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Abstract

We prove a version of Stam inequality for random variables taking values on the circle S1.
Furthermore we prove that equality occurs only for the uniform distribution.

1 Introduction

It is well-known that the Gaussian, Poisson, Wigner and (discrete) uniform distributions are maximum
entropy distributions in the appropriate context (for example see [17, 5, 6]). On the other hand all
the above quoted distributions can be characterized as those distributions giving equality in the Stam
inequality. Let us describe what Stam inequality is about.

The Fisher information IX of a real random variable (with strictly positive differentiable density
function f) is defined as

IX :=
∫

(f ′(x)/f(x))2f(x)dx. (1.1) stamfish

If X, Y are independent random variables such that IX , IY < ∞, Stam was able to prove the inequality

1
IX+Y

≥ 1
IX

+
1
IY

, (1.2) stamq

where equality holds iff X, Y are Gaussian (see [15, 1]).
It is difficult to overestimate the importance of the above result because of its links with other

important results in analysis, probability, statistics, information theory, statistical mechanics and so on
(see [2, 3, 8, 16]). Different proofs and deep generalizations of the theorem appear in the recent literature
on the subject (see [18, 12]).

A free analogue of Fisher information has been introduced in free probability. Also in this case one
can prove a Stam-like inequality. It is not surprising that the equality case characterizes the Wigner
distribution that, in many respects, is the free analogue of the Gaussian distribution (see [17]).

In the discrete setting, one can introduce appropriate versions of Fisher information and prove the
Stam inequality. On the integers Z, equality characterizes the Poisson distribution, while on the cyclic
group Zn, equality occurs for the uniform distribution (see [7, 14, 9, 10, 11, 13, 4]).

In this short note we show that also on the circle S1 one can prove a version of Stam inequality. This
result is obtained by suitable modifications of the standard proofs. Moreover, equality occurs for the
maximum entropy distribution, namely for the uniform distribution on the circle.
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2 Fisher information and Stam inequality on R
Let f : R → R be a differentiable, strictly positive density. One may define the f -score Jf : R → R by

Jf :=
f ′

f
.

Note that Jf is f -centered in the sense that Ef (Jf ) = 0. In general, if X : (Ω,F, p) → R is a random
variable with density f , we write JX = Jf and

IX = Varf (Jf ) = Ef [J2
f ];

namely

IX :=
∫

R
(f ′(x)/f(x))2f(x)dx. (2.1) stamfish

Let us suppose that IX , IY < ∞.

Theorem 2.1. [15] If X, Y : (Ω,F, p) → R are independent random variables then

1
IX+Y

≥ 1
IX

+
1
IY

, (2.2) stamineq0

with equality if and only if X, Y are Gaussian.

3 Stam inequality on S1

We denote by S1 the circle group, namely the multiplicative subgroup of C \ {0} defined as

S1 := {z ∈ C : |z| = 1}.

We say that a function f : S1 → R has a tangential derivative in z ∈ S1 if the following limit exists and
is finite

DT f(z) := lim
h→0

1
h

[
f(zeih)− f(z)

]
.

From now on we consider functions f : S1 → R that are twice differentiable strictly positive densities.
Then, the f -score is defined as

Jf :=
DT f

f
,

and is f -centered, in the sense that Ef (Jf ) = 0, where Ef (g) :=
∫

S1 gf dµ, and µ is the normalized Haar
measure on S1.

If X : (Ω,F, p) → S1 is a random variable with density f , we write JX = Jf and define the Fisher
information as

IX := Varf (Jf ) = Ef [J2
f ].

The main result of this paper is the proof of the following version of Stam inequality on the circle.

Theorem 3.1. If X, Y : (Ω,F, p) → S1 are independent random variables then

1
IXY

≥ 1
IX

+
1
IY

, (3.1) cerchiostam

with equality if and only if X or Y are uniform.
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4 Proof of the main result

To prove our result we identify S1 with the interval [0, 2π], where 0 and 2π are identified and the sum
is modulo 2π. Any function f : [0, 2π] → R, such that f(0) = f(2π), can be thought of as a function on
S1. In this representation, tangential derivative must be substituted by ordinary derivative.

In this context, a density will be a nonnegative function f : [0, 2π] → R such that

1
2π

∫ 2π

0

f(θ)dθ = 1.

The uniform density is the function

f(θ) = 1, ∀θ ∈ [0, 2π].

From now on, we shall consider f belonging to the class

P :=
{

f : [0, 2π] → R
∣∣∣∣ ∫ 2π

0

f(θ)dθ = 2π, f > 0 a.e, f twice differentiable , f (k)(0) = f (k)(2π), k = 0, 1, 2
}

.

Let f ∈ P; then ∫ 2π

0

f ′(θ)dθ = 0

and therefore

Jf :=
f ′

f

is f -centered. Note that Jf (0) = Jf (2π).
If X : (Ω,F, p) → [0, 2π] is a random variable with density f ∈ P, from the score JX := Jf it is

possible to define the Fisher information

IX := Varf (Jf ) = Ef [J2
f ].

In this additive (modulo 2π) context the main result we want to prove takes the following (more
traditional) form.

Theorem 4.1. If X, Y : (Ω,F, p) → [0, 2π] are independent random variables then

1
IX+Y

≥ 1
IX

+
1
IY

, (4.1) additivecerchiostam

with equality if and only if X or Y are uniform

Note that, since [0, 2π] is compact, the condition IX < ∞ always holds. However, we cannot ensure
in general that IX 6= 0. In fact, it is easy to characterize this degenerate case.

fundamental Proposition 4.2. The following conditions are equivalent

(i) X has uniform distribution;

(ii) IX = 0;

(iii) JX = constant.

Proof. (i) =⇒ (ii) Obvious.
(ii) =⇒ (iii) Obvious.
(iii) =⇒ (i) Let JX(x) = β for every x. Then fX is the solution of the differential equation

f ′X(x)
fX(x)

= β, f(0) = f(2π).

Thus fX(x) = ceβx and the symmetry condition implies β = 0, so that fX is the uniform distribution.
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Proposition 4.3. Let X, Y : (Ω,F, p) → [0, 2π] be independent random variables such that their densities
belong to P. If X (or Y ) has a uniform distribution then

1
IX+Y

=
1

IX
+

1
IY

,

in the sense that both sides of equality are equal to infinity.

Proof. Because of independence one has, by the convolution formula, that if X is uniform so is X + Y
and therefore we are done by Proposition 4.2.

Because of the above proposition, in what follows we consider random variables with strictly positive
Fisher information. Before the proof of the main result, we need the following lemma.

Lemma 4.4. Let X, Y : (Ω,F, p) → [0, 2π] be two independent random variables with densities fX , fY ∈
P and let Z := X + Y . Then

JZ(Z) = Ep[JX(X)|Z] = Ep[JY (Y )|Z]. (4.2) eqlem3

lem3

Proof. Let fZ be the density of Z; namely,

fZ(z) =
1
2π

∫ 2π

0

fX(z − y)fY (y)dy, z ∈ [0, 2π],

with fZ ∈ P. Then,

f ′(z) =
1
2π

d

dz

∫ 2π

0

fX(z − y)fY (y)dy

=
1
2π

∫ 2π

0

fY (y)f ′X(z − y)dy

= f ′X ∗ fY (z).

Therefore, given z ∈ [0, 2π],

JZ(z) =
f ′Z(z)
fZ(z)

=
1
2π

∫ 2π

0

fX(x)fY (z − x)
fZ(z)

f ′X(x)
fX(x)

dx

=
1
2π

∫ 2π

0

JX(x)fX|Z(x|z)dx

= EfX
[JX |Z]

= Ep[JX(X)|Z].

Similarly, by symmetry of the convolution formula one can obtain

JZ(z) = Ep[JY (Y )|Z], z ∈ [0, 2π],

proving Lemma 4.4.

We are ready to prove the main result.
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thmstamineq Theorem 4.5. Let X, Y : (Ω,F, p) → [0, 2π] be two independent random variables such that IX , IY > 0.
Then

1
IX+Y

>
1

IX
+

1
IY

. (4.3) stamineq

Proof. Let a, b ∈ R and let Z := X + Y ; then, by Lemma 4.4

Ep[aJX(X) + bJY (Y )|Z] = aEp[JX(X)|Z] + bEp[JY (Y )|Z]

= (a + b)JZ(Z).
(4.4) equal1

Hence, applying Jensen’s inequality, we obtain

Ep[(aJX(X) + bJY (Y ))2] = Ep[Ep[(aJX(X) + bJY (Y ))2|Z]]

≥ Ep[Ep[aJX(X) + bJY (Y )|Z]2] (4.5) jen

= Ep[(a + b)2JZ(Z)2]

= (a + b)2IZ ,

and thus
(a + b)2IZ ≤ Ep[(aJX(X) + bJY (Y ))2]

= a2Ep[JX(X)2] + 2abEp[JX(X)JY (Y )] + b2Ep[JY (Y )2]

= a2IX + b2IY + 2abEp[JX(X)JY (Y )]

= a2IX + b2IY ,

where the last equality follows from independence and since the score is a centered random variable.
Now, take a := 1/IX and b := 1/IY ; then we obtain(

1
IX

+
1
IY

)2

IZ ≤ 1
IX

+
1
IY

.

It remains to be proved that equality sign cannot hold in (4.3). Define c := a + b, where, again,
a = 1/IX and b = 1/IY ; then equality holds in (4.3) if and only if

c2IZ = a2IX + b2IY . (4.6) equiv0

Let us prove that (4.6) is equivalent to

aJX(X) + bJY (Y ) = cJZ(X + Y ) a.e. (4.7) equiv

Indeed, let H := aJX(X) + bJY (Y ); then equality occurs in (4.5) if and only if

Ep[H2|Z] = (Ep[H|Z])2,

i.e.
Ep[(H − Ep[H|Z])2|Z] = 0.

Therefore, H = Ep[H|Z] a.e., so that, by (4.4),

cJZ(Z) = Ep[aJX(X) + bJY (Y )|Z] = aJX(X) + bJY (Y ) a.e.,

i.e. (4.7) is true. Conversely, if (4.7) holds, then by applying the squared power and taking the expec-
tations we obtain (4.6).
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Let x, y ∈ [0, 2π]; because of independence

fX,Y (x, y) = fX(x) · fY (y) 6= 0.

Thus, it makes sense to write equality (4.7) for x, y ∈ [0, 2π]

aJX(x) + bJY (y) = cJZ(x + y). (4.8) som

By deriving (4.8) with respect to both x and y and subtracting such relations one obtains

aJ ′
X(x) = bJ ′

Y (y), ∀x, y ∈ [0, 2π],

which implies J ′
X(x) = α = constant, i.e.

JX(x) = β + αx, x ∈ [0, 2π].

In particular, by symmetry conditions one obtains

β = JX(0) = JX(2π) = β + 2πα.

This implies α = 0, that is, JX = constant. By Proposition 4.2 one has IX = 0. This fact contradicts
the hypotheses and ends the proof.
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