ρ[A,B])|2.

Definition 2.3. Set

Sρ(A,B) := Varρ(A) · Varρ(B)− |Re{Covρ(A,B)}|2.

Remark 1. With the above definition the Schrödinger Uncertainty Principle takes

the form

Sρ(A,B) ≥ 1

4
|Tr(ρ[A,B])|2.

Let us try to see this situation in general.

Definition 2.4. Let F : D1
n × Mn,sa × Mn,sa → R be a function (denoted as

Fρ(A,B)) such that

Sρ(A,B) ≥ Fρ(A,B).
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Then we say that F is an Uncertainty Principle Function (shortly UPF).

Problem: are there nontrivial UPF different from 1
4
|Tr(ρ[A,B])|2?

More specifically: the Heisenberg uncertainty principle says that if A and B do not

commute then the product Varρ(A) · Varρ(B) cannot be arbitrarily small. Is the same

true if [A, ρ], [B, ρ] 6= 0? The answer is given by Theorems 3.2, 6.1 and shows that in

this case the bound on Varρ(A) · Varρ(B) depends on a certain “area” spanned by the

commutators [A, ρ], [B, ρ].

3. An inequality related to uncertainty principle

Definition 3.1. For A,B ∈ Mn,sa, ρ ∈ D1
n and β ∈ (0, 1) set

Corrρ,β(A,B) := Tr(ρAB)− Tr(ρβAρ1−βB).

With direct calculation one can prove the following

Lemma 3.1.

2Re{Corrρ,β(A,B)} = Corrρ,β(A,B) + Corrρ,β(B,A) = −Tr([ρβ, A] · [ρ1−β, B]),

Corrρ,β (A,B) = Covρ (A,B) − Tr(ρβA0ρ
1−βB0).

Definition 3.2. The Wigner-Yanase-Dyson information is defined as

Iρ,β(A) := Corrρ,β(A,A) = −1

2
Tr([ρβ, A] · [ρ1−β, A]).

Definition 3.3.

Tρ,β(A,B) := Iρ,β(A)Iρ,β(B) − |Re{Corrρ,β(A,B)}|2.
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Note that Tρ,β = Tρ,1−β so one can consider just β ∈ (0, 1
2
].

In Luo and Q. Zhang (2004) the following result has been proved

Theorem 3.1. Tρ, 1
2
(A,B) is an UPF.

The theorem had been conjectured in Luo and Z. Zhang (2004). A generalization of

Theorem 3.1 has been given in Kosaki (2005) and Yanagi et al. (2005).

Theorem 3.2. Tρ,β(A,B) is an UPF for any β ∈ (0, 1
2
].

Proof. We report here the proof of Yanagi et al. (2005) because it is needed in the sequel.

We have to prove that for any two self-adjoint operators A and B, any density

operator ρ and any 0 < β ≤ 1
2
, we have

Varρ (A)Varρ (B) − |Re{Covρ (A,B)}|2 ≥ Iρ,β (A) Iρ,β (B)− |Re {Corrρ,β (A,B)}|2 .

Let {ϕi} be a complete orthonormal base composed of eigenvectors of ρ, and {λi}

the corresponding eigenvalues.

Set aij ≡ 〈A0ϕi|ϕj〉 and bij ≡ 〈B0ϕi|ϕj〉.

Then we calculate

Varρ(A) = Tr(ρA2
0) =

1

2

∑

i,j

(λi + λj)aijaji,

Varρ(B) = Tr(ρB2
0) =

1

2

∑

i,j

(λi + λj)bijbji,

Re{Covρ(A,B)} = Re{Tr(ρA0B0)} =
1

2

∑

i,j

(λi + λj)Re{aijbji},

Iρ,β(A) = Varρ(A)− Tr(ρβA0ρ
1−βA0) =

1

2

∑

i,j

(λi + λj)aijaji −
∑

i,j

λβ
i λ1−β

j aijaji,
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Iρ,β(B) =
1

2

∑

i,j

(λi + λj)bijbji −
∑

i,j

λβ
i λ1−β

j bijbji,

Re{Corrρ,β(A,B)} = Re{Covρ(A,B)} − Re{Tr(ρβA0ρ
1−βB0)}

=
1

2

∑

i,j

(λi + λj)Re{aijbji} −
∑

i,j

λβ
i λ1−β

j Re{aijbji}.

Set

ξ : = Varρ (A)Varρ (B) − Iρ,β (A) Iρ,β (B)

=
1

2

∑

i,j,k,l

{
(λi + λj)λ

β
kλ1−β

l + (λk + λl)λ
β
i λ1−β

j − 2λβ
i λ1−β

j λβ
kλ1−β

l

}
aijajibklblk

=
1

4

∑

i,j,k,l

{
(λi + λj)λ

β
kλ1−β

l + (λk + λl)λ
β
i λ1−β

j − 2λβ
i λ1−β

j λβ
kλ1−β

l

}
{aijajibklblk + aklalkbijbji},

η : = |Re {Covρ (A,B)}|2 − |Re {Corrρ,β (A,B)}|2

=
1

2

∑

i,j,k,l

{
(λi + λj)λ

β
kλ1−β

l + (λk + λl)λ
β
i λ1−β

j − 2λβ
i λ1−β

j λβ
kλ1−β

l

}
Re{aijbji}Re{aklblk}.

In order to prove the theorem it is enough to show ξ − η ≥ 0. Indeed

ξ − η =
1

4

∑

i,j,k,l

{
(λi + λj)λ

β
kλ1−β

l + (λk + λl)λ
β
i λ1−β

j − 2λβ
i λ1−β

j λβ
kλ1−β

l

}
·
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·
{
|aij|2|bkl|2 + |akl|2|bij|2 − 2Re{aijbji}Re{aklblk}

}
.

Since

(λi + λj)λβ
kλ1−β

l + (λk + λl)λβ
i λ1−β

j − 2λβ
i λ1−β

j λβ
kλ1−β

l

=
(
λi + λj − λβ

i λ1−β
j

)
λβ

kλ1−β
l +

(
λk + λl − λβ

kλ1−β
l

)
λβ

i λ1−β
j ≥ 0,

|aij|2|bkl|2 + |akl|2|bij|2 ≥ 2 |aijbji| |aklblk| ≥ 2 |Re {aijbji}Re {aklblk}| ,

we get the thesis.

Remark 2. Note that Kosaki proved Theorem 3.2 by showing that Tρ,β(A,B) is

monotone increasing for β ∈ (0, 1
2
]. Moreover he was able to prove that Sρ(A,B) =

Tρ,β(A,B) iff A0, B0 are proportional.

4. A counterexample

The inequality of Theorem 3.2 is not true for arbitrary values of β as it is proved in

the following

Proposition 4.1. For any β ∈ [−1, 0) there are a state ρ and self-adjoint operators A

and B s.t.

Varρ (A)Varρ (B)− |Re {Covρ (A,B)}|2 < Iρ,β (A) Iρ,β (B) − |Re {Corrρ,β (A,B)}|2 .

Proof. Let t ∈ (0, 1
2
) and

ρ =




t 0 0

0 1 − 2t 0

0 0 t




, A =




0 1 0

1 0 0

0 0 0




, B =




0 0 0

0 0 1

0 1 0




.
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Then, using the calculations performed for the proof of Theorem 3.2, we have

ξ − η = Varρ(A)Varρ(B) − |Re{Covρ(A,B)}|2 − Iρ,β(A)Iρ,β(B) − |Re{Corrρ,β(A,B)}|2

=
1

2

∑

i,j,k,l

{
(λi + λj)l

β
kλ1−β

` + (lk + λ`)l
β
i λ1−β

j − 2λβ
i λ1−β

j λβ
kλ1−β

`

}
·

· {aijajibklblk −Re(aijbji)Re(aklblk)}

=
1

2
(2λ1 + 2λ2 − λβ

1λ1−β
2 − λβ

2λ1−β
1 )(λβ

2λ1−β
3 + λβ

3λ1−β
2 )+

+
1

2
(2λ2 + 2λ3 − λβ

2λ1−β
3 − λβ

3λ1−β
2 )(λβ

1λ1−β
2 + λβ

2λ1−β
1 )

=
{
2(1 − t) − tβ(1 − 2t)1−β − (1 − 2t)βt1−β

}{
tβ(1 − 2t)1−β + (1 − 2t)βt1−β

}
.

Let β ∈ [−1, 0). Since tβ(1− 2t)1−β → ∞ if t → 0+, there exists a t0 = t0(β) ∈ (0, 1)

for which ξ − η < 0. This ends the proof.

Remark 3. For β ∈ [−1, 0) the inequality

Varρ (A)Varρ (B) − |Re {Covρ (A,B)}|2 < Iρ,β (A) Iρ,β (B)− |Re {Corrρ,β (A,B)}|2

is not true in general as one can see by choosing

t ∈ (0, 1), ρ =




t 0

0 1 − t


 , A =




1 0

0 0


 , B =




0 0

0 1


 .

In the next Sections we try to give a more geometric form to Theorem 3.2 and

Proposition 4.1.
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5. Quantum Fisher Informations

In what follows if N is a differential manifold we denote by TρN the tangent space to

N at the point ρ ∈ N.

In the commutative case a Markov morphism is a stochastic map T : Rn → Rk. In the

noncommutative case a Markov morphism is a completely positive and trace preserving

operator T : Mn → Mk. Let

Pn := {ρ ∈ Rn|ρi > 0}, P1
n := {ρ ∈ Rn|

∑
ρi = 1, ρi > 0}.

In the commutative case a monotone metric is a family of riemannian metrics g =

{gn} on {P1
n}, n ∈ N, such that

gm
T (ρ)(TX,TX) ≤ gn

ρ (X,X)

holds for every Markov morphism T : Rn → Rm and all ρ ∈ P1
n and X ∈ TρP

1
n.

It is not difficult to see that there exists a natural identification of TρD
1
n with the

space of self-adjoint traceless matrices, namely

TρD
1
n = {A ∈ Mn|A = A∗ , Tr(A) = 0}.

In perfect analogy with the commutative case, a monotone metric in the noncommu-

tative case is a family of riemannian metrics g = {gn} on {D1
n}, n ∈ N, such that

gm
T (ρ)(TX,TX) ≤ gn

ρ (X,X)

holds for every Markov morphism T : Mn → Mm and all ρ ∈ D1
n and X ∈ TρD

1
n.

Let us recall that a function f : (0,∞) → R is said operator monotone if, for any

n ∈ N , any A, B ∈ Mn such that 0 ≤ A ≤ B, the inequalities 0 ≤ f(A) ≤ f(B) hold. An
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operator monotone function is said symmetric if f(x) := xf(x−1). With such operator

monotone functions f one associates the so-called Chentsov–Morotzova functions

cf (x, y) :=
1

yf(xy−1)
for x, y > 0.

Define Lρ(A) := ρA, and Rρ(A) := Aρ. Since Lρ and Rρ commute we may define

cf (Lρ, Rρ). Now we can state the fundamental theorems about monotone metrics. In

what follows uniqueness and classification are stated up to scalars (see Petz (1996)).

Theorem 5.1. (Chentsov 1982) There exists a unique monotone metric on P1
n given by

the Fisher information.

Theorem 5.2. (Petz 1996) There exists a bijective correspondence between symmetric

monotone metrics on D1
n and symmetric operator monotone functions. This correspon-

dence is given by the formula

gf (A,B) := gf,ρ(A,B) := Tr(A · cf (Lρ, Rρ)(B)).

Because of these two theorems we shall use the terms “Monotone Metrics” and “Quan-

tum Fisher Informations” (shortly QFI) with the same meaning.

Note that usually monotone metrics are normalized so that if [A, ρ] = 0 then gf,ρ(A,A) =

Tr(ρ−1A2), that is equivalent to ask f(1) = 1.

Examples of monotone metrics are given by the following list (see Hasegawa and Petz

(1997), Gibilisco and Isola (2004)).

Let

fβ(x) := β(1− β)
(x − 1)2

(xβ − 1)(x1−β − 1)
, β ∈ [−1,

1

2
]\{0},

f0(x) :=
x − 1

log x
,

hγ(x) :=

(
1 + xγ

2

) 1
γ

γ ∈ [
1

2
, 1].
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Note that f0 = limβ→0 fβ.

The metrics associated with the functions fβ are equivalent to the metrics induced

by noncommutative α-divergences where β = 1−α
2

(see Hasegawa and Petz (1997)).

The RLD-metric is the QFI associated to f−1.

The BKM -metric is the QFI associated to f0.

The WY -metric is the QFI associated to f 1
2

= h 1
2
.

The SLD-metric (or Bures-Uhlmann metric) is the QFI associated to h1.

The two parametric families fβ, hγ give us a continuum of operator monotone func-

tions from the smallest f−1(x) = 2x
x+1

to the greatest h1 = 1+x
2

.

For a symmetric operator monotone function limx→+∞
f(x)

x
= f(0) := limx→0 f(x).

Note that

fβ(0) = 0 β ∈ [−1, 0],

fβ(0) = β(1 − β) 6= 0 β ∈ (0,
1

2
],

hγ(0) =

(
1

2

) 1
γ

6= 0 γ ∈ [
1

2
, 1].

The condition f(0) 6= 0 is relevant because it is a necessary and sufficient condition for

the existence of the so-called radial extension of a monotone metric to pure states (see

Petz and Sudar (1996)).

6. A geometric look at the inequality

Let V be a finite dimensional real vector space with a scalar product g(·, ·). We

define, for v,w ∈ V ,

Areag(v,w) :=
√

g(v, v) · g(w,w) − |g(v,w)|2.
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In the euclidean plane Areag(v,w) is the area of the parallelogramme spanned by v and

w.

Define Aρ := i[ρ,A]. Since Aρ is traceless and selfadjoint, then Aρ ∈ TρD
1
n.

Proposition 6.1. For the QFI associated to fβ one has

gβ(Aρ, Bρ) := gfβ
(Aρ, Bρ) = − 1

β(1− β)
Tr([ρβ, A] · [ρ1−β, B]) β ∈ [−1,

1

2
]\{0} .

One can find a proof in Hasegawa and Petz (1997), Gibilisco and Isola (2004). Because

of the above proposition gβ is known as the WYD(β) monotone metric.

If f is an operator monotone function we denote by Areaf the area functional asso-

ciated to the monotone metric gf . One has

Theorem 6.1.

Tρ,β(A,B) =
(β(1 − β))2

4

(
Areafβ

(i[ρ,A], i[ρ,B])
)2 ∀β ∈ [−1,

1

2
]/{0}.

Proof. One has from Lemma 3.1 and Proposition 6.1

Tρ,β(A,B) = Iρ,β(A)Iρ,β(B)− |Re {Corrρ,β (A,B)}|2

=

(
−1

2
Tr([ρβ, A] · [ρ1−β, A])

)
·
(
−1

2
Tr([ρβ, B] · [ρ1−β, B])

)
− 1

4
|Tr([ρβ, A] · [ρ1−β, B])|2

=
(β(1 − β))2

4
(gβ(Aρ, Aρ) · gβ(Bρ, Bρ) − |gβ(Aρ, Bρ)|2)

=
(β(1 − β))2

4

(
Areafβ

(i[ρ,A], i[ρ,B])
)2

.

7. Relation with curvature

The appearance of the area of a Riemannian metric in Theorem 6.1 (and therefore

in Theorem 3.2) suggests a link between the uncertainty principle and the notion of
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curvature. In this section we make some considerations of this point. To make the paper

self-contained we recall some notions of differential geometry.

For an affine (linear) connection ∇ on a manifold M the curvature is defined as (see

Kobayashi and Nomizu (1963) pag. 133)

R(X,Y )Z := [∇X,∇Y ]Z −∇[X,Y ]Z.

Suppose that g(·, ·) is a Riemannian metric on M and ∇ is the associated Levi-Civita

connection. The Riemannian curvature tensor is defined as (see Kobayashi and Nomizu

(1963) pag. 201)

R(X,Y,Z,W ) := g(R(Z,W )Y,X)

where X,Y,Z,W are vector fields.

Now let ρ ∈ M and suppose that we have a 2-dimensional subspace σ ⊂ TρM.

Then σ determines, with the use of the exponential map exp, a 2-dimensional embedded

surface N := expρ(Bη(0ρ)∩σ) formed by the geodesic segments of length < η which start

tangentially to σ. If K(σ) denotes the Gaussian curvature of N one has the following

Proposition 7.1. (see Klingenberg (1982) p.99-100) If A,B is a basis for the plane σ

then

K(A,B) := K(σ) =
R(A,B,A,B)

g(A,A)g(B,B)− |g(A,B)|2 =
g(R(A,B)B,A)

Areag(A,B)2
.

When we want to emphasize the dependence of R and K from the Riemannian metric

g we write Rg and Kg.

If f is an operator monotone function we denote by Rf the Riemannian curvature

tensor and by Kf the sectional curvature.

Note that, if β = 1
2
, then Kf 1

2

(σ) = costant = 1
4

(see Gibilisco and Isola (2003)), so
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the inequality of Theorem 3.1

Sρ(A,B) ≥ Iρ, 1
2
(A)Iρ, 1

2
(B) − |Re

{
Corrρ, 1

2
(A,B)

}
|2

takes the form

Sρ(A,B) ≥ 1

16
Rf 1

2

(Aρ, Bρ, Aρ, Bρ) .

In general from bounds on sectional curvature Kfβ
(σ) one would be able to deduce

inequalities of the same type for the Riemann curvature tensor (see Gibilisco and Isola

(2005) for ideas about this kind of bounds).

8. Conclusions and open problems

We can summarize Theorem 3.2, Proposition 4.1 and Theorem 6.1 into the following.

Theorem 8.1.

Sρ(A,B) ≥ (β(1− β))2

4

(
Areafβ

(i[ρ,A], i[ρ,B])
)2

m

β ∈ [0,
1

2
]

We have an inequality that is true only for some elements fβ of the class of the Wigner-

Yanase-Dyson monotone metrics. For example it is true for the WY - metric (β = 1
2
) and

is false for the RLD-metric (β = −1). In this “iff” form the above inequality seems a

result that cannot be further generalized.

Problem 1

Maybe one should still seek a different generalization of Theorem 8.1. Since

β ∈ [−1, 0] =⇒ fβ(0) = 0 & β ∈ (0,
1

2
] =⇒ fβ(0) = β(1 − β)
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one can state Theorem 8.1 (that is Theorem 3.2) in a different way

Theorem 8.2.

Sρ(A,B) ≥ fβ(0)2

4

(
Areafβ

(i[A, ρ], i[B, ρ])
)2 ∀β ∈ [−1,

1

2
]

Question: characterize the family of operator monotone functions f for which is true

the inequality

Sρ(A,B) ≥ f(0)2

4
(Areaf(i[A, ρ], i[B, ρ]))2 .

Of course the above inequality is trivially true when f(0) = 0 while it is a non-trivial

inequality for those operator monotone functions such that f(0) > 0. Note that the

question is non-trivial, for example, for the SLD-metric for which h1(0) = 1
2
.

Problem 2

For f operator monotone define

G(f) :=
f(0)2

4
(Areaf (i[A, ρ], i[B,ρ]))2 .

In Kosaki (2005) the proof of Theorem 3.2 (see p.640) is obtained by the following result

fβ ≤ fβ̃ =⇒ G(fβ) ≤ G(fβ̃) β ∈ (0,
1

2
]

Is this inequality true for other families of operator monotone functions?

Problem 3.

The following question has been posed at p.642 in Kosaki (2005). Covariance and

WY D information make perfect sense in infinite dimension (see Connes and Stormer

(1978), Kosaki (1982)), namely in a general von Neumann algebra setting. Is the in-

equality of Theorem 3.2 still true in this general setting?

16
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