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We discuss the geometry of Wigner-Yanase-Dyson information via the so-called

Amari-Nagaoka embeddings in Lp-spaces of quantum trajectories.

1. Introduction

The Wigner-Yanase-Dyson information was introduced in 196328. Wigner
and Yanase observed that “According to quantum mechanical theory, some
observables can be measured much more easily than others: the observ-
ables which commute with the additive conserved quantities ... can be
measured with microscopic apparatuses; those which do not commute with
these quantities need for their measurements macroscopic systems. Hence
the problem of defining a measure of our knowledge with respect to the

1



June 19, 2008 15:33 Proceedings Trim Size: 9in x 6in 080619wsmexico

2

latter quantities arises ...”. After the discussion of the requirements such
a measure should satisfy (convexity, ...) they proposed, tentatively, the
following formula and called it skew information:

Iρ(A) := −1
2
Tr([ρ

1
2 , A]2).

More generally they defined (following a suggestion by Dyson)

Iβ
ρ (A) := −1

2
Tr([ρβ, A] · [ρ1−β, A]), β ∈ [0, 1].

The latter is known as WY D-information. The skew information should be
considered as a measure of information contained in a state ρ with respect
to a conserved observable A.

From that fundamental work WY D-information has found applications
in a manifold of different fields. A possibly incomplete list should mention:
i) strong subadditivity of entropy23,22; ii) homogeneity of the state space
of factors (of type III1)6; hypothesis testing 3 iii) measures for quantum
entanglement 4,19; iv) uncertainty relations24,25,21,27,7,10,11,12,13.

Such a variety should be not surprising at the light of the result showing
that WY D-information is just an example of monotone metric, namely it
is a member of the vast family of quantum Fisher informations 9. On the
other hand one can prove that, among the family of all the quantum Fisher
informations, the geometry of WY D-information is rather special8,16.

In this paper we want to discuss the particular features of WY D-
information emphasizing the relation with the embedding of quantum dy-
namics in Lp-spaces.

2. Preliminary notions of matrix analysis

Let Mn := Mn(C) (resp.Mn,sa := Mn(C)sa) be the set of all n×n complex
matrices (resp. all n × n self-adjoint matrices). We shall denote general
matrices by X, Y, ... while letters A, B, ... (or H) will be used for self-adjoint
matrices. Let Dn be the set of strictly positive elements of Mn while D1

n ⊂
Dn is the set of density matrices namely

D1
n = {ρ ∈ Mn|Trρ = 1, ρ > 0}.

The tangent space to D1
n at ρ is given by TρD

1
n ≡ {A ∈ Mn,sa : Tr(A) = 0},

and can be decomposed as TρD1
n = (TρD1

n)c ⊕ (TρD1
n)o, where (TρD1

n)c :=
{A ∈ TρD1

n : [A, ρ] = 0}, and (TρD1
n)o is the orthogonal complement of

(TρD1
n)c, with respect to the Hilbert-Schmidt scalar product 〈A, B〉 :=



June 19, 2008 15:33 Proceedings Trim Size: 9in x 6in 080619wsmexico

3

〈A, B〉HS := Tr(A∗B) (the Hilbert-Schmidt norm will be denoted by || · ||).
A typical element of (TρDn)o has the form A = i[ρ, H], where H is self-
adjoint.

In what follows we shall need the following result (pag. 124 in2).

Proposition 2.1. Let A ∈ Mn,sa be decomposed as

A = Ac + i[q, H]

where q ∈ Dn, [Ac, q] = 0 and H ∈ Mn,sa. Suppose ϕ ∈ C1(0, +∞). Then

(Dqϕ)(A) = ϕ′(q)Ac + i[ϕ(q), H].

3. Schrödinger equation and quantum dynamics

Let ρ(t) be a curve in D1
n and let H ∈ Mn,sa We say that ρ(t) satisfy the

Schrödinger equation w.r.t. H if

d
dt

ρ(t) = i[ρ(t), H].

This equation is also known in the literature as the Landau-von Neumann
equation.

The solution of the above evolution equation (please note that H is time
independent) is given by

ρH (t) := e−itHρeitH . (1)

Therefore the commutator i[ρ, H] appears as the tangent vector to the
quantum trajectory (1) (at the initial point ρ = ρH (0)) generated by H.
Suppose we are considering two different evolutions determined, through
the Schrödinger equation, by H and K. If we want to quantify how “differ-
ent” the trajectories ρH (t), ρK(t) are, then it would be natural to measure
the “area” spanned by the tangent vectors i[ρ, H], i[ρ, K] (with respect to
some scalar product10).

4. Lp-embedding for states and trajectories

The functions

ρ → ρβ

β
, β ∈ (0, 1)

are known as Amari-Nagaoka embeddings1,14. They can be considered as
an immersion of the state manifold into Lp-spheres.
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Proposition 4.1. Let ρ(t) be a curve in D1
n, let H ∈ Mn,sa and let β ∈

(0, 1). The following differential equations are equivalent

d
dt

ρ(t) = i[ρ(t), H], (1)

d
dt

(
ρ(t)β

)
= i[ρ(t)β , H]. (2)

Proof. Let φβ(ρ) := ρβ . By Proposition 2.1 we get

d
dt

(
ρ(t)β

)
= Dρφβ◦

d
dt

ρ(t) = Dρφβ(i[ρ(t), H]) = (i[φβ(ρ(t)), H]) = i[ρ(t)β , H].

Therefore, Equation (1) implies Equation (2). Analogously, again using
Proposition 2.1, Equation (2) implies Equation (1) because we have

d
dt

(ρ(t)) =
d
dt

((
ρ(t)β

) 1
β

)
= D(ρ(t)β)φ

−1
β ◦ d

dt

(
ρ(t)β

)
= D(ρ(t)β )φ

−1
β ◦i[ρ(t)β , H] =

= D(g(t))φ
−1
β ◦ i[g(t), H] = i[φ−1

β (g(t)), H] = i[ρ(t), H].

5. W Y D-information by pairing of dual trajectories

The Wigner-Yanase-Dyson information is defined as

Iβ
ρ (H) := −1

2
Tr([ρβ, H] · [ρ1−β, H]), β ∈ (0, 1).

Let us explain the link between Lp-embeddings and WY D-information.
Let V, W be vector spaces over R (or C). One says that there is a duality
pairing if there exists a separating bilinear form

〈·, ·〉 : V × W → R (C).

In the case of Lp spaces the pairing is given by the L2 scalar product. In
our case this is just the HS-scalar product.

Note that using the function ρ → ρβ we may look at dynamics as a
curve on a L

1
β -sphere. The function ρ → ρ1−β does the same on the dual

space
(
L

1
β

)∗
= L

1
1−β .

Proposition 5.1. If ρ(t) satisfies the Schrödinger equation w.r.t. H then

〈 d
dt

ρ(t)β ,
d
dt

ρ(t)1−β〉 = 2 · Iβ
ρ(t)(H) β ∈ (0, 1).
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Proof. Apply Proposition 4.1 to obtain

〈 d
dt

(
ρ(t)β

)
,

d
dt

(
ρ(t)1−β

)
〉 = 〈i[ρ(t)β , H], i[ρ(t)1−β, H]〉 = −Tr([ρ(t)β , H]·[ρ(t)1−β, H]).

In this way WY D-information appears as the “pairing” of the dual
Lp-embeddings of the same quantum trajectory.

6. Quantum Fisher informations

In the commutative case a Markov morphism is a stochastic map T : Rn →
Rk. In the noncommutative case a Markov morphism is a completely posi-
tive and trace preserving operator T : Mn → Mk. Let

Pn := {ρ ∈ Rn|ρi > 0} P1
n := {ρ ∈ Rn|

∑
ρi = 1, ρi > 0}.

In the commutative case a monotone metric is a family of Riemannian
metrics g = {gn} on {P1

n}, n ∈ N, such that

gm
T (ρ)(TX, TX) ≤ gn

ρ (X, X)

holds for every Markov morphism T : Rn → Rm and all ρ ∈ P1
n and

X ∈ TρP1
n.

In perfect analogy, a monotone metric in the noncommutative case is a
family of Riemannian metrics g = {gn} on {D1

n}, n ∈ N, such that

gm
T (ρ)(TX, TX) ≤ gn

ρ (X, X)

holds for every Markov morphism T : Mn → Mm and all ρ ∈ D1
n and

X ∈ TρD1
n.

Let us recall that a function f : (0,∞) → R is called operator monotone
if, for any n ∈ N, any A, B ∈ Mn such that 0 ≤ A ≤ B, the inequalities
0 ≤ f(A) ≤ f(B) hold. An operator monotone function is said symmetric if
f(x) := xf(x−1). With such operator monotone functions f one associates
the so-called Chentsov–Morotzova functions

cf (x, y) :=
1

yf(xy−1)
for x, y > 0.

Define Lρ(A) := ρA, and Rρ(A) := Aρ. Since Lρ and Rρ commute we may
define c(Lρ, Rρ) (this is just the inverse of the operator mean associated to
f by Kubo-Ando theory10). Now we can state the fundamental theorems
about monotone metrics. In what follows uniqueness and classification are
stated up to scalars (for reference see 26).
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Theorem 6.1. (Chentsov 1982) There exists a unique monotone metric
on P1

n given by the Fisher information.

Theorem 6.2. (Petz 1996) There exists a bijective correspondence between
monotone metrics on D1

n and symmetric operator monotone functions. For
ρ ∈ D1

n, this correspondence is given by the formula

gf (A, B) := gf,ρ(A, B) := Tr(A · cf (Lρ, Rρ)(B)).

Because of these two theorems, the terms “Monotone Metrics” and
“Quantum Fisher Informations” are used with the same meaning.

Note that usually monotone metrics are normalized so that [A, ρ] = 0
implies gf,ρ(A, A) = Tr(ρ−1A2), that is equivalent to set f(1) = 1.

7. The W Y D monotone metric

The following functions are symmetric, normalized and operator monotone
(see 9,16). Let

fβ(x) := β(1 − β)
(x − 1)2

(xβ − 1)(x1−β − 1)
β ∈ (0, 1).

Proposition 7.1. For the QFI associated to fβ one has

gfβ (i[ρ, H], i[ρ, K]) = − 1
β(1 − β)

Tr([ρβ , H] · [ρ1−β, K]) β ∈ (0, 1).

One can find a proof in 9,16. Because of the above Proposition, gβ is
known as WY D(β) monotone metric.

Of course what we have seen about Lp-embedding of quantum dynamics
applies to this example of quantum Fisher information. Indeed we can
summarize everything into the following final result.

Proposition 7.2.
Let H, K be selfadjoint matrices and ρ be a density matrix. Choose two

curves ρ(t), σ(t) ⊂ D1
n such that

i) ρ(t) satisfies the Schrödinger equation w.r.t. H;
ii) σ(t) satisfies the Schrödinger equation w.r.t. K;
iii) ρ = ρ(0) = σ(0).
One has

gfβ (i[ρ, H], i[ρ, K]) = 〈 d
dt

(
ρ(t)β

β

)
,

d
dt

(
σ(t)1−β

1 − β

)
〉|t=0 β ∈ (0, 1)
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Proof. From Proposition 7.1, one gets

gfβ (i[ρ, H], i[ρ, K]) = − 1
β(1−β)Tr([ρβ , H] · [ρ1−β, K])

= − 1
β(1−β)

Tr([ρ(t)β , H] · [σ(t)1−β, K])|t=0

= 〈 d
dt

(
ρ(t)β

β

)
, d

dt

(
σ(t)1−β

1−β

)
〉|t=0

8. Conclusion

All the ingredients of the above construction make sense on a von Neumann
algebra: WY D-information, quantum dynamics, Lp-spaces, Amari-Nagoka
embeddings and so on20,14. Nevertheless we are not aware of any attempt to
see geometry of WY D-information along the lines described in the present
paper, in the infinite-dimensional context. We plan to address this problem
in future work.
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5. N. N. Čencov, Statistical decision rules and optimal inference. American Math-
ematical Society, Providence, R.I., (1982). Translation from the Russian edited
by Lev J. Leifman.

6. A. Connes and E.Stormer. Homogeneity of the state space of factors of type
III1, J. Funct. Anal., 28, 187–196, (1978).

7. F. Hansen. Metric adjusted skew information, arXiv:math-ph/0607049v3,
(2006).

8. H. Hasegawa, Dual geometry of the Wigner-Yanase-Dyson information con-
tent, Inf. Dim. Anal. Quant Prob. & Rel. Top., 6, 413-431, (2003).

9. H. Hasegawa and D.Petz, Noncommutative extension of the information ge-
ometry II. In Quantum communications and measurement, pages 109–118.
Plenum, New York, (1997).

10. P. Gibilisco, D. Imparato, and T. Isola, Uncertainty principle and quantum
Fisher information II. J. Math. Phys., 48: 072109, (2007).



June 19, 2008 15:33 Proceedings Trim Size: 9in x 6in 080619wsmexico

8

11. P. Gibilisco, D. Imparato and T. Isola, Inequality for quantum Fisher in-
formation. To appear on Proc. Amer. Math. Soc. arXiv:math-ph/0702058,
(2007).

12. P. Gibilisco, D. Imparato, D. and T. Isola, A volume inequality for quantum
Fisher information and the uncertainty principle. J. Stat. Phys., 130(3): 545-
559, (2008).

13. P. Gibilisco, D. Imparato and T. Isola, A Robertson-type uncertainty prin-
ciple and quantum Fisher information. Lin. Alg. Appl., 428(7), 1706–1724,
(2008).

14. P.Gibilisco and T. Isola. Connections on Statistical manifolds of Density Op-
erators by Geometry of Noncommutative Lp-Spaces, Inf. Dim. Anal. Quant
Prob. & Rel. Top., 2 169-178, (1999).

15. P.Gibilisco and T. Isola. Wigner-Yanase information on quantum state space:
the geometric approach, J. Math. Phys., 44(9): 3752-3762, (2003).

16. P.Gibilisco and T. Isola. , On the characterization of paired monotone met-
rics, Ann. Ins. Stat. Math., 56(2): 369-381, (2004).

17. P.Gibilisco and T. Isola. On the monotonicity of scalar curvature in classical
and quantum information geometry, J. Math. Phys., 46(2): 023501,14, (2005).

18. P.Gibilisco and G. Pistone. Connections on nonparametric statistical mani-
folds by Orlicz space geometry, Inf. Dim. Anal. Quant Prob. & Rel. Top., 1
325-347, (1998).

19. A. Klyachko, B. Oztop and A. S. Shumovsky. Measurable entanglement,
Appl. Phys. Lett., 88, 124102, (2006).

20. H. Kosaki. Interpolation theory and the Wigner-Yanase-Dyson-Lieb concav-
ity. Comm. Math. Phys., 87, no. 3, 315–329, (1982/83).

21. H. Kosaki. Matrix trace inequalities related to uncertainty principle, Inter.
Jour. Math., 6 629-645, (2005).

22. E. Lieb, Convex trace functions and the Wigner-Yanase-Dyson conjecture.
Advances in Math. 11, 267–288, (1973) .

23. E. Lieb and M.B. Ruskai, A fundamental property of the quantum mechanical
entropy, Phys. Rev. Lett. 30, 434436, (1973).

24. S. Luo and Q. Zhang. On skew information, IEEE Trans. Infor. Theory,
50(8), 1778-1782, (2004).

25. S. Luo and Z. Zhang. An informational characterization of Schrödinger’s
uncertainty relations, J. Stat. Phys., 114, 1557-1576, (2004).

26. D. Petz, Monotone metrics on matrix spaces. Linear Algebra Appl., 244:81–
96, (1996).

27. K. Yanagi, S. Furuichi and K. Kuriyama, A generalized skew information and
uncertainty relation. IEEE Trans. Inform. Theory, 51(12):4401–4404, (2005).

28. E. P. Wigner and M. M. Yanase , Information content of distributions. Proc.
Nat. Acad. Sci. USA 49: 910–918, (1963).


