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Abstract

Let N be a statistical manifold of density operators, with respect to
a n.s.f. trace τ a on a semifinite von Neumann algebra M . If Sp is the
unit sphere of the noncommutative space Lp(M, τ), using the noncommu-
tative Amari embedding ρ ∈ N → ρ1/p ∈ Sp, we define a noncommuta-
tive α-bundle–connection pair (Fa,∇α), by the pull-back technique. In
the commutative case we show that it coincides with the construction of
nonparametric Amari–Čentsov α-connection made in [8] by Gibilisco and
Pistone.

1 Introduction

Information Geometry is the theory of statistical manifolds, that is of manifolds
whose points ρ can be identified with density functions with respect to a certain
measure µ. The classical references for the theory can be found in the books
[1, 2, 4, 15, 19].

The noncommutative version of the theory has been developped by some au-
thors. For example noncommutative versions of Amari-Čentsov α–connections
have been proposed in the literature [10, 11, 12, 13, 20, 21].

Recently a nonparametric version of the commutative theory has been pro-
posed (see [8, 24, 25]). One of the most important results obtained in [8] is
that the α–connections can be defined for α ∈ [−1, 1] also in the nonparametric
infinite-dimensional case. More precisely one shows that the right definition is
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that of α–bundle–connection pair (Fα,∇α): this means that, generally speaking,
the α–connection is not defined on the tangent space of the statistical manifold
N but on a suitable vector bundle Fα → N. For α ∈ (−1, 1), and p := 2

1−α ,
the pair (Fα,∇α) is simply (isomorphic to) the pull-back of the Amari embed-
ding ρ → ρ

1
p ∈ Sp, where Sp is the unit sphere of the (commutative) Lp space

equipped with the natural connection that Sp has as a submanifold of Lp.
One of the merits of this approach (besides the nonparametric feature) is

that it shows that the notion of duality introduced by Amari is exactly the Lp-
space duality (or Orlicz space duality, if one has to deal with exponential and
mixture connections).

The purpose of this paper is twofold. On the one side we show that the
construction of the α–connection, for α ∈ (−1, 1), made in [8] is based on
the fact that the commutative Lp space are uniformly convex with dual space
uniformly convex. On the other side, when the costruction of [8] is seen at this
abstract level, it is natural to conjecture that a similar construction can be made
for statistical manifolds of density operators. Indeed this is the case: we show
that the α–bundle–connection pair can be defined also on an arbitrary statistical
manifold of density operators. One should note that also in the noncommutative
case our approach is fully general and nonparametric: this means that we do
not have to restrict to the matrix case but we can deal with manifolds of density
operators respect to a normal, semifinite, faithful trace τ on a semifinite von
Neumann algebra M .

In a subsequent paper we will compare our approach to noncommutative
α-connections with the other ones appearing in the literature.

2 Uniformly convex Banach spaces

In this section we review, for the reader’s convenience, some results on the
geometry of uniformly convex Banach spaces, needed in the sequel. In the first
part of this section we consider real Banach spaces. X̃ will denote the dual
space of X and SX the unit sphere of X. If L ∈ X̃ and x ∈ X we will write
〈L, x〉 = L(x).

Definition 2.1. We say that x is orthogonal to y, and denote it by x ⊥ y, if
‖x‖ ≤ ‖x + λy‖, for any λ ∈ R. Moreover, if A ⊂ X, x ⊥ A means x ⊥ y, for
any y ∈ A.

Definition 2.2. The duality mapping J : X → P(X̃) is defined by

J(x) := {v ∈ X̃ : 〈v, x〉 = ‖x‖2 = ‖v‖2}.

By the Hahn-Banach theorem J(x) 6= ∅, for any x ∈ X. We say that X has the
duality map property if J is single-valued. In this case we set x̃ := J(x).

Definition 2.3. We say that X has the projection property if for any closed
convex M ⊂ X and any x ∈ X there is a unique m ∈M s.t.

‖x−m‖ = inf{‖x− z‖ : z ∈M} ≡ d(x,M).
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In this case we define πM (x) := m.

Definition 2.4.

(i) X is strictly convex if all the points of SX are extreme points (i.e. on SX

there are no intervals).

(ii) X is uniformly convex if for any ε > 0 there is δ > 0 s.t. x, y ∈ SX and
‖x+y2 ‖ > 1− δ implies ‖x− y‖ < ε.

(iii) X is uniformly smooth if for any ε > 0 there is δ > 0 s.t. ‖x‖ ≥ 1, ‖y‖ ≥ 1,
and ‖x− y‖ ≤ ε implies ‖x+ y‖ ≥ ‖x‖+ ‖y‖ − ε‖x− y‖.

Proposition 2.5.

(i) X uniformly convex implies X strictly convex.

(ii) X uniformly convex (resp. uniformly smooth) implies X̃ uniformly smooth
(resp. uniformly convex).

Proposition 2.6. ([6], p. 25) Let x, y ∈ X, f ∈ X̃, α ∈ R. Then

(i) x ⊥ ker(f) is equivalent to |f(x)| = ‖f‖‖x‖.

(ii) x ⊥ (αx+ y) ⇐⇒ there is f ∈ S eX s.t. f(x) = ‖x‖ and α = − f(y)
f(x) .

(iii) x ⊥ (αx+ y) ⇒ |α| ≤ ‖y‖
‖x‖ .

Proposition 2.7. Let X and X̃ be uniformly convex Banach spaces. Then

(i) X has the projection property.

(ii) X has the duality map property.

(iii) x ⊥ ker(x̃).

(iv) If M := ker(x̃), then πM (v) = v − 〈x̃,v〉
〈x̃,x〉x.

Proof. (i) See ([22], page 363).
(ii) X̃ is strictly convex, and this implies that J is single-valued.
(iii) As |〈x̃, x〉| = ‖x̃‖‖x‖, applying Proposition 2.6, (i), we get x ⊥ ker(x̃).
(iv) We want to prove that ‖v − πM (v)‖ ≤ ‖v − z‖, for any z ∈M . Since

‖v − πM (v)‖ = ‖〈x̃, v〉 x

‖x‖2
‖ =

|〈x̃, v〉|
‖x‖

=
∣∣∣∣〈 x̃

‖x̃‖
, v

〉∣∣∣∣
we may reduce to the case ‖x‖ = ‖x̃‖ = 1. So we have to show that |〈x̃, v〉| ≤
‖v − z‖, for any z ∈ M . Fix z ∈ M , and set α := −〈x̃, v〉, y := v − z. Then
αx+ y = −〈x̃, v〉x+ v− z = πM (x)− z ∈ ker(x̃), since πM (x), z ∈ ker(x̃) ≡M .
It follows from (iii) that x ⊥ αx+ y, so that, by Proposition 2.6, (iii), we have
|α| ≤ ‖y‖

‖x‖ , that is |〈x̃, v〉| ≤ ‖v − z‖.

Remark 2.8. Now remember that if M is a Banach manifold and N ⊂ M is
a submanifold, then for any p ∈ N there is a splitting of the tangent space
TpM = TpN⊕ V and a projection operator πp : TpM → TpN. Moreover if there
is a connection ∇ on M, one gets a connection ∇′ on the submanifold N, by
setting ∇′ := π ◦ ∇.
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Proposition 2.9. Let X, X̃ be uniformly convex Banach spaces. Then

(i) SX is a Banach submanifold of X.

(ii) TxSX , the tangent space to SX at x ∈ SX , can be identified with ker(x̃).

(iii) The projection operator πx : TxX → TxS
X is given by πx(v) = v− 〈x̃, v〉x.

Using this projection, the trivial connection on X induces a connection on SX ,
that we call the natural connection on SX .

Proof. (i) Since X̃ is uniformly convex, we have that X is uniformly smooth,
so that the norm is a uniformly strongly differentiable function ([16], p. 364).
(ii) The hyperplane {v ∈ X : 〈x̃, v〉 = 1} is evidently the unique supporting
hyperplane at SX in x. Therefore ker(x̃) := {v ∈ X : 〈x̃, v〉 = 0} can be
identified with the tangent vector space TxSX .
(iii) This is simply a rewriting of Proposition 2.7 (iv) in a particular case, and
of Remark 2.8.

Now suppose that X is a complex Banach space. We denote by XR the
same space considered as a real Banach space. Let L ∈ X̃, then v ∈ XR →
ReL(v) ∈ R defines an element of X̃R. The map L ∈ X̃ → ReL ∈ X̃R is a
bijective linear isometry ([16], p. 179, 344). We have therefore on X a complex
duality mapping x → x̃, and the real duality mapping is given by x → Re x̃.
Correspondingly we have that the supporting hyperplane at x ∈ SX is given
by {v ∈ X : Re〈x̃, v〉 = 1}, and therefore the tangent space TxSX is given by
the real Banach space M ≡ TxS

X ∼= ker(Re x̃) = {v ∈ X : Re〈x̃, v〉 = 0}. The
projection formula is πM (v) = v − Re〈x̃, v〉x.

3 α-connections for commutative statistical man-
ifolds

In this section we summarise some of the results of [8] in the light of the abstract
setting of section 2. Let (X,X, µ) be a measure space. We give the following

Definition 3.1. If α ∈ (−1, 1), set p := 2
1−α . LpR ≡ LpR(X,X, µ) := {u : X →

R : u is X-measurable,
∫
X
|u|pdµ < ∞}, for p ∈ [1,∞). The unit sphere is

denoted by Sp := {f ∈ LpR : ‖u‖p = 1}. Mµ := {ρ ∈ L1
R : ρ > 0,

∫
ρ = 1}. For

any ρ ∈ Mµ we set Fαρ ≡ Lp0(ρ) := {u ∈ LpR((X,X, ρµ) :
∫
X
uρdµ = 0}. If p > 1

we define p̃ by 1
p + 1

p̃ = 1.

A calculation shows that the duality map is given by u ∈ LpR → ũ :=
‖u‖2−pp sgnu|u|

p
p̃ ∈ Lp̃R. Therefore, if ρ ∈ Mµ, we have that ρ1/p ∈ Sp and

ρ̃1/p = ρ1/p̃ ∈ Sp̃. The spaces LpR are uniformly convex, so the results of sec-
tion 2 are applicable. For the tangent space of Sp at ρ1/p we have Tρ1/pSp =
{u ∈ LpR :

∫
uρ1/p̃dµ = 0}. We denote by ∇p the natural connection on Sp in-

duced by the trivial connection on LpR. Observe that the isometric isomorphism
Ipρ : u ∈ LpR(X,X, µ) → uρ−1/p ∈ LpR(X,X, ρµ) sets up a bijection between Lp0(ρ)
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and Tρ1/pSp.

Let N ⊂ Mµ be a statistical model, equipped with a structure of a differential
manifold. Consider the bundle-connection pair on Sp given by the tangent bun-
dle and the natural connection (TSp,∇p). Making use of the Amari embedding
Aα : ρ ∈ N → ρ1/p ∈ Sp, we may construct the pull-back ((Aα)∗TSp, (Aα)∗∇p)
of the bundle-connection pair (TSp,∇p) to N. This means that the fibre over
ρ ∈ N of the pull-back bundle is given by Tρ1/pSp. Consider now Fα := ∪ρ∈NFαρ .
Using the family of isomorphisms Ipρ , ρ ∈ N, it is possible to identify Fα with
the pull-back bundle (Aα)∗TSp. One can also transfer the pull-back connection
(Aα)∗∇p using this isomorphism. We denote by ∇α this last connection on the
bundle Fα.

Theorem 3.2. Consider the bundle-connection pair (Fα,∇α), α ∈ (−1, 1),
on the statistical manifold N. Then ∇α coincides with the Amari-Čentsov α-
connection.

Proof. See [8].

Obviously one may also define a “complex” version of the α-connections. Let
Lp ≡ Lp(X,X, µ) := {u : X → C : u is X-measurable ,

∫
X
|u|p <∞}. Introduce

the function

sgn z :=

{
z
|z| z ∈ C, z 6= 0

0 z = 0.

The duality mapping in this case has the form ũ := ‖u‖2−pp sgnu|u|
p
p̃ . The

tangent space is Tρ1/pSp = {u ∈ Lp(µ) : Re
∫
X
uρ1/p̃dµ = 0}. In this case we

set Lp0(ρ) := {u ∈ Lp(X,X, ρµ) : Re
∫
X
uρdµ = 0}, with the isomorphism still

given by Ipρ (u) = uρ−1/p. The rest of the construction applies directly and we
have therefore a “complex” bundle-connection pair (Fα,∇α), on any statistical
manifold N ⊂ Mµ.

4 Noncommutative Lp-spaces

We recall in this section the construction of noncommutative Lp-spaces on a
general von Neumann algebra, following the approach by Araki and Masuda [3,
18]. Moreover we prove a result that we need in the next section. Observe that
there are different approaches to noncommutative integration [5, 9, 14, 17, 30].
Let, therefore, M be a von Neumann algebra, which is standardly represented
on H, that is ([28], 10.23) there are a conjugation J : H → H and a selfpolar
convex cone P ⊂ H s.t.

(i) the mapping j(x) := Jx∗J is a ∗-antiisomorphism j : M →M ′, which acts
identically on the centre of M ,

(ii) ξ ∈ P ⇒ Jξ = ξ,
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(iii) xJxJP ⊂ P for any x ∈M .

Recall that two standard representations of M are unitarily equivalent ([28],
10.26), and if ϕ is a (normal semifinite) faithful weight on M , then its GNS
representation is a standard representation of M . Let us denote by W (M) the
set of normal semifinite weights on M , and Wf (M) the subset of the faithful
ones. Take a ϕ ∈Wf (M), and denote by Nϕ := {x ∈M : ϕ(x∗x) <∞}, and by
(πϕ,Hϕ, ηϕ) the GNS triple. Then the Lp-space w.r.t. ϕ, denoted by Lp(M,ϕ),
consists of the closed densely defined linear operators T on H s.t.

(i) TJσϕ−i/p(y)J ⊃ JyJT , for any y ∈ Nan
ϕ := {y ∈ Nϕ : t ∈ R → σϕt (y) is an

analytic function},

(ii) ‖T‖p,ϕ := supx∈Nan
ϕ ,‖x‖≤1 ‖|T |p/2ηϕ(x)‖2/p <∞.

For any T ∈ Lp(M,ϕ) there is a unique normal positive linear functional
ψ ∈ M∗+, and a partial isometry w ∈ M s.t. w∗w = s(ψ), the support projec-
tion of ψ, and T = w∆1/p

ψϕ , where ∆ψϕ is the relative modular operator. We
have that Lp(M,ϕ) is a uniformly convex Banach space, if p ∈ (1,∞), and
L1(M,ϕ) ∼= M∗, L2(M,ϕ) ∼= H, L∞(M,ϕ) ∼= M , and Lp(M,ϕ)˜∼= Lp̃(M,ϕ),
where 1

p + 1
p̃ = 1. Besides, if ϕ0 ∈ Wf (M) is a different nsf weight, then

Lp(M,ϕ0) and Lp(M,ϕ) are isometrically isomorphic, and the isomorphism is
given by Ipϕ0ϕ : w∆1/p

ψϕ ∈ Lp(M,ϕ) → w∆1/p
ψϕ0

∈ Lp(M,ϕ0), ψ ∈M∗+, w ∈M a
partial isometry.

We want to give an explicit formula, that we use in section 5, for this iso-
morphism, in the particular case when ϕ0 commutes with ϕ, which means that
there is a positive selfadjoint operator ρ∈̂Mϕ, with supp(ρ) = 1, s.t. ϕ0 = ϕρ,
where ϕρ(x) := limε→0 ϕ(ρ1/2

ε xρ
1/2
ε ) and ρε := ρ(1 + ερ)−1 ∈Mϕ. Then

Proposition 4.1. ∆ψϕρ
= ∆ψϕJρ

−1J , so that Ipρ ≡ Ipϕρϕ : T ∈ Lp(M,ϕ) →
TJρ−1/pJ ∈ Lp(M,ϕρ).

Proof. We will be using Theorem C.1 of [3] repeatedly. It follows from (loc.
cit. eq. (C.5)) that ∆it

ϕψ∆−it
ϕρψ

= (Dϕ : Dϕρ)tJs(ψ)J , and (Dϕ : Dϕρ)t =
ρ−it, by ([27], 4.8). As supp(∆ϕψ) = supp(∆ϕρψ) = Js(ψ)J , we get ∆it

ϕψ =
∆it
ϕρψ

ρit. Observe that ρ and ∆ϕψ commute, as ∆it
ϕψρ

is∆−it
ϕψ = σϕt (ρis)Js(ψ)J =

ρisJs(ψ)J , so that ∆it
ϕψρ

is = ρisJs(ψ)J∆it
ϕψ = ρis∆it

ϕψ. Therefore ∆ϕρψ =
∆ϕψρ. Now from (loc. cit. eq. (β5)) it follows that ∆−1

ψϕ = Jϕψ∆ϕψJ
∗
ϕψ, and

analogously with ϕρ in place of ϕ. As from (loc. cit. eq. (C.12)) Jϕψ = Jϕρψ =
s(ψ)J , we get

∆−1
ψϕρ

= Jϕρψ∆ϕρψJ
∗
ϕρψ

= s(ψ)J∆ϕψJs(ψ)JρJ = Jϕψ∆ϕψJ
∗
ϕψJρJ

= ∆−1
ψϕJρJ

and the thesis follows.
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Example 4.2. If M is a semifinite von Neumann algebra and ϕ = τ is a nsf
trace on M , then any ϕ0 commutes with τ , and Lp(M, τ) coincides with the Lp-
space defined in [7, 23, 26]. Besides ϕ0 ≡ τρ ∈M∗+ iff ρ ∈ L1(M, τ)+ ([18], 7.1).
Moreover for any ψ = τT ∈ M∗+, with T ∈ L1(M, τ)+, then ∆ψτ = T . Indeed
∆it
ψτ∆

−it
ττ = (Dψ : Dτ)t = (DτT : Dτ)t = T it. Therefore, if ϕ0 = τρ ∈ M∗+,

then the isometric isomorphism is given by the map Ipρ : u ∈ Lp(M, τ) →
uJρ−1/pJ ∈ Lp(M, τρ).

Example 4.3. Let us assume now that M = B(H) is a type I factor, and
τ is the ordinary trace. Then Lp(B(H), τ) is the von Neumann–Schatten class
Lp(H). Let (Hτ , πτ , ητ ) be the GNS triple of τ , Hτ ≡ L2(H), Jτητ (x) = ητ (x∗),
for any x ∈ Nτ ≡ L2(H). We want to express the modular operators relative
to a normal positive linear functional ψ ∈ M∗+. Recall that ψ = τσ, with
σ ∈ L1(H)+ ⊂ M . Then its GNS representation is (Hτσ

, πτσ
, ητσ

), where
Hτσ

:= Hτ , ητσ
(x) = ητ (xσ1/2) = Jτσ

1/2Jτητ (x), x ∈ Nτσ
≡ {x ∈ M :

τ(x∗xσ) < ∞}, Jτσ
= Jτ supp(σ), and, if ϕ = τρ ∈ M∗+ is a normal faithful

positive linear functional, then ∆τστρ = σJτρ
−1Jτ , as

∆1/2
τστρ

ητρ
(x) = Jτητσ

(x∗) = Jτητ (x∗σ1/2)

= σ1/2Jτητ (x∗) = σ1/2ητ (x)

= σ1/2Jτρ
−1/2Jτητρ(x).

Therefore the proof of the above proposition simplifies considerably.

Example 4.4. In case H = Cn is finite dimensional, that is M is the full matrix
algebra of n× n complex matrices, and τ is the ordinary normalised trace, the
Hilbert space of the GNS representation is given by Hτ ≡ Cn2

, with orthonormal
basis {eij}, whereas M (which is generated by the matrix units {uhk}) acts on
Hτ as πτ (uhk)eij = δkiehj , and the cyclic vector is ξτ =

∑n
i=1 eii. Then Jτ is

given by the antilinear extension of the map ehk → ekh. The Lp-spaces are given
by Lp(M, τ) = πτ (M) with the Lp-norm, whereas, for ϕ = τρ ∈M∗+ a faithful
(normal) positive linear functional, Lp(M, τρ) = {πτ (X)Jτρ−1/pJτ : X ∈M}.

5 α-connections for statistical manifolds of den-
sity operators

This section contains the main result of the paper.

Definition 5.1. ([18], Theorem 1) On L1(M,ϕ) one defines an integral as∫
Tdϕ := lim

y→1
(ηϕ(y), T ηϕ(y)),

where the limit is taken in the ∗-strong operator topology of the unit ball of
Nan
ϕ . Observe that, if ϕ ∈ M∗+, the previous formula simplifies in

∫
Tdϕ =

(|T |1/2w∗ξϕ, |T |1/2ξϕ), where T = w|T | is the polar decomposition, and ξϕ ∈ H

is the GNS vector of ϕ.
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Remark 5.2. For p ∈ (1,∞), T ∈ Lp(M,ϕ), S ∈ Lp̃(M,ϕ), then TS ∈ L1(M,ϕ)
and the duality between Lp(M,ϕ) and Lp̃(M,ϕ) is given by 〈T, S〉 =

∫
T ∗Sdϕ.

Let M be a semifinite von Neumann algebra, τ a nsf trace on M , and
τρ ∈M∗+, as in example 4.2.

Definition 5.3. Introduce the set Mτ := {ρ ∈ L1(M, τ)+ : supp(ρ) = 1, ‖ρ‖1 =
τ(ρ) = 1}, which, by the Pedersen-Takesaki theorem ([27], 4.10), is in bijective
correspondence with the set of normal faithful states of M .

Definition 5.4. We call any N ⊂ Mτ a statistical model, whereas we call
statistical manifold any statistical model which is also a Banach manifold. Let
N be a statistical manifold, and define the Amari map Aα : ρ ∈ N → ρ1/p ∈ Sp,
where p = 2

1−α , and α ∈ (−1, 1). Define Fα := ∪ρ∈NFαρ , where Fαρ := {v ∈
Lp(M, τρ) : Re

∫
vdτρ = 0}.

Theorem 5.5. Let N be a statistical manifold of density operators w.r.t. (M, τ).
Then Fα is a vector bundle on N, and, using the pull-back by the Amari em-
bedding, we may define an α-connection ∇α on Fα. In this way we obtain the
noncommutative α-bundle-connection pair (Fα,∇α).
If M is commutative, this construction reduces to the construction of the non-
parametric Amari-Čentsov α-bundle–connection pair (Fα,∇α) of Theorem 3.2.

Proof. Denote by Sp := {T ∈ Lp(M, τ) : ‖T‖p = 1} the unit sphere of Lp(M, τ).
As we have seen, the noncommutative Lp-spaces are uniformly convex, with
uniformly convex duals, if p ∈ (1,∞), so that the results of Section 2 apply.
As Sp is a Banach submanifold of Lp(M, τ), there is a splitting of the tan-
gent space TxLp = TxS

p ⊕ V , as in Remark 2.8, and a continuous projection
πx : TxLp → TxS

p. Using π we define the natural connection ∇p on Sp by
the formula ∇p := π ◦ ∇, where ∇ is the trivial connection on Lp(M, τ) (see
Proposition 2.9).
Using the Amari map, we can pull the natural connection on Sp back to
N, and obtain a bundle-connection pair ((Aα)∗TSp, (Aα)∗∇p). The fibre of
(Ap)∗TSp at ρ ∈ N is isomorphic to Tρ1/pSp. We have in general that the
duality mapping in Lp(M, τ) is given by T = w|T | ∈ Lp(M, τ) → T̃ :=

‖T‖1−
p
p̃

p w|T |
p
p̃ ∈ Lp̃(M, τ). Indeed ‖T̃‖p̃ = ‖T‖1−

p
p̃

p τ(|T |p)
1
p̃ = ‖T‖p, and

τ(T̃ ∗T ) = ‖T‖1−
p
p̃

p τ(|T |
p
p̃w∗w|T |) = ‖T‖1−

p
p̃

p τ(|T |p) = ‖T‖2p. Therefore ρ̃1/p =
ρ1/p̃, and Tρ1/pSp = {u ∈ Lp(M, τ) : Re

∫
uρ1/p̃dτ = 0}. Now we need the

following

Lemma 5.6. The isometric isomorphism Ipρ (u) = uJρ−1/pJ of section 4 sets
up a bijective correspondence between {u ∈ Lp(M, τ) : Re

∫
uρ1/p̃dτ = 0} and

{v ∈ Lp(M, τρ) : Re
∫
vdτρ = 0}.

Proof. Observe that the thesis follows from the formula
∫
vdτρ =

∫
uρ1/p̃dτ , if

v = uJρ−1/pJ , that is what we are going to prove. On identifying Hτ with
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L2(M, τ), we get ξτρ
= ρ1/2, and Jρ−1/2pJξτρ

= Jρ−1/2pJρ1/2 = ρ1/2p̃. Indeed
ρ−1/2p is τ -measurable, and J becomes the ∗-operation on L2. Therefore∫

vdτρ = (|u|1/2w∗Jρ−1/2pJξτρ , |u|1/2Jρ−1/2pJξτρ)

= (|u|1/2w∗ρ1/2p̃, |u|1/2ρ1/2p̃)

= τ(ρ1/2p̃uρ1/2p̃) = τ(uρ1/p̃) =
∫
uρ1/p̃dτ.

Using the previous Lemma, the fibre of (Ap)∗TSp at ρ ∈ N is isomorphic
to Fαρ := {v ∈ Lp(M, τρ) : Re

∫
vdτρ = 0}. Using this isomorphism we may

transfer the pull-back connection (Aα)∗∇p on the bundle Fα to get a bundle-
connection pair (Fα,∇α) over N, for any α ∈ (−1, 1).
If M is commutative, then, by e.g. [29], there is a measure space (X,X, µ) s.t.
Lp(M, τ) ∼= Lp(X,X, µ), for p ∈ [1,∞], and τ(T ) ≡

∫
Tdτ =

∫
X
T (x)dµ(x), for

T ∈ L1(M, τ). Therefore the previous construction reduces to that of Theorem
3.2, and this concludes the proof of Theorem 5.5.
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