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Abstract. Using an integral decomposition of non-commutative monotone metrics we
show that each monotone metric described by Petz classification theorem is related to
the geometry of a suitable non-commutative L2-space. This exactly reproduces and
generalizes the commutative case where the unique monotone metric (Chentsov the-
orem about Fisher-Rao metric) is classically related to the commutative L2-geometry.

INTRODUCTION

The concept of monotone metric for parametric statistical manifolds has been
introduced by Chentsov [3,4] and further developed by Petz [14]. There are two
fundamental results: i) the Chentsov uniqueness theorem [2,3]; ii) the Petz classi-
fication theorem [14]. The first theorem says that in the commutative case there
exists a unique monotone metric (up to a scalar factor) and that this metric co-
incides with the well-known Fisher-Rao metric. In the non-commutative case the
situation is, as usual, more complicated and richer. This means that there is no
uniqueness and that we have an infinite family of different monotone metrics. The
classification theorem by Petz shows that there is a natural bijection between the
family of monotone metrics and the family of operator monotone functions.
It is well-known that the Fisher-Rao metric can be related to the geometry of
commutative L2-spaces [5].The purpose of this paper is to answer to the following
question: which non-commutative monotone metrics arise by geometry of non-
commutative L2-spaces (following the line of the commutative case)? Such a ques-
tion is relevant for at least three reasons: i) it is natural to ask which features of
the commutative case survive in the non-commutative one; ii) to interpret some
norms and scalar products as L2-norms and scalar products opened the way to the
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recently established non-parametric version of information geometry [6,16,17]; iii)
it has been proved [6,8] in the commutative case that α-geometries for α ∈ (−1, 1)
are related to the geometry of Lp-spaces where p = 2

1−α
. The classic work of Amari

shows that the riemannian Fisher-Rao metric induces the 0-connection. It is reas-
onable therefore to hope that one may associate, using suitable non-commutative
Lp-spaces, a family of α-connections to those non-commutative monotone metrics
that are associated to L2-type metrics [8].
The purpose of this note is to show that there is a general positive answer, given
by Theorem 12, to the above formulated question. This means the following. Let
Pn be the probability simplex in Rn and TpPn be the tangent space at p ∈ Pn,
and let us identify Rn with L2(m), where m is the counting measure on {1, . . . , n}.
If one defines Mp(v)i := pivi, p ∈ Pn, v ∈ TpPn, then Chentsov Theorem can be
rephrased by saying that “each” monotone metric turns into an isometry the linear
map v ∈ TpPn → M−1/2

p (v) ∈ L2(m), and that this property characterises mono-
tone metrics.
Now let Dn be the manifold of invertible density matrices, so that TρDn, ρ ∈ Dn,
is the space of hermitian, traceless matrices, and denote by L2(τ) the Hilbert
space of all n by n matrices endowed with the scalar product given by the
normalised trace τ . Define Lρ(A) := ρA, Rρ(A) := Aρ, and for any sym-
metric measure µ on [0, 1] define M−1/2

ρ,µ : TρDn → Hµ := L2([0, 1], µ; L2(τ)),

by M−1/2
ρ,µ :=

∫⊕
[0,1]((1 − s)Lρ + sRρ)

−1/2dµ(s). Then Theorem 12 shows that
each noncommutative monotone metric turns into an isometry the linear map
A ∈ TρDn → M−1/2

ρ,µ (A) ∈ Hµ, by a suitable measure µ, and that this property

characterises monotone metrics. In this sense M−1/2
ρ,µ appears to be a noncom-

mutative analogue of the division by the square root, and L2([0, 1], µ; L2(τ)) as an
analogue of L2(m).
In the last section we discuss the possible relevance of this result for the noncom-
mutative theory of α-connections.

THE FISHER-RAO METRIC AND CHENTSOV

UNIQUENESS THEOREM

Denote by Pn = {p ∈ Rn :
∑n

i=1 pi = 1, pi > 0, i = 1, . . . , n} the probability
simplex in Rn and by S the sphere of radius 2 in Rn. Define a function A : Pn → S

by A(p)i = 2p
1

2

i and consider the riemannian structure that S induces on Pn by
this embedding. Let p(t) be a curve on Pn. We transport this curve on S by
the embedding A and determine the induced riemannian metric. As d

dt
A(p(t))i =

1√
pi(t)

d
dt

(pi(t)), we get

‖ d

dt
A(p(t))‖2 =

n∑

i=1

(
d

dt
A(p(t))i)

2 =
n∑

i=1

1

pi(t)

(
d

dt
(pi(t))

)2

.



So we obtain the well-known Fisher-Rao metric

n∑

i=1

1

pi
viwi =

n∑

i=1

vi√
pi

wi√
pi

.

Now let m be the counting measure on {1, . . . , n}, so that L2(m) can be identified
with Rn with the usual scalar product. Then the Fisher-Rao metric is induced by
the linear isomorphism v → v√

p
that identifies the tangent space of Pn at p, TpPn =

{v ∈ Rn :
∑

vi = 0}, with the tangent space of the unit sphere S2(m) ⊂ L2(m) at
the point

√
p, T√

p(S
2(m)) = {u ∈ L2(m) : 〈u,

√
p〉 = 0}, where 〈u, v〉 :=

∑n
i=1 uivi

denotes the scalar product of Rn.
Recall that a monotone metric is a family {gp : p ∈ Pn, n ∈ N} of inner products

on TpPn, such that gTp(Tu, Tu) ≤ gp(u, u), for any stochastic map T : Rn → Rk.
Define (Mp(v))i = pivi, i = 1, . . . , n. We may formulate the

Theorem 1. Chentsov uniqueness Theorem. There exists a unique (up to a
scalar factor) monotone metric on TpPn. This metric is the scalar product that
turns into an isometry the linear map

v ∈ TpPn → M−1/2
p (v) ∈ L2(m).

Proof. Evidently

∑ 1

pi

viwi = 〈M−1/2
p (v), M−1/2

p (w)〉.

The proof of monotonicity can be found in [2,3]. ♣

OPERATOR MONOTONE FUNCTIONS AND

CHENTSOV-MOROZOVA FUNCTIONS.

Let us recall [1] that a function f : (0,∞) → R is called operator monotone

if for any n ∈ N , any A, B ∈ Mn(C) such that 0 ≤ A ≤ B, the inequalities
0 ≤ f(A) ≤ f(B) hold. By Löwner’s results they can be represented in integral
form. To make expressions compact, let us introduce the notation

φ(x, t) =
x(1 + t)

x + t
, for x > 0, t ≥ 0.

For fixed x > 0 the function φ(x, t) is bounded and continuous on the extended
half–line [0,∞].

Theorem 2. ( [12] p. 208–9) The map m → f , defined by

f(x) =
∫

[0,∞]
φ(x, t)dm(t), for x > 0,



establishes an affine isomorphism from the class of positive Radon measures on
[0,∞] onto the class of operator monotone functions.

Remark. In the above representation one has f(0) = infx f(x) = m({0}) and

infx
f(x)

x
= m({∞}).

Some other operator monotone functions are associated to a given operator
monotone function f ( [12] p. 213–4), among them the transpose function,
f ′(x) := xf(x−1), and the dual function, f⊥(x) := x

f(x)
. These transformations

are involutive, that is f ′′ = f , f⊥⊥ = f . Moreover f is said symmetric if f = f ′.

We need a different representation for the operator monotone functions. It is
based on the following result.

Lemma 3. (see [11]) Define g : [0, 1] → [0,∞] by g(s) = s
1−s

, s ∈ [0, 1), and
g(1) = ∞. Let A ⊂ [0, 1] and B ⊂ [0,∞] be measurable sets and let µ be a positive
Radon measure on [0, 1] and m a positive Radon measure on [0,∞]. The formulae
mµ(B) := µ(g−1(B)), µm(A) = m(g(A)), establish a bijection between the class
of positive Radon measures on [0, 1] and the class of positive Radon measures on
[0,∞]. Moreover, if h is an integrable function w.r.t. m, then

∫

[0,∞]
h(t)dm(t) =

∫

[0,1]
h(g(s))dµm(s).

Proposition 4. The map µ → f , defined by

f(x) =
∫

[0,1]

x

(1 − s)x + s
dµ(s), for x > 0,

establishes a bijection between the class of positive Radon measures on [0, 1] and
the class of operator monotone functions.
Proof.

f(x) =
∫

[0,∞]
φ(x, t)dm(t) =

∫

[0,1]
φ(x, g(s))dµm(s) =

=
∫

[0,1]

x
(
1 + s

1−s

)

x + s
1−s

dµm(s) =
∫

[0,1]

x

(1 − s)x + s
dµm(s).

♣
In the above corrispondence we write f = fµ or µ = µf to indicate that fµ is

the operator monotone function associated to µ or viceversa that µf is the measure
associated to f .

Corollary 5. ( [21] p. 474) The map µ 7→ f , defined by

1

f(x)
=
∫

[0,1]

1

(1 − s)x + s
dµ(s) for x > 0



establishes a bijection between the class of positive Radon measures on [0, 1] and
the class of operator monotone functions.
Proof. For each operator monotone function f one has

1

f(x)
=

1

x
f⊥(x) =

1

x

∫

[0,1]

x

(1 − s)x + s
dµf⊥(s) =

∫

[0,1]

1

(1 − s)x + s
dµf⊥(s).

♣
Definition 6. To each operator monotone function f one associates the so-called

Chentsov–Morozova function

cf (x, y) :=
1

yf
(

x
y

) , for x, y > 0.

Proposition 7. The map µ 7→ c(·, ·), defined by

c(x, y) =
∫

[0,1]

1

(1 − s)x + sy
dµ(s), for x, y > 0

establishes a bijection between the class of positive Radon measures on [0, 1] and
the class of Chentsov–Morozova functions.
Proof. By the Corollary 5 we have

cf (x, y) =
1

yf
(

x
y

) =
1

y

∫

[0,1]

1

(1 − s)x
y

+ s
dµf⊥(s) =

∫

[0,1]

1

(1 − s)x + sy
dµf⊥(s).

♣
Note that f is symmetric iff cf (or µf) is, i.e. it satisfies c(x, y) = c(y, x) (or

dµ(s) = dµ(1 − s)).

THE MAIN RESULT

Let τ be the usual trace on Mn(C), and let Dn := {A ∈ Mn(C) : A > 0, τ(A) =
1} be the set of density matrices. The tangent space to Dn at ρ ∈ Dn can be
naturally identified with {A ∈ Mn(C) : A = A∗, τ(A) = 0}. Similarly to the
commutative case a symmetric monotone metric is a family {gρ : ρ ∈ Dn, n ∈ N}
of inner products on TρDn, such that ρ ∈ Dn → gρ(A, A) ∈ [0,∞) is continuous,
for any A ∈ TρDn, and gTρ(TA, TA) ≤ gρ(A, A), for any stochastic (i.e. completely
positive, trace preserving) map T : Mn(C) → Mk(C).

Theorem 8. Petz classification theorem. There exists a bijective correspondence
between symmetric monotone metrics and symmetric operator monotone functions



f : (0,∞) → (0,∞), which is given by gρ(A, B) = τ(Acf (Lρ, Rρ)(B)), for A,
B ∈ TρDn, where cf is the CM-function associated to f .

We want to give a different description of Petz classification theorem. So let us
start with some definitions.

Definition 9. Denote by L2(τ) the vector space Mn(C) endowed with the inner
product 〈A, B〉 := τ(A∗B). For any ρ ∈ Dn, s ∈ [0, 1], define the operators
Lρ(A) = ρA, Rρ(A) = Aρ, and Mρ,s := (1 − s)Lρ + sRρ. Then Lρ, Rρ, Mρ,s are
positive invertible linear operators on L2(τ).

Definition 10. Set Hs := L2(τ), s ∈ [0, 1], and, for any symmetric positive
Radon measure µ on [0, 1], set

Hµ :=
∫ ⊕

[0,1]
Hsdµ(s) ∼= L2([0, 1], dµ; L2(τ)) ∼= L2([0, 1], dµ)⊗ L2(τ),

and Mρ,µ :=
∫⊕
[0,1] Mρ,sdµ(s).

Therefore Hµ is endowed with the inner product 〈A, B〉 :=
∫ 1
0 〈A(s), B(s)〉dµ(s),

if A : s ∈ [0, 1] → A(s) ∈ L2(τ), and analogously for B.

Definition 11. Let µ be a symmetric positive Radon measure on [0, 1]. The
µ-metric on TρDn, denoted by 〈·, ·〉ρ,µ, is the inner product on TρDn which turns
into an isometry the linear map

A ∈ TρDn → M−1/2
ρ,µ (A) ∈ Hµ,

where M−1/2
ρ,µ =

∫⊕
[0,1] M

−1/2
ρ,s dµ(s).

Theorem 12. The family of µ-metrics coincides with the family of symmetric
monotone metrics classified by Petz theorem.
Proof. By Petz theorem each monotone metric has the form gρ(A, B) =
τ(Ac(Lρ, Rρ)(B)). Therefore we get the conclusion by the following calculation

〈A, B〉ρ,µ =
∫

[0,1]
〈M−1/2

ρ,s (A), M−1/2
ρ,s (B)〉dµ(s) =

=
∫

[0,1]
τ(A · M−1

ρ,s (B))dµ(s) =
∫

[0,1]
τ(A((1 − s)Lρ + sRρ)

−1(B))dµ(s)

= τ

(
A

(∫

[0,1]
((1 − s)Lρ + sRρ)

−1dµ(s)

)
(B)

)
= τ(Acµ(Lρ, Rρ)(B)).

♣
The integral decomposition on which Theorem 12 is based, has been sketched by

Uhlmann in [21].



A DIFFERENT APPROACH

One could also follow a different approach, choosing as a noncommutative ana-
logue of Mp a different interpolation, namely M̃ρ,s := L1−s

ρ Rs
ρ, for s ∈ [0, 1], as

suggested by one of the forms of the BKM monotone metric. We need some pre-
liminaries.

Proposition 13. Let ν be a symmetric positive Radon measure on [0, 1]. The
formula

f ν(x) :=
∫

[0,1]
xtdν(t)

defines a map from the family of positive Radon measures on [0,1] to the class of
operator monotone functions. The map is not surjective.
Proof. It is well-known [11] that f ν(x) =

∫
[0,1] x

tdβ(t), where β : [0, 1] → [0,∞),

is increasing and left-continuous, and β(0) = 0. Besides, it is easy to prove that
there are βn : [0, 1] → [0,∞) increasing, left-continuous, and piecewise constant
functions, such that βn → β uniformly in [0, 1]. As for any fixed x ∈ [0,∞), the
function t ∈ [0, 1] → xt ∈ [0,∞) is continuous and bounded, by means of Helly’s
theorem we get f ν(x) = limn→∞ fn(x), where fn(x) :=

∫ 1
0 xtdβn(t). Moreover,

if k ∈ N, A = A∗ ∈ Mk(C) with spectrum contained in [0, 1], then f ν(A) =
limn→∞ fn(A). Indeed, if A =

∑k
i=1 λiei is its spectral decomposition, then f ν(A) =∑k

i=1 f ν(λi)ei =
∑k

i=1 limn→∞ fn(λi)ei = limn→∞ fn(A). Now it is easy to see that
fn is an operator monotone function, being a linear combination with positive
coefficients of functions xti , which are operator monotone [1]. Finally if k ∈ N,
A, B ∈ Mk(C), are such that 0 ≤ A ≤ B we get f ν(A) = limn→∞ fn(A) ≤
limn→∞ fn(B) = f ν(B), which proves that f ν is operator monotone.
As for the last statement, the function 2x

x+1
, which is operator monotone [1] and

gives the largest monotone metric, is not in the range of the map, because, if ν is
not a multiple of the Dirac measure at 0, any f ν is such that limx→∞ f ν(x) = ∞,
otherwise f ν is constant. ♣

Corollary 14. The formula

cν(x, y) :=
∫

[0,1]
(x1−tyt)−1dν(t)

defines a map from the family of positive Radon measures on [0,1] to the class of
CM-functions. The map is not surjective.

Definition 15. Let ν be a symmetric positive Radon measure on [0, 1]. The
ν-metric on TρDn, denoted by 〈·, ·〉νρ, is the inner product on TρDn which turns into
an isometry the linear map

A ∈ TρDn → M̃−1/2
ρ,ν (A) ∈ Hν ,

where M̃−1/2
ρ,ν :=

∫⊕
[0,1] M

−1/2
ρ,s dν(s).



Theorem 16. The family of ν-metrics is a proper subset of the family of mono-
tone metrics classified by Petz theorem.
Proof. By definition

〈A, B〉νρ =
∫

[0,1]
〈M̃−1/2

ρ,s (A), M̃−1/2
ρ,s (B)〉dν(s) =

=
∫

[0,1]
τ(A · M̃−1

ρ,s (B))dν(s) =
∫

[0,1]
τ(A(L1−s

ρ Rs
ρ)

−1(B))dν(s)

= τ

(
A

(∫

[0,1]
(L1−s

ρ Rs
ρ)

−1dν(s)

)
(B)

)
= τ(Acν(Lρ, Rρ)(B)).

Therefore the conclusion follows from the previous results. ♣

UNIFORMLY CONVEX BANACH SPACES

The purpose of this section is to review some results on the geometry of uniformly
convex Banach spaces, needed in the sequel. We refer to [8] for full proofs and

consider only real Banach spaces. Denote by X̃ the dual space of X and by SX the
unit sphere of X. If L ∈ X̃ and x ∈ X we write 〈L, x〉 = L(x).

Definition 17. We say that x is orthogonal to y, and denote it by x ⊥ y, if
‖x‖ ≤ ‖x + λy‖, for any λ ∈ R. Moreover, if A ⊂ X, x ⊥ A means x ⊥ y, for any
y ∈ A.

Definition 18. The duality mapping J : X → Subsets(X̃) is defined by J(x) :=

{v ∈ X̃ : 〈v, x〉 = ‖x‖2 = ‖v‖2}. We say that X has the duality map property if J

is single-valued. In this case we set x̃ := J(x).

Definition 19. We say that X has the projection property if for any closed convex
M ⊂ X and any x ∈ X there is a unique m ∈ M s.t. ‖x − m‖ = inf{‖x − z‖ : z ∈
M} ≡ d(x, M). In this case we define πM (x) := m.

Definition 20. X is uniformly convex if for any ε > 0 there is δ > 0 s.t.
x, y ∈ SX and ‖x+y

2
‖ > 1 − δ implies ‖x − y‖ < ε.

Proposition 21. Let X and X̃ be uniformly convex Banach spaces. Then
i) X has the projection property.
ii) X has the duality map property.
iii) x ⊥ ker(x̃).

iv) If M := ker(x̃), then πM (v) = v − 〈x̃,v〉
〈x̃,x〉x.

Now recall that if M is a Banach manifold and N ⊂ M is a submanifold, then
for any p ∈ N there is a splitting of the tangent space TpM = TpN ⊕ V and a



projection operator πp : TpM → TpN . Moreover if there is a connection ∇ on M,
one gets a connection ∇′ on the submanifold N , by setting ∇′ := π ◦ ∇.

Proposition 22. Let X, X̃ be uniformly convex Banach spaces. Then
i) SX is a Banach submanifold of X.
ii) TxS

X , the tangent space to SX at x ∈ SX , can be identified with ker(x̃).
iii) The projection operator πx : TxX → TxS

X is given by πx(v) = v − 〈x̃, v〉x.

Using this projection, the trivial connection on X induces a connection on SX ,
that we call the natural connection on SX .

We may rephrase the content of this section by saying that if X, X̃ are uniformly
convex then X is “almost an Hilbert space”. Note that if X is an Hilbert space,
then the natural connection on SX is just Levi-Civita connection on the sphere.

α-CONNECTIONS FOR COMMUTATIVE STATISTICAL

MANIFOLDS

In this section we summarise some of the results of [6] in the light of the abstract
setting of the previous section. Let (X,A, µ) be a measure space. We give the
following

Definition 23. If α ∈ (−1, 1), set p := 2
1−α

. L
p
R

≡ L
p
R

(X,A, µ) := {u : X →
R : u is A-measurable,

∫
X |u|pdµ < ∞}, for p ∈ [1,∞). The unit sphere is denoted

by Sp := {f ∈ L
p
R

: ‖u‖p = 1}. Pµ := {ρ ∈ L1
R

: ρ > 0,
∫
X ρ = 1}. For any ρ ∈ Pµ

we set Fα
ρ ≡ L

p
0(ρ) := {u ∈ L

p
R

(X,A, ρµ) :
∫
X uρdµ = 0}. If p > 1 we define p̃ by

1
p

+ 1
p̃

= 1.

A calculation shows that the duality map is given by u ∈ L
p
R

→ ũ :=

‖u‖2−p
p sgnu|u| p

p̃ ∈ L
p̃
R

. Therefore, if ρ ∈ Pµ, we have that ρ1/p ∈ Sp and

ρ̃1/p = ρ1/p̃ ∈ S p̃. The spaces L
p
R

are uniformly convex, so the results of the
previous section are applicable. For the tangent space of Sp at ρ1/p we have
Tρ1/pSp = {u ∈ L

p
R

:
∫

uρ1/p̃dµ = 0}. We denote by ∇p the natural connection
on Sp induced by the trivial connection on L

p
R

. Observe that the isometric iso-
morphism Ip

ρ : u ∈ L
p
R

(X,A, µ) → uρ−1/p ∈ L
p
R

(X,A, ρµ) sets up a bijection
between Tρ1/pSp and L

p
0(ρ).

Let N ⊂ Pµ be a statistical model, equipped with a structure of a differential
manifold. Consider the bundle-connection pair on Sp given by the tangent bundle
and the natural connection (TSp,∇p). Making use of the Amari embedding Aα :
ρ ∈ N → ρ1/p ∈ Sp, we may construct the pull-back ((Aα)∗TSp, (Aα)∗∇p) of the
bundle-connection pair (TSp,∇p) to N . This means that the fibre over ρ ∈ N of
the pull-back bundle is given by Tρ1/pSp. Consider now Fα := ∪ρ∈NFα

ρ . Using the
family of isomorphisms Ip

ρ , ρ ∈ N , it is possible to identify Fα with the pull-back



bundle (Aα)∗TSp. One can also transfer the pull-back connection (Aα)∗∇p using
this isomorphism. We denote by ∇α this last connection on the bundle Fα.

Theorem 24. [6] Consider the bundle-connection pair (Fα,∇α), α ∈ (−1, 1),
on the statistical manifold N . Then ∇α coincides with the Amari–Chentsov α-
connection.
Proof. One obtains

∇α =
1 + α

2
∇e +

1 − α

2
∇m (1)

where ∇m and ∇e are the usual mixture and exponential connections defined by
parallel transport on the mixture and exponential bundles L

x log x
0 and L

exp
0 (see [6]

for details). ♣
It is useful to emphasize the new aspects that this theorem introduces in In-

formation Geometry. First of all, it solves the longstanding problem of an infin-
ite dimensional theory for α-geometries (note that we may discuss orthogonality,
projections, etc. also in a non-riemannian, non-hilbertian setting). Moreover α-
connections appear as Lp-connections in a disguised form (a new result even in the
parametric case). Following this line of thought we want to stress that equality (1)
should be seen as a theorem and not as a definition. In this sense the parametric
case could be seriously misleading: indeed the α-connections are not defined on the
tangent space, in general, but on a suitable α-bundle (this point is still overlooked
also in some recent papers). In addition one should note that the problem of dif-
ferent geodesics intersecting at right angles cannot be solved naively. In general
these geodesics will be on two different manifolds (the target manifolds of different
embeddings of the densities) such that a duality pairing exists between the two
tangent bundles. A theory of this type has been outlined in [7] and probably this
can be the right approach also in the non-commutative setting (see the work of
Streater [18,19] where the use of +1 and -1 geodesics is of great importance in the
theory of statistical dynamics). But probably the most important aspect is that
one can see all the construction from an abstract point of view (that is for uni-
formly convex spaces) so that this kind of family of dual geometries should appear
whenever one has a family of Lp-type spaces. We have discussed this approach in a
previous paper [8] regarding a non-commutative non-parametric generalisation of
the α-connections.

NORMS OF Lp-TYPE AND α-CONNECTIONS

ASSOCIATED TO MONOTONE METRICS

A general approach to noncommutative α-connections is still missing, even
though a a number of different points of view exist [8–10,13]. But now Theorem
12 shows that each monotone metric can be obtained by an L2 scalar product.



Moreover, motivated by Theorem 24 and by the considerations of the previous sec-
tion, we suggest that one should try to construct α-geometries associated to an
arbitrary monotone metric by the construction of an Lp-norm associated to that
monotone metric. What follows is a tentative first step in that direction.

Let (E, ‖ · ‖) be a Banach space and denote by L(E) the set of continuous linear
operators on E, and by GL(E) the subset of the invertible ones. If T ∈ L(E),
we may define a new Banach space (E, ‖ · ‖T ), where ‖v‖T := ‖Tv‖. Moreover, if
T ∈ GL(E), then T−1 : (E, ‖ · ‖) → (E, ‖ · ‖T ) is an isometric isomorphism.
Now let Lp(τ) be the matrix von Neumann-Schatten class, that is Mn(C) endowed
with the norm ‖A‖p := τ(|A|p)1/p, and consider T := M 1/p

ρ,s ∈ L(Lp(τ)). Therefore,

we may consider the norm ‖A‖T := ‖T (A)‖p = (τ(|M1/p
ρ,s (A)|p))1/p, for A ∈ Mn(C).

Analogously, if we set T̃ := M̃1/p
ρ,s , we have the norms ‖A‖

T̃
:= (τ(|M̃1/p

ρ,s (A)|p))1/p.
So we may define the Banach spaces Lp(ρ)s := (Mn(C), ‖ · ‖T ), and Lp(ρ)s :=
(Mn(C), ‖ · ‖

T̃
). The latter spaces are the matrix version of the spaces introduced

by Trunov and Zolotarev [20,22] and studied by several authors.
In the construction of commutative α-connections is fundamental the isomorphism
u ∈ Lp(ρ) → uρ1/p ∈ Lp(τ), that allows to identify Tρ1/pSp with the space L

p
0(ρ) of

p-integrable ρ-centred random variables. The operator A ∈ Lp(ρ)s → M1/p
ρ,s (A) ∈

Lp(τ) could play the same role. If p = 2, we may identify L2(ρ)µ :=
∫ ⊕
[0,1] L

2(ρ)sdµ(s)

with L2([0, 1], dµ)⊗ L2(τ), by means of the operator
∫⊕
[0,1] M

1/2
ρ,s dµ(s). For example

the proof of Theorem 12 can be reformulated using M−1
ρ,µ instead of M−1/2

ρ,µ and

L2(ρ)µ instead of L2([0, 1], dµ)⊗L2(τ). In a similar way one may consider L2(ρ)ν :=∫⊕
[0,1] L

2(ρ)sdν(s) (this kind of inner product has been introduced by Petz and Toth

[15]) and accordingly give a different proof of Theorem 16.
In view of the above considerations, we conjecture that it could be possible to
associate to an arbitrary monotone metric a family of α-connections, using a kind
of direct integral of the Banach spaces Lp(ρ)s, s ∈ [0, 1], with respect to a positive
Radon measure µ on [0, 1].
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