080619wsmexico

SCHRÖDINGER EQUATION, L^P-DUALITY AND THE GEOMETRY OF WIGNER-YANASE-DYSON INFORMATION

P. GIBILISCO

Dipartimento SEFEMEQ, Facoltà di Economia, Università di Roma "Tor Vergata", Via Columbia 2, 00133 Rome, Italy E-mail: gibilisco@volterra.uniroma2.it URL: http://www.economia.uniroma2.it/sefemeq/professori/gibilisco

D. IMPARATO

Dipartimento di Matematica, Politecnico di Torino, Corso Duca degli Abruzzi, 10129 Turin, Italy E-mail: daniele.imparato@polito.it

T. ISOLA

Dipartimento di Matematica, Università di Roma "Tor Vergata", Via della Ricerca Scientifica, 00133 Rome, Italy E-mail: isola@mat.uniroma2.it URL: http://www.mat.uniroma2.it/~isola

We discuss the geometry of Wigner-Yanase-Dyson information via the so-called Amari-Nagaoka embeddings in L^p -spaces of quantum trajectories.

1. Introduction

The Wigner-Yanase-Dyson information was introduced in 1963²⁸. Wigner and Yanase observed that "According to quantum mechanical theory, some observables can be measured much more easily than others: the observables which commute with the additive conserved quantities ... can be measured with microscopic apparatuses; those which do not commute with these quantities need for their measurements macroscopic systems. Hence the problem of defining a measure of our knowledge with respect to the

080619wsmexico

latter quantities arises ...". After the discussion of the requirements such a measure should satisfy (convexity, ...) they proposed, tentatively, the following formula and called it *skew information*:

$$I_{\rho}(A) := -\frac{1}{2} \operatorname{Tr}([\rho^{\frac{1}{2}}, A]^2).$$

More generally they defined (following a suggestion by Dyson)

$$I_{\rho}^{\beta}(A) := -\frac{1}{2} \text{Tr}([\rho^{\beta}, A] \cdot [\rho^{1-\beta}, A]), \qquad \beta \in [0, 1].$$

The latter is known as WYD-information. The skew information should be considered as a measure of information contained in a state ρ with respect to a conserved observable A.

From that fundamental work WYD-information has found applications in a manifold of different fields. A possibly incomplete list should mention: i) strong subadditivity of entropy^{23,22}; ii) homogeneity of the state space of factors (of type III₁)⁶; hypothesis testing ³ iii) measures for quantum entanglement ^{4,19}; iv) uncertainty relations^{24,25,21,27,7,10,11,12,13}.

Such a variety should be not surprising at the light of the result showing that WYD-information is just an example of monotone metric, namely it is a member of the vast family of quantum Fisher informations⁹. On the other hand one can prove that, among the family of all the quantum Fisher informations, the geometry of WYD-information is rather special^{8,16}.

In this paper we want to discuss the particular features of WYDinformation emphasizing the relation with the embedding of quantum dynamics in L^p -spaces.

2. Preliminary notions of matrix analysis

Let $M_n := M_n(\mathbb{C})$ (resp. $M_{n,sa} := M_n(\mathbb{C})_{sa}$) be the set of all $n \times n$ complex matrices (resp. all $n \times n$ self-adjoint matrices). We shall denote general matrices by X, Y, \ldots while letters A, B, \ldots (or H) will be used for self-adjoint matrices. Let D_n be the set of strictly positive elements of M_n while $D_n^1 \subset$ D_n is the set of density matrices namely

$$D_n^1 = \{ \rho \in M_n | \operatorname{Tr} \rho = 1, \, \rho > 0 \}.$$

The tangent space to D_n^1 at ρ is given by $T_\rho D_n^1 \equiv \{A \in M_{n,sa} : \operatorname{Tr}(A) = 0\}$, and can be decomposed as $T_\rho D_n^1 = (T_\rho D_n^1)^c \oplus (T_\rho D_n^1)^o$, where $(T_\rho D_n^1)^c := \{A \in T_\rho D_n^1 : [A, \rho] = 0\}$, and $(T_\rho D_n^1)^o$ is the orthogonal complement of $(T_\rho D_n^1)^c$, with respect to the Hilbert-Schmidt scalar product $\langle A, B \rangle :=$

 $\langle A, B \rangle_{HS} := \text{Tr}(A^*B)$ (the Hilbert-Schmidt norm will be denoted by $|| \cdot ||$). A typical element of $(T_{\rho}D_n)^o$ has the form $A = i[\rho, H]$, where H is self-adjoint.

In what follows we shall need the following result (pag. 124 in^2).

Proposition 2.1. Let $A \in M_{n,sa}$ be decomposed as

$$A = A^c + i[q, H]$$

where $q \in D_n$, $[A^c, q] = 0$ and $H \in M_{n,sa}$. Suppose $\varphi \in C^1(0, +\infty)$. Then $(D_q \varphi)(A) = \varphi'(q) A^c + i[\varphi(q), H].$

3. Schrödinger equation and quantum dynamics

Let $\rho(t)$ be a curve in D_n^1 and let $H \in M_{n,sa}$ We say that $\rho(t)$ satisfy the Schrödinger equation w.r.t. H if

$$\frac{\mathrm{d}}{\mathrm{d}t}\rho(t) = i[\rho(t), H].$$

This equation is also known in the literature as the Landau-von Neumann equation.

The solution of the above evolution equation (please note that H is time independent) is given by

$$\rho_H(t) := e^{-itH} \rho e^{itH}.$$
(1)

Therefore the commutator $i[\rho, H]$ appears as the tangent vector to the quantum trajectory (1) (at the initial point $\rho = \rho_H(0)$) generated by H. Suppose we are considering two different evolutions determined, through the Schrödinger equation, by H and K. If we want to quantify how "different" the trajectories $\rho_H(t), \rho_K(t)$ are, then it would be natural to measure the "area" spanned by the tangent vectors $i[\rho, H], i[\rho, K]$ (with respect to some scalar product¹⁰).

4. L^p -embedding for states and trajectories

The functions

$$\rho \to \frac{\rho^{\beta}}{\beta}, \quad \beta \in (0,1)$$

are known as Amari-Nagaoka embeddings^{1,14}. They can be considered as an immersion of the state manifold into L^p -spheres.

 $\mathbf{4}$

080619wsmexico

Proposition 4.1. Let $\rho(t)$ be a curve in D_n^1 , let $H \in M_{n,sa}$ and let $\beta \in (0, 1)$. The following differential equations are equivalent

$$\frac{\mathrm{d}}{\mathrm{d}t}\rho(t) = i[\rho(t), H],\tag{1}$$

$$\frac{\mathrm{d}}{\mathrm{d}t}\left(\rho(t)^{\beta}\right) = i[\rho(t)^{\beta}, H].$$
(2)

Proof. Let $\phi_{\beta}(\rho) := \rho^{\beta}$. By Proposition 2.1 we get

$$\frac{\mathrm{d}}{\mathrm{d}t}\left(\rho(t)^{\beta}\right) = D_{\rho}\phi_{\beta}\circ\frac{\mathrm{d}}{\mathrm{d}t}\rho(t) = D_{\rho}\phi_{\beta}(i[\rho(t),H]) = (i[\phi_{\beta}(\rho(t)),H]) = i[\rho(t)^{\beta},H].$$

Therefore, Equation (1) implies Equation (2). Analogously, again using Proposition 2.1, Equation (2) implies Equation (1) because we have

$$\frac{\mathrm{d}}{\mathrm{d}t}(\rho(t)) = \frac{\mathrm{d}}{\mathrm{d}t}\left(\left(\rho(t)^{\beta}\right)^{\frac{1}{\beta}}\right) = D_{(\rho(t)^{\beta})}\phi_{\beta}^{-1}\circ\frac{\mathrm{d}}{\mathrm{d}t}\left(\rho(t)^{\beta}\right) = D_{(\rho(t)^{\beta})}\phi_{\beta}^{-1}\circ i[\rho(t)^{\beta}, H] = \\ = D_{(g(t))}\phi_{\beta}^{-1}\circ i[g(t), H] = i[\phi_{\beta}^{-1}(g(t)), H] = i[\rho(t), H]. \quad \Box$$

5. WYD-information by pairing of dual trajectories

The Wigner-Yanase-Dyson information is defined as

$$I_{\rho}^{\beta}(H) := -\frac{1}{2} \text{Tr}([\rho^{\beta}, H] \cdot [\rho^{1-\beta}, H]), \qquad \beta \in (0, 1).$$

Let us explain the link between L^p -embeddings and WYD-information. Let V, W be vector spaces over \mathbb{R} (or \mathbb{C}). One says that there is a duality pairing if there exists a separating bilinear form

$$\langle \cdot, \cdot \rangle : V \times W \to \mathbb{R} (\mathbb{C}).$$

In the case of L^p spaces the pairing is given by the L^2 scalar product. In our case this is just the *HS*-scalar product.

Note that using the function $\rho \to \rho^{\beta}$ we may look at dynamics as a curve on a $L^{\frac{1}{\beta}}$ -sphere. The function $\rho \to \rho^{1-\beta}$ does the same on the dual space $\left(L^{\frac{1}{\beta}}\right)^* = L^{\frac{1}{1-\beta}}$.

Proposition 5.1. If $\rho(t)$ satisfies the Schrödinger equation w.r.t. H then

$$\langle \frac{\mathrm{d}}{\mathrm{d}t} \rho(t)^{\beta}, \frac{\mathrm{d}}{\mathrm{d}t} \rho(t)^{1-\beta} \rangle = 2 \cdot I^{\beta}_{\rho(t)}(H) \qquad \beta \in (0,1)$$

Proof. Apply Proposition 4.1 to obtain

$$\left\langle \frac{\mathrm{d}}{\mathrm{d}t} \left(\rho(t)^{\beta} \right), \frac{\mathrm{d}}{\mathrm{d}t} \left(\rho(t)^{1-\beta} \right) \right\rangle = \left\langle i[\rho(t)^{\beta}, H], i[\rho(t)^{1-\beta}, H] \right\rangle = -\mathrm{Tr}([\rho(t)^{\beta}, H] \cdot [\rho(t)^{1-\beta}, H])$$

In this way WYD-information appears as the "pairing" of the dual L^p -embeddings of the same quantum trajectory.

6. Quantum Fisher informations

In the commutative case a Markov morphism is a stochastic map $T : \mathbb{R}^n \to \mathbb{R}^k$. In the noncommutative case a Markov morphism is a completely positive and trace preserving operator $T : M_n \to M_k$. Let

$$\mathcal{P}_n := \{ \rho \in \mathbb{R}^n | \rho_i > 0 \} \qquad \mathcal{P}_n^1 := \{ \rho \in \mathbb{R}^n | \sum \rho_i = 1, \, \rho_i > 0 \}.$$

In the commutative case a monotone metric is a family of Riemannian metrics $g = \{g^n\}$ on $\{\mathcal{P}_n^1\}$, $n \in \mathbb{N}$, such that

$$g^m_{T(\rho)}(TX,TX) \le g^n_\rho(X,X)$$

holds for every Markov morphism $T : \mathbb{R}^n \to \mathbb{R}^m$ and all $\rho \in \mathcal{P}_n^1$ and $X \in T_\rho \mathcal{P}_n^1$.

In perfect analogy, a monotone metric in the noncommutative case is a family of Riemannian metrics $g = \{g^n\}$ on $\{\mathcal{D}_n^1\}$, $n \in \mathbb{N}$, such that

$$g_{T(\rho)}^m(TX,TX) \le g_{\rho}^n(X,X)$$

holds for every Markov morphism $T: M_n \to M_m$ and all $\rho \in \mathcal{D}_n^1$ and $X \in T_\rho \mathcal{D}_n^1$.

Let us recall that a function $f: (0, \infty) \to \mathbb{R}$ is called operator monotone if, for any $n \in \mathbb{N}$, any $A, B \in M_n$ such that $0 \leq A \leq B$, the inequalities $0 \leq f(A) \leq f(B)$ hold. An operator monotone function is said symmetric if $f(x) := xf(x^{-1})$. With such operator monotone functions f one associates the so-called Chentsov–Morotzova functions

$$c_f(x,y) := \frac{1}{yf(xy^{-1})}$$
 for $x, y > 0$.

Define $L_{\rho}(A) := \rho A$, and $R_{\rho}(A) := A\rho$. Since L_{ρ} and R_{ρ} commute we may define $c(L_{\rho}, R_{\rho})$ (this is just the inverse of the operator mean associated to f by Kubo-Ando theory¹⁰). Now we can state the fundamental theorems about monotone metrics. In what follows uniqueness and classification are stated up to scalars (for reference see ²⁶).

5

Theorem 6.1. (Chentsov 1982) There exists a unique monotone metric on \mathcal{P}_n^1 given by the Fisher information.

Theorem 6.2. (Petz 1996) There exists a bijective correspondence between monotone metrics on \mathcal{D}_n^1 and symmetric operator monotone functions. For $\rho \in \mathcal{D}_n^1$, this correspondence is given by the formula

$$g_f(A,B) := g_{f,\rho}(A,B) := \operatorname{Tr}(A \cdot c_f(L_\rho, R_\rho)(B)).$$

Because of these two theorems, the terms "Monotone Metrics" and "Quantum Fisher Informations" are used with the same meaning.

Note that usually monotone metrics are normalized so that $[A, \rho] = 0$ implies $g_{f,\rho}(A, A) = \text{Tr}(\rho^{-1}A^2)$, that is equivalent to set f(1) = 1.

7. The WYD monotone metric

The following functions are symmetric, normalized and operator monotone (see 9,16). Let

$$f_{\beta}(x) := \beta(1-\beta) \frac{(x-1)^2}{(x^{\beta}-1)(x^{1-\beta}-1)} \qquad \beta \in (0,1).$$

Proposition 7.1. For the QFI associated to f_{β} one has

$$g_{f_{\beta}}(i[\rho, H], i[\rho, K]) = -\frac{1}{\beta(1-\beta)} \operatorname{Tr}([\rho^{\beta}, H] \cdot [\rho^{1-\beta}, K]) \qquad \beta \in (0, 1).$$

One can find a proof in ^{9,16}. Because of the above Proposition, g_{β} is known as $WYD(\beta)$ monotone metric.

Of course what we have seen about L^p -embedding of quantum dynamics applies to this example of quantum Fisher information. Indeed we can summarize everything into the following final result.

Proposition 7.2.

Let H, K be selfadjoint matrices and ρ be a density matrix. Choose two curves $\rho(t), \sigma(t) \subset D_n^1$ such that

i) $\rho(t)$ satisfies the Schrödinger equation w.r.t. H; ii) $\sigma(t)$ satisfies the Schrödinger equation w.r.t. K; iii) $\rho = \rho(0) = \sigma(0)$. One has

$$g_{f_{\beta}}(i[\rho, H], i[\rho, K]) = \langle \frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{\rho(t)^{\beta}}{\beta} \right), \frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{\sigma(t)^{1-\beta}}{1-\beta} \right) \rangle|_{t=0} \qquad \beta \in (0, 1)$$

Proof. From Proposition 7.1, one gets

$$g_{f_{\beta}}(i[\rho, H], i[\rho, K]) = -\frac{1}{\beta(1-\beta)} \operatorname{Tr}([\rho^{\beta}, H] \cdot [\rho^{1-\beta}, K])$$
$$= -\frac{1}{\beta(1-\beta)} \operatorname{Tr}([\rho(t)^{\beta}, H] \cdot [\sigma(t)^{1-\beta}, K])|_{t=0}$$
$$= \langle \frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{\rho(t)^{\beta}}{\beta}\right), \frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{\sigma(t)^{1-\beta}}{1-\beta}\right) \rangle|_{t=0}$$

8. Conclusion

All the ingredients of the above construction make sense on a von Neumann algebra: WYD-information, quantum dynamics, L^p -spaces, Amari-Nagoka embeddings and so on^{20,14}. Nevertheless we are not aware of any attempt to see geometry of WYD-information along the lines described in the present paper, in the infinite-dimensional context. We plan to address this problem in future work.

References

- S. Amari and H. Nagaoka. Methods of information geometry, volume 191 of Translations of Mathematical Monographs. American Mathematical Society, Providence, RI, 2000. Translated from the 1993 Japanese original by Daishi Harada.
- 2. R. Bhatia, Matrix analysis, Springer-Verlag, New York, (1997).
- J. Calsamiglia, R. Munoz-Tapia, L. Masanes, A. Acin and E. Bagan, Quantum Chernoff bound as a measure of distinguishability between density matrices: Application to qubit and gaussian states, *Phys. Rev. A*, 77, 032311, (2008).
- Z. Chen. Wigner-Yanase skew information as tests for quantum entanglement, *Phys. Rev. A*, 71, 052302, (2005).
- N. N. Čencov, Statistical decision rules and optimal inference. American Mathematical Society, Providence, R.I., (1982). Translation from the Russian edited by Lev J. Leifman.
- A. Connes and E.Stormer. Homogeneity of the state space of factors of type III₁, J. Funct. Anal., 28, 187–196, (1978).
- F. Hansen. Metric adjusted skew information, arXiv:math-ph/0607049v3, (2006).
- H. Hasegawa, Dual geometry of the Wigner-Yanase-Dyson information content, Inf. Dim. Anal. Quant Prob. & Rel. Top., 6, 413-431, (2003).
- H. Hasegawa and D.Petz, Noncommutative extension of the information geometry II. In *Quantum communications and measurement*, pages 109–118. Plenum, New York, (1997).
- P. Gibilisco, D. Imparato, and T. Isola, Uncertainty principle and quantum Fisher information II. J. Math. Phys., 48: 072109, (2007).

 P. Gibilisco, D. Imparato and T. Isola, Inequality for quantum Fisher information. To appear on *Proc. Amer. Math. Soc.* arXiv:math-ph/0702058, (2007).

- P. Gibilisco, D. Imparato, D. and T. Isola, A volume inequality for quantum Fisher information and the uncertainty principle. J. Stat. Phys., 130(3): 545-559, (2008).
- P. Gibilisco, D. Imparato and T. Isola, A Robertson-type uncertainty principle and quantum Fisher information. *Lin. Alg. Appl.*, 428(7), 1706–1724, (2008).
- P.Gibilisco and T. Isola. Connections on Statistical manifolds of Density Operators by Geometry of Noncommutative L^p-Spaces, Inf. Dim. Anal. Quant Prob. & Rel. Top., 2 169-178, (1999).
- P.Gibilisco and T. Isola. Wigner-Yanase information on quantum state space: the geometric approach, J. Math. Phys., 44(9): 3752-3762, (2003).
- P.Gibilisco and T. Isola., On the characterization of paired monotone metrics, Ann. Ins. Stat. Math., 56(2): 369-381, (2004).
- P.Gibilisco and T. Isola. On the monotonicity of scalar curvature in classical and quantum information geometry, J. Math. Phys., 46(2): 023501,14, (2005).
- P.Gibilisco and G. Pistone. Connections on nonparametric statistical manifolds by Orlicz space geometry, Inf. Dim. Anal. Quant Prob. & Rel. Top., 1 325-347, (1998).
- A. Klyachko, B. Oztop and A. S. Shumovsky. Measurable entanglement, Appl. Phys. Lett., 88, 124102, (2006).
- H. Kosaki. Interpolation theory and the Wigner-Yanase-Dyson-Lieb concavity. Comm. Math. Phys., 87, no. 3, 315–329, (1982/83).
- H. Kosaki. Matrix trace inequalities related to uncertainty principle, *Inter. Jour. Math.*, 6 629-645, (2005).
- E. Lieb, Convex trace functions and the Wigner-Yanase-Dyson conjecture. Advances in Math. 11, 267–288, (1973).
- E. Lieb and M.B. Ruskai, A fundamental property of the quantum mechanical entropy, *Phys. Rev. Lett.* 30, 434436, (1973).
- S. Luo and Q. Zhang. On skew information, *IEEE Trans. Infor. Theory*, 50(8), 1778-1782, (2004).
- S. Luo and Z. Zhang. An informational characterization of Schrödinger's uncertainty relations, J. Stat. Phys., 114, 1557-1576, (2004).
- D. Petz, Monotone metrics on matrix spaces. *Linear Algebra Appl.*, 244:81– 96, (1996).
- K. Yanagi, S. Furuichi and K. Kuriyama, A generalized skew information and uncertainty relation. *IEEE Trans. Inform. Theory*, 51(12):4401–4404, (2005).
- E. P. Wigner and M. M. Yanase, Information content of distributions. Proc. Nat. Acad. Sci. USA 49: 910–918, (1963).