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Abstract

We prove a discrete version of Stam inequality for random variables taking values on Zn.
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1 Introduction

If X is a real random variable with differentiable strictly positive density f , then the Fisher information
IX is defined as

IX :=
∫

(f ′(x)/f(x))2f(x)dx. (1.1)

Stam (1959) proved a convolution inequality for IX . More precisely, if X, Y are independent random
variables such that IX , IY < ∞, then

1
IX+Y

≥ 1
IX

+
1
IY

, (1.2)

with equality if and only if X, Y are Gaussian.
From this inequality important results like the entropy power inequality and the log-Sobolev in-

equality follow, see Blachman (1965), Carlen (1991), Kagan and Landsman (1997), Zamir (1998). For a
recent application in statistical mechanics see Villani (2003). Recently, the inequality has been greatly
generalized in Madiman and Barron (2007).

A free analogue of Stam inequality has been proved in free probability by the introduction of the
free Fisher information. In this case the equality in (1.2) characterizes the free analogue of the Gaussian
distribution, namely the semicircular Wigner distribution, see Voiculescu (1998).

Discrete analogues of the Fisher score and Fisher information have been already discussed in the lit-
erature, see Johnstone and MacGibbon (1987), Kontoyiannis, Harremoes and Johnson (2005), Madiman,
Johnson and Kontoyiannis (2007). A version of Stam inequality on the set of integers Z has been proved
by Papathanasiou (1993) and rediscovered by Kagan (2001). In this case the equality characterizes the
Poisson distribution. As noted in the final comments in Kagan (2001a), some features of Stam inequality
appear group theoretical in character.

In this paper we show that, after suitable modifications, the proof for Z applies to the cyclic group Zn

giving a further version of Stam inequality. In the present case we show that the equality characterizes the
uniform distribution. This is in some sense natural because the uniform distribution maximizes entropy
on Zn; in the appropriate contexts this is true also for the Gaussian, Poisson and Wigner distributions,
see Voiculescu (1998), Harremoes (2001), Johnson(2007).
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2 Preliminaries

We recall the formulation of Stam inequality in two cases, where it has already been proved.

2.1 Stam inequality on R
Let f : R → R be a differentiable, strictly positive density. One may define the Fisher f -score Jf : R → R
by

Jf :=
f ′

f
.

Let (Ω,F, p) be a probability space. In general, if X : (Ω,F, p) → R is a random variable with density
f we write JX = Jf and define the Fisher information (about a shift parameter) as

IX := Varf (Jf ) = Ef (J2
f );

namely,

IX =
∫

R
(f ′(x)/f(x))2f(x)dx. (2.1)

Theorem 2.1. (see Stam (1959), Blachman (1965))
If X, Y : (Ω,F, p) → R are independent random variables such that IX , IY < ∞, then

1
IX+Y

≥ 1
IX

+
1
IY

, (2.2)

with strict equality if and only if X, Y are Gaussian.

2.2 Stam inequality on Z
Let f : Z → R be a (discrete) density. We say that f belongs to the class RSP (right side positivity) if

f(k) > 0 =⇒ f(k + 1) > 0.

If f ∈ RSP , then we may define the Fisher f -score by

Jf (k) =

{
f(k)−f(k−1)

f(k) f(k) > 0,

0 f(k) = 0.

If X : (Ω,F, p) → Z is a random variable with (discrete) density f ∈ RSP we write JX = Jf and
define the Fisher information (about a shift parameter) as

IX := Varf (Jf ) = Ef (J2
f ).

Theorem 2.2. (see Papathanasiou (1993), Kagan (2001a)
If X, Y : (Ω,F, p) → Z are independent random variables with densities in RSP and such that IX ,

IY < ∞, then
1

IX+Y
≥ 1

IX
+

1
IY

, (2.3)

with strict equality if and only if X, Y have (possibly shifted) Poisson distribution.
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3 Stam inequality on Zn

We denote by Zn the cyclic group {0, 1, ..., n − 1}. Introduce the class P of strictly positive densities,
that is

P :=
{

f : Zn → R
∣∣∣ ∑

j∈Zn

f(j) = 1, f(k) > 0 ∀k ∈ Zn

}
.

We assume, from now on, that all densities are strictly positive.
Let f ∈ P. In analogy with the previous definitions, we may introduce the Fisher f -score Jf : Zn → R

by

Jf (k) :=
f(k)− f(k − 1)

f(k)
.

By definition of expectation and since k ∈ Zn, it is straightforward to see that Jf is an f -centered
random variable; namely,

Ef [Jf ] = 0. (3.1)

Next, if X : (Ω,F, p) → Zn is a random variable with density f(k) = fX(k) := p(X = k), where
fX ∈ P, from the score JX := Jf it is possible to define the Fisher information (about a shift parameter)
as

IX := Varf (Jf ) = Ef (J2
f ).

Note that, due to the finiteness of Zn, in this case the condition IX < ∞ always holds. However, we
cannot ensure in general that IX 6= 0. In fact, it is easy to characterize this degenerate case.

Lemma 3.1. The following conditions are equivalent

(1) X has uniform distribution;

(2) JX = 0;

(3) IX = 0;

(4) JX has constant increments, namely JX(x + 1)− JX(x) = α = constant.

Proof. The equivalence of (1), (2), (3) is immediate by definitions. It is also obvious that (2) implies (4).
Therefore, it is enough to prove that (4) implies (1).

Let
JX(x + 1)− JX(x) = α = constant.

We have
JX(n) = JX(0) + nα = JX(0).

This implies nα = 0, namely α = 0, that is, JX = constant. Therefore, there exists a constant β > 0
such that

fX(x− 1)
fX(x)

=
1
β

.

We have
fX(x) = βfX(x− 1),

namely
fX(n) = βnfX(0) = fX(0),

so that βn = 1. This implies β = 1, that is, X is uniform. This concludes the proof.

Let us recall also the following result that is immediate by using the convolution formula.

Proposition 3.2. If X, Y : (Ω,F, p) → Zn are independent random variables and X is uniform then
also Z = X + Y is uniform.
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Proposition 3.3. Let X, Y : (Ω,F, p) → Zn be independent random variables such that their densities
belong to P. If X or Y has uniform distribution, then

1
IX+Y

=
1

IX
+

1
IY

,

in the sense that both sides of equality are equal to infinity.

Proof. Let Z = X + Y . If X is uniform, then Z is uniform by Proposition 3.2 and we are done by
Lemma 3.1.

Because of the above proposition, in what follows we consider random variables with strictly positive
Fisher information.

Before the proof of the main result, we need the following lemma.

Lemma 3.4. Let X, Y : (Ω,F, p) → Zn be two independent random variables with densities fX , fY ∈ P

and let Z := X + Y . Then
JZ(Z) = Ep[JX(X)|Z] = Ep[JY (Y )|Z]. (3.2)

Proof. Let fZ be the density of Z; namely,

fZ(k) =
n−1∑
j=0

fX(k − j)fY (j), k ∈ Zn,

with fZ ∈ P. Then,

fZ(k)− fZ(k − 1) =
n−1∑
j=0

[fX(k − j)− fX(k − j − 1)]fY (j)

=
n−1∑
j=0

fY (k − j)[fX(j)− fX(j − 1)]

.

Therefore, given k ∈ Zn,

JZ(k) =
fZ(k)− fZ(k − 1)

fZ(k)

=
n−1∑
j=0

fX(j)fY (k − j)
fZ(k)

[fX(j)− fX(j − 1)]
fX(j)

=
n−1∑
j=0

JX(j)p(X = j|Z = k)

= EfX
[JX |Z = k]

= Ep[JX(X)|Z = k].

Similarly, by symmetry of the convolution formula one can obtain

JZ(k) = Ep[JY (Y )|Z = k], k ∈ Zn,

proving Lemma 3.4.

We are ready to prove the main result. As already said in the Introduction, note that not only the
statement but also the proof of the following theorem exactly mimics the cases R and Z.
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Theorem 3.5. Let X, Y : (Ω,F, p) → Zn be two independent random variables such that IX , IY > 0.
Then

1
IX+Y

>
1

IX
+

1
IY

. (3.3)

Proof. Define Z := X + Y . Let a, b ∈ R; then, by Lemma 3.4

Ep[aJX(X) + bJY (Y )|Z] = aEp[JX(X)|Z] + bEp[JY (Y )|Z]

= (a + b)JZ(Z).
(3.4)

Hence, by applying Jensen’s inequality it holds

Ep[(aJX(X) + bJY (Y ))2] = Ep[Ep[(aJX(X) + bJY (Y ))2|Z]]

≥ Ep[Ep[aJX(X) + bJY (Y )|Z]2]

= Ep[(a + b)2JZ(Z)2]

= (a + b)2IZ ,

(3.5)

and thus
(a + b)2IZ ≤ Ep[(aJX(X) + bJY (Y ))2]

= a2Ep[JX(X)2] + 2abEp[JX(X)JY (Y )] + b2Ep[JX(X)2]

= a2IX + b2IY + 2abEp[JX(X)JY (Y )]

= a2IX + b2IY ,

where the last equality follows from independence and (3.1).
Now, take a := 1/IX and b := 1/IY ; then we obtain(

1
IX

+
1
IY

)2

IZ ≤ 1
IX

+
1
IY

.

It remains to be proved that the equality sign cannot hold in (3.3). To this purpose, define c := a+b,
where, again, a = 1/IX and b = 1/IY ; then equality holds if and only if

c2IZ = a2IX + b2IY . (3.6)

Let us first prove that (3.6) is equivalent to

aJX(X) + bJY (Y ) = cJZ(X + Y ). (3.7)

Indeed, let H := aJX(X) + bJY (Y ); then equality in (3.5) occurs if and only if

Ep[H2|Z] = (Ep[H|Z])2,

i.e.
Ep[(H − Ep[H|Z])2|Z] = 0.

Therefore, H = Ep[H|Z], so that

Ep[aJX(X) + bJY (Y )|Z] = aJX(X) + bJY (Y )

= cJZ(Z),
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due to (3.4). Conversely, if (3.7) holds, then by applying the squared power and the expectation operator
we obtain (3.6).

Let x, y ∈ Zn; because of independence

p(X = x + 1 ∩ Y = y) = p(X = x + 1) · p(Y = y) 6= 0.

Thus, it makes sense to write equality (3.7) on A := (X = x + 1) ∩ (Y = y), so that

aJX(x + 1) + bJY (y) = cJZ(x + y + 1)

and analogously
aJX(x) + bJY (y + 1) = cJZ(x + y + 1).

Subtracting these relations one has

a[JX(x + 1)− JX(x)] = b[JY (y + 1)− JY (y)], ∀x, y ∈ Zn.

Therefore, the increments of each score are constant, so that IX = 0 from Lemma 3.1. In the
hypotheses we assumed IX > 0 and this contradiction ends the proof.
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