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Abstract

Let A1, ..., AN be complex self-adjoint matrices and let ρ be a density matrix. The Robertson
uncertainty principle

det {Covρ(Ah, Aj)} ≥ det


− i

2
Tr(ρ[Ah, Aj ])

ff
gives a bound for the quantum generalized covariance in terms of the commutators [Ah, Aj ]. The
right side matrix is antisymmetric and therefore the bound is trivial (equal to zero) in the odd case
N = 2m + 1.

Let f be an arbitrary normalized symmetric operator monotone function and let 〈·, ·〉ρ,f be the
associated quantum Fisher information. Based on previous results of several authors, we propose
here as a conjecture the inequality

det {Covρ(Ah, Aj)} ≥ det


f(0)

2
〈i[ρ, Ah], i[ρ, Aj ]〉ρ,f

ff
whose validity would give a non-trivial bound for any N ∈ N using the commutators i[ρ, Ah].
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1 Introduction

Let (V, g(·, ·)) be a real inner-product vector space and suppose that v1, ..., vN ∈ V . The real N × N
matrix G := {g(vh, vj)} is positive semidefinite and one can define Volg(v1, ..., vN ) :=

√
det{g(vh, vj)}.

If the inner product depends on a further parameter in such a way that g(·, ·) = gρ(·, ·), we write
Volg(v1, ..., vN ) = Volgρ(v1, ..., vN ).

As an example, consider a probability space (Ω,G, ρ) and let V = L2
R(Ω,G, ρ) be the space of square

integrable real random variables endowed with the scalar product given by the covariance Covρ(A,B) :=
Eρ(AB) − Eρ(A)Eρ(B). For A1, ..., AN ∈ L2

R(Ω,G, ρ), G is the well known covariance matrix and one
has

VolCov
ρ (A1, ..., AN ) ≥ 0. (1.1)

The expression det{Covρ(Ah, Aj} is known as the generalized variance of the random vector (A1, ..., AN )
and, in general, one cannot expect a stronger inequality. For instance, when N = 1, (1.1) just reduces
to Varρ(A) ≥ 0.

In non-commutative probability the situation is quite different due to the possible non-triviality of
the commutators [Ah, Aj ]. Let Mn,sa := Mn,sa(C) be the space of all n × n self-adjoint matrices and
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let D1
n be the set of strictly positive density matrices (faithful states). For A,B ∈ Mn,sa and ρ ∈ D1

n

define the (symmetrized) covariance as Covρ(A,B) := 1/2[Tr(ρAB) + Tr(ρBA)] − Tr(ρA) · Tr(ρB). If
A1, ..., AN are self-adjoint matrices one has

VolCov
ρ (A1, ..., AN ) ≥

{
0, N = 2m + 1,

det{− i
2Tr(ρ[Ah, Aj ])}

1
2 , N = 2m.

(1.2)

Let us call (1.2) the “standard” uncertainty principle to distinguish it from other inequalities like the
“entropic” uncertainty principle and similar inequalities. Inequality (1.2) is due to Heisenberg, Kennard,
Robertson and Schrödinger for N = 2 (see [14] [16] [28] [30]). The general case is due to Robertson (see
[29]). Examples of recent references where inequality (1.2) plays a role are given by [31] [32] [33] [4] [3]
[15].

Suppose one is looking for a general inequality of type (1.2) giving a bound also in the odd case
N = 2m + 1. If one considers the case N = 1, it is natural to seek such an inequality in terms of the
commutators [ρ,Ah].

One of the purposes of the present paper is to state a conjecture regarding an inequality similar to
(1.2) but not trivial for any N ∈ N. Let Fop be the family of symmetric normalized operator monotone
functions. To each element f ∈ Fop one may associate a ρ-depending scalar product 〈·, ·〉ρ,f on the
self-adjoint (traceless) matrices, which is a quantum version of the Fisher information (see [25]). Let
us denote the associated volume by Volfρ . We conjecture that for any N ∈ N+ (this is one of the main
differences from (1.2)) and for arbitrary self-adjoint matrices A1, ..., AN one has

VolCov
ρ (A1, ..., AN ) ≥

(
f(0)

2

)N
2

Volfρ(i[ρ,A1], ..., i[ρ,AN ]). (1.3)

The cases N = 1, 2 of inequality (1.3) have been proved by the joint efforts of a number of authors
in several papers: S. Luo, Q. Zhang, Z. Zhang ([19] [20] [24] [22] [23]); H. Kosaki ([17]); K. Yanagi, S.
Furuichi, K. Kuriyama (see [34]); F. Hansen ([13]); P. Gibilisco, D. Imparato, T. Isola ([11] [6]).

It is well known that standard uncertainty principle is a simple consequence of the Cauchy-Schwartz
inequality for N = 2. It is worth to note that for the inequality (1.3) the same role is played by the
Kubo-Ando inequality

2(A−1 + B−1)−1 ≤ mf (A,B) ≤ 1
2
(A + B)

saying that any operator mean is larger than the harmonic mean and smaller than the arithmetic mean.
The scheme of the paper is as follows. In Section 2 we describe the preliminary notions of operator

monotone functions, matrix means and quantum Fisher information. In Section 3 we discuss a corre-
spondence between regular and non-regular operator monotone functions that is needed in the sequel.
In Section 4 we state our conjecture, namely the inequality (1.3); we also state other two conjectures
concerning how the right side depends on f ∈ Fop and the conditions to have equality in (1.3). In Section
5 we discuss the case N = 1 of (1.3) presenting the different available proofs. In Section 6 we discuss
the case N = 2; here we prove that, while the technique employed in [6] works in both cases N = 1, 2,
the technique used in [13] does not. To this purpose, we show that the generalized variance is not a
concave (neither a convex) function of the state. Moreover we observe that the technique used for the
case N = 2 seems valuable also for the general case. In [24] it has been proved that the Wigner-Yanase
correlation has some advantages on covariance when one aims to measure entanglement; in Section 7 we
show, for the sake of completeness, that the above argument holds true for any regular quantum Fisher
information.

2 Operator monotone functions, matrix means and quantum
Fisher information

Let Mn := Mn(C) (resp. Mn,sa := Mn,sa(C)) be the set of all n × n complex matrices (resp. all n × n
self-adjoint matrices). We shall denote general matrices by X, Y, ... while letters A,B, ... will be used for
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self-adjoint matrices, endowed with the Hilbert-Schmidt scalar product 〈A,B〉 = Tr(A∗B). The adjoint
of a matrix X is denoted by X† while the adjoint of a superoperator T : (Mn, 〈·, ·〉) → (Mn, 〈·, ·〉) is
denoted by T ∗. Let Dn be the set of strictly positive elements of Mn and D1

n ⊂ Dn be the set of strictly
positive density matrices, namely D1

n = {ρ ∈ Mn|Trρ = 1, ρ > 0}. If it is not otherwise specified, from
now on we shall treat the case of faithful states, namely ρ > 0.

A function f : (0,+∞) → R is said operator monotone (increasing) if, for any n ∈ N, and A, B ∈ Mn

such that 0 ≤ A ≤ B, the inequalities 0 ≤ f(A) ≤ f(B) hold. An operator monotone function is said
symmetric if f(x) = xf(x−1) and normalized if f(1) = 1.

Definition 2.1. Fop is the class of functions f : (0,+∞) → (0,+∞) such that

(i) f(1) = 1,

(ii) tf(t−1) = f(t),

(iii) f is operator monotone.

Example 2.1. Examples of elements in Fop are given by the following list

fRLD(x) := 2x
x+1 , fWY (x) :=

(
1+
√

x
2

)2

,

fSLD(x) := 1+x
2 , fWY D(β)(x) := β(1− β) (x−1)2

(xβ−1)(x1−β−1)
, β ∈

(
0, 1

2

)
.

We now report Kubo-Ando theory of matrix means (see [18]) as exposed in [27].

Definition 2.2. A mean for pairs of positive matrices is a function m : Dn ×Dn → Dn such that
(i) m(A,A) = A,
(ii) m(A,B) = m(B,A),
(iii) A < B =⇒ A < m(A,B) < B,
(vi) A < A′, B < B′ =⇒ m(A,B) < m(A′, B′),
(v) m is continuous,
(vi) Cm(A,B)C∗ ≤ m(CAC∗, CBC∗), for every C ∈ Mn.

Property (vi) is known as the transformer inequality. We denote by Mop the set of matrix means.
The fundamental result, due to Kubo and Ando, is the following.

Theorem 2.1. There exists a bijection between Mop and Fop given by the formula

mf (A,B) := A
1
2 f(A− 1

2 BA− 1
2 )A

1
2 .

Example 2.2. The arithmetic, geometric and harmonic (matrix) means are given respectively by

A∇B := 1
2 (A + B),

A#B := A
1
2 (A− 1

2 BA− 1
2 )

1
2 A

1
2 ,

A!B := 2(A−1 + B−1)−1.

They correspond respectively to the operator monotone functions x+1
2 ,

√
x, 2x

x+1 .

Kubo and Ando [18] proved that, among matrix means, arithmetic is the largest while harmonic is
the smallest.

Proposition 2.2. For any f ∈ Fop one has

2(A−1 + B−1)−1 ≤ mf (A,B) ≤ 1
2
(A + B).
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Corollary 2.3. For any f ∈ Fop and for any x,> 0 one has

2x

1 + x
≤ f(x) ≤ 1 + x

2
.

In what follows, if N is a differential manifold we denote by TρN the tangent space to N at the point
ρ ∈ N. Recall that there exists a natural identification of TρD

1
n with the space of self-adjoint traceless

matrices; namely, for any ρ ∈ D1
n

TρD
1
n = {A ∈ Mn|A = A∗ , Tr(A) = 0}.

A Markov morphism is a completely positive and trace preserving operator T : Mn → Mm. A
monotone metric is a family of Riemannian metrics g = {gn} on {D1

n}, n ∈ N, such that

gm
T (ρ)(TX, TX) ≤ gn

ρ (X, X)

holds for every Markov morphism T : Mn → Mm, for every ρ ∈ D1
n and for every X ∈ TρD

1
n. Usually

monotone metrics are normalized in such a way that [A, ρ] = 0 implies gρ(A,A) = Tr(ρ−1A2). A
monotone metric is also said a quantum Fisher information (QFI) because of Chentsov uniqueness
theorem for commutative monotone metrics (see [2]).

Define Lρ(A) := ρA, and Rρ(A) := Aρ, and observe that they are commuting self-adjoint (positive)
superoperators on Mn,sa. For any f ∈ Fop one can define the positive superoperator mf (Lρ, Rρ). Now
we can state the fundamental theorem about monotone metrics.

Theorem 2.4. [25]
There exists a bijective correspondence between monotone metrics (quantum Fisher informations) on

D1
n and normalized symmetric operator monotone functions f ∈ Fop. This correspondence is given by

the formula
〈A,B〉ρ,f := Tr(A ·mf (Lρ, Rρ)−1(B)).

The metrics associated with the functions fβ are very important in information geometry and are
related to Wigner-Yanase-Dyson information (see for example [7] [8] [9] [10] [5] and references therein).

Proposition 2.5. (See [25] p. 89) Monotone metrics are unitarily covariant, namely if U is unitary
then

〈U∗AU,U∗BU〉U∗ρU,f = 〈A,B〉ρ,f .

3 The function f̃ and its properties

For f ∈ Fop define f(0) := limx→0 f(x). The condition f(0) 6= 0 is relevant because it is a necessary
and sufficient condition for the existence of the so-called radial extension of a monotone metric to pure
states (see [26]). Following [13] we say that a function f ∈ Fop is regular iff f(0) 6= 0. The corresponding
operator mean, associated QFI, etc. are said regular too.

Definition 3.1. We introduce the sets

F r
op := {f ∈ Fop| f(0) 6= 0}, F n

op := {f ∈ Fop| f(0) = 0}.

Trivially one has Fop = F r
op∪̇F n

op.

Proposition 3.1. [5] For f ∈ F r
op and x > 0 set

f̃(x) :=
1
2

[
(x + 1)− (x− 1)2

f(0)
f(x)

]
.

Then f̃ ∈ F n
op.

By the very definition one has the following result.



5

Proposition 3.2. ([5], Proposition 5.7)
Let f ∈ Fr

op. The following three conditions are equivalent:

(1) f̃ ≤ g̃;

(2) mf̃ ≤ mg̃;

(3) f(0)
f(t) ≥

g(0)
g(t) ∀t > 0.

Let us give some more definitions.

Definition 3.2. Suppose that ρ ∈ D1
n is fixed. Define X0 := X − Tr(ρX)I.

Definition 3.3. For A,B ∈ Mn,sa and ρ ∈ D1
n define covariance and variance as

Covρ(A,B) :=
1
2
[Tr(ρAB)+Tr(ρBA)]−Tr(ρA)·Tr(ρB) =

1
2
[Tr(ρA0B0)+Tr(ρB0A0)] = Re{Tr(ρA0B0)},

(3.1)
Varρ(A) := Covρ(A,A) = Tr(ρA2)− Tr(ρA)2 = Tr(ρA2

0).

Suppose, now, that A,B ∈ Mn,sa, ρ ∈ D1
n and f ∈ Fr

op. The fundamental theorem for our present
purpose is given by Proposition 6.3 in [5], which is stated as follows.

Theorem 3.3.
f(0)

2
〈i[ρ,A], i[ρ,B]〉ρ,f = Covρ(A,B)− Tr(mf̃ (Lρ, Rρ)(A0)B0).

As a consequence of the spectral theorem and of Theorem 3.3 one has the following relations.

Proposition 3.4. [5] Let {ϕh} be a complete orthonormal base composed of eigenvectors of ρ, and {λh}
be the corresponding eigenvalues. To self-adjoint matrices A, B we associate matrices a = a(ρ), b = b(ρ)
whose entries are given respectively by ahj ≡ 〈A0ϕh|ϕj〉, bhj ≡ 〈B0ϕh|ϕj〉. We have the following
identities.

Covρ(A,B) = Re{Tr(ρA0B0)} =
1
2

∑
h,j

(λh + λj)Re{ahjbjh}

f(0)
2
〈i[ρ,A], i[ρ,B]〉ρ,f =

1
2

∑
h,j

(λh + λj)Re{ahjbjh} −
∑
h,j

mf̃ (λh, λj)Re{ahjbjh}.

In what follows, capital letters will denote self-adjoint matrices and the corresponding lower-case
letters will be used for the above transformation.

We also need the following result.

Proposition 3.5. ([5], Corollary 11.5)
On pure states

Tr(mf̃ (Lρ, Rρ)(A0)B0) = 0.

4 The N-volume conjectures for quantum Fisher informations

Let (V, g(·, ·)) be a real inner-product vector space. By 〈u, v〉 we denote the standard scalar product for
vectors u, v ∈ RN .

Proposition 4.1. Let v1, ..., vN ∈ V . The real N ×N matrix G := {g(vh, vj)} is positive semidefinite
and therefore det{g(vh, vj)} ≥ 0.

Proof. Let x := (x1, ..., xN ) ∈ RN . We have

0 ≤ g
(∑

j

xjvj ,
∑

j

xjvj

)
=
∑
h,j

xhxjg(vh, vj) = 〈x,G(x)〉.
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Motivated by the case (V, g(·, ·)) = (RN , 〈·, ·〉) one can give the following definition.

Definition 4.1.
Volg(v1, ..., vN ) :=

√
det{g(vh, vj)}.

Remark 4.1.

(i) Obviously, Volg(v1, ..., vN ) ≥ 0, where the equality holds if and only if v1, ..., vN ∈ V are linearly
dependent.

(ii) If the inner product depends on a further parameter so that g(·, ·) = gρ(·, ·), we write Volgρ(v1, ..., vN ) =
Volg(v1, ..., vN ).

(iii) In the case (V, gρ(·, ·)) = (L2
R(Ω,G, ρ),Covρ(·, ·)) the number VolCov

ρ (A1, ..., AN )2 is also known as
the generalized variance of the random vector (A1, ..., AN ).

In what follows we move to the noncommutative case. Here A1, ...AN are self-adjoint matrices, ρ
is a (faithful) density matrix and g(·, ·) = Covρ(·, ·) has been defined in (3.1). By Volfρ we denote
the volume associated to the quantum Fisher information 〈·, ·〉ρ,f given by the (regular) normalized
symmetric operator monotone function f .

Let N ∈ N, f ∈ F r
op, ρ ∈ D1

n and A1, ..., AN ∈ Mn,sa be arbitrary. We conjecture the following
results.

Conjecture 4.1.

VolCov
ρ (A1, ..., AN ) ≥

(
f(0)

2

)N
2

Volfρ(i[ρ,A1], . . . , i[ρ,AN ]). (4.1)

Conjecture 4.2. The above inequality is an equality if and only if A10, ..., AN 0 are linearly dependent.

Conjecture 4.3. Fix N ∈ N, ρ ∈ D1
n and A1, ..., AN ∈ Mn,sa. Given f ∈ F r

op, define

V (f) :=
(

f(0)
2

)N
2

Volfρ(i[ρ,A1], ..., i[ρ,AN ]).

Then, for any f, g ∈ F r
op

f̃ ≤ g̃ =⇒ V (f) ≥ V (g).

Remark 4.2.

(i) Conjecture 4.1 is equivalent to the following inequality

det{Covρ(Ah, Aj)} ≥ det
{

f(0)
2
〈i[ρ,Ah], i[ρ,Aj ]〉ρ,f

}
.

(ii) If ρ and A1, ..., AN are fixed, set

F (f) := det{Covρ(Ah, Aj)} − det
{

f(0)
2
〈i[ρ,Ah], i[ρ,Aj ]〉ρ,f

}
.

Because of Theorem 3.3 one has

F (f) = det{Covρ(Ah, Aj)} − det
{

Covρ(Ah, Aj)− Tr(mf̃ (Lρ, Rρ)(Ah0)Aj0)
}

.

Therefore, Conjecture 4.1 is equivalent to
F (f) ≥ 0.

(iii) Conjecture 4.3 is equivalent to

f̃ ≤ g̃ =⇒ F (f) ≤ F (g).
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(iv) Suppose that Conjecture 4.1 is true. One can prove the “if” part of Conjecture 4.2 in the following
way. Since (A0)0 = A0 one has

Covρ(A1, A2) = Re{Tr(ρA10A20)} = Covρ(A10, A20).

From this it follows
VolCov

ρ (A1, ..., AN ) = VolCov
ρ (A10, ..., AN 0).

Therefore, if A10, ..., AN 0 are linearly dependent then

0 = VolCov
ρ (A10, ..., AN 0) = VolCov

ρ (A1, ..., AN ) ≥
(

f(0)
2

)N
2

Volfρ(i[ρ,A1], ..., i[ρ,AN ]) ≥ 0

and we are done.

(v) The inequality

det{Covρ(Ah, Aj)} ≥ det
{

Covρ(Ah, Aj)− Tr(mf̃ (Lρ, Rρ)(Ah0)Aj0)
}

makes sense also for not faithful states.

Because of Proposition 3.5 one has (by an obvious extension of the definition) the following result.

Proposition 4.2. If ρ is a pure state, then for any N ∈ N, f ∈ F r
op, A1, ..., AN ∈ Mn,sa one has

VolCov
ρ (A1, ..., AN ) =

(
f(0)

2

)N
2

Volfρ(i[ρ,A1], ..., i[ρ,AN ]).

In the following Section 5 and Section 6 we report on the known validity of the conjectures for N = 1
and N = 2.

5 The length inequality

In this section we discuss the case N = 1 of Conjectures 4.1, 4.2 and 4.3. The cases f = fSLD and
f = fWY of Conjecture 4.1 were proved by Luo in [19] and [20]. The general case of Conjecture 4.1 was
proved by Hansen in [13] and shortly after by Gibilisco, Imparato and Isola with a different technique
in [5]. Conjectures 4.2 and 4.3 have been proved by Gibilisco, Imparato and Isola in [5] (see also [6]).

The proof of Conjecture 4.1 by Hansen is based on the following immediate proposition.

Proposition 5.1. Let T, S be real functions on the state space coinciding on pure states. Suppose that
T is convex and S is concave. Then for all states ρ

T (ρ) ≤ S(ρ).

It is well known that the variance is concave. Hansen was able to prove that the metric adjusted
skew information (namely f(0)

2 Volfρ(i[ρ,A1])2) is convex and so he got the conclusion from the above
Proposition. Note that the convexity of the function f(0)

2 Volfρ(i[ρ,A1])2 is related to the well known
Lieb’s concavity theorem (see [12][13]). Despite the elegance of the above proof its ideas do not apply
to cases different from N = 1, as we shall see in the next section.

The techniques applied by ourselves in the proof of case N = 1 in the paper [5] do not seem to share
the same fate. Moreover they allow one to prove also Conjectures 4.2 and 4.3. Let us discuss them.

Theorem 5.2. Conjectures 4.1, 4.2 and 4.3 are true for N = 1 and for any f ∈ Fr
op.
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Proof. Set A1 = A. Using Proposition 3.4 and the notation in Remark 4.2 (ii) one gets:

F (f) = det{Covρ(A,A)} − det
{

Covρ(A,A)− Tr(mf̃ (Lρ, Rρ)(A0)A0)
}

= Covρ(A,A)− [Covρ(A,A)− Tr(mf̃ (Lρ, Rρ)(A0)A0)]

= Tr(mf̃ (Lρ, Rρ)(A0)A0)

=
∑
i,j

mf̃ (λi, λj)Re{aijaji}

=
∑
i,j

mf̃ (λi, λj)|aij |2 ≥ 0,

that is, Conjecture 4.1 is true. Obviously F (f) = 0 iff aij = 0 ∀i, j, that is, iff A0 = 0 and so we get
Conjecture 4.2. Using Proposition 3.2 and Remark 4.2 (iii) one obtains also the validity of Conjecture
4.3.

6 The area inequality

Let us discuss the case N = 2 of Conjecture 4.1. The result was proved true for f = fWY by Luo, Q.
Zhang and Z. Zhang in [24] [22] [23]. The case f = fWY D(β), β ∈ (0, 1

2 ) was proved by Kosaki in [17]
and shortly after by Yanagi-Furuichi-Kuriyama in [34]. The general case is due to Gibilisco, Imparato
and Isola (see [11] [5]).

Conjectures 4.2 and 4.3 were proved true by Kosaki for the particular case f = fWY D(β). The general
case was solved by Gibilisco, Imparato and Isola (see [11] [5]).

First of all, let us show that the ideas used by Hansen in the case N = 1 do not apply to the case
N = 2. The problem is the lack of concavity (and convexity) for the generalized variance. We were not
able to find a counterexample in the literature, so we provide here the simplest we found.

Let Ω := {1, 2, ..., n}. The space of (faithful) probability measures on Ω is

P1
n :=

{
ρ ∈ Rn|

∑
ρi = 1, ρi > 0

}
.

Let X, Y ∈ Rn be fixed random variables on Ω.

Proposition 6.1. The function S : P1
n → R given by

S(ρ) := Varρ(X) Varρ(Y )− Covρ(X, Y )2

is neither a concave nor a convex function.

Proof. Let us compute the Hessian matrix HXY (ρ) of S at the point ρ:

HXY
ij (ρ) = Varρ(Y ) ∂2

∂ρi∂ρj
Varρ(X) + ∂

∂ρi
Varρ(X) ∂

∂ρj
Varρ(Y )

+ Varρ(X) ∂2

∂ρi∂ρj
Varρ(Y ) + ∂

∂ρj
Varρ(X) ∂

∂ρi
Varρ(Y )

− 2 ∂
∂ρi

Covρ(X, Y ) ∂
∂ρj

Covρ(X, Y )− 2 Covρ(X, Y ) ∂2

∂ρi∂ρj
Covρ(X, Y ).

If X = (x1, ...., xn), Y = (y1, ..., yn), an explicit computation shows that

∂
∂ρi

Covρ(X, Y ) = xiyi − xiEρ[Y ]− yiEρ[X]

∂2

∂ρi∂ρj
Covρ(X, Y ) = −xiyj − yixj ,
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so that
HXY

ij (ρ) = −2xixj Varρ(Y ) + (x2
i − 2xiEρ[X])(y2

j − 2yjEρ[Y ])

− 2yiyj Varρ(X) + (y2
i − 2yiEρ[Y ])(x2

j − 2xjEρ[X])

− 2(xiyi − xiEρ[Y ]− yiEρ[X])(xjyj − xjEρ[Y ]− yjEρ[X])

+ 2Covρ(X, Y )(xiyj + yixj).

(6.1)

In order to prove that in general HXY
ij (ρ) is neither negative semidefinite nor positive semidefinite

(that is, S(ρ) is neither concave nor convex) let n = 3 and ρ = ( 1
3 , 1

3 , 1
3 ) be the uniform distribution,

X = (1, 0,−1)T and Y = (1,−2, 1)T . Then Eρ[X] = Eρ[Y ] = Eρ[XY ] = 0 and Covρ(X, Y ) = 0, so that
(6.1) reduces to

HXY
ij (ρ) = −2xixj Varρ(Y ) + x2

i y
2
j − 2yiyj Varρ(X) + x2

jy
2
i − 2xixjyiyj .

Hence, given α ∈ R3

αT Hα = −2

Varρ(Y )

(∑
i

xiαi

)2

−
∑

i

x2
i αi

∑
i

y2
i αi + Varρ(X)

(∑
i

yiαi

)2

+

(∑
i

xiyiαi

)2
 .

In particular, α = ρ implies
ρT Hρ = 2Varρ(X) Varρ(Y ) > 0,

while α = (0, α2, 0), α2 6= 0, implies αT Hα < 0.

Now we describe how the ideas for the proof of the length inequality (N = 1) can be modified to
apply to the case of the area inequality (N = 2).

Definition 6.1. For any f ∈ F r
op set

Hf (x, y, w, z) :=
1
2
(x + y)mf̃ (w, z) +

1
2
(w + z)mf̃ (x, y)−mf̃ (x, y)mf̃ (w, z), x, y, w, z > 0.

Given ρ ∈ D1
n and {λi}, i = 1 . . . , n, the corresponding eigenvalues, we set

Hf
ijkl := Hf (λi, λj , λk, λl).

Proposition 6.2. [5]
For any f, g ∈ F r

op and for any x, y, w, z > 0 one has:

f̃ ≤ g̃ =⇒ 0 ≤ Hf (x, y, w, z) ≤ Hg(x, y, w, z).

Using the same notations as in Proposition 3.4, one can give the following definition.

Definition 6.2. Set

Ki,j,k,l := Ki,j,k,l(ρ,A, B) := |aij |2|bkl|2 + |akl|2|bij |2 − 2Re{aijbji}Re{aklblk}.

Note that Ki,j,k,l does not depend on f . Since

|aij |2|bkl|2 + |akl|2|bij |2 ≥ 2 |aijbji| |aklblk| ≥ 2 |Re {aijbji}Re {aklblk}| ,

we get that Kijkl is non-negative. Moreover one has the following result.

Proposition 6.3. [5] Ki,j,k,l = 0, ∀i, j, k, l ⇐⇒ A0, B0 are linearly dependent.

Recall that

F (f) = det{Covρ(Ai, Aj)} − det
{

Covρ(Ai, Aj)− Tr(mf̃ (Lρ, Rρ)(Ai0)Aj0)
}

.
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Theorem 6.4. [5] For N = 2 one has:

F (f) =
1
2

∑
i,j,k,l

Hf
i,j,k,l ·Ki,j,k,l.

From the above Theorem one gets the following result.

Theorem 6.5. Conjectures 4.1, 4.2 and 4.3 are true for N = 2.

Proof. Since Hi,j,k,l > 0 and Ki,j,k,l ≥ 0 we get F (f) ≥ 0 and therefore Conjecture 4.1 is true.
From Proposition 6.3 we get that F (f) = 0 iff A0, B0 are linearly dependent, that is, Conjecture 4.2

holds.
From Proposition 6.2 we get that f̃ ≤ g̃ implies F (f) ≤ F (g) and, therefore, one proves Conjecture

4.3.

Remark 6.1.

A decomposition of F (f) similar to that of Theorem 6.4 seems to hold in the general case (N
arbitrary). We plan to attack the conjectures with the aid of suitable generalized H −K functions.

7 Covariance, correlation and entanglement

In the papers [21] [24] Luo et al. proved that the covariance is not a good measure to quantify entangle-
ment properties of states; to this end, Wigner-Yanase correlation was proposed. Hereafter we recall the
more general definition of metric adjusted correlation (or f-correlation) introduced in [13] [5]; Wigner-
Yanase correlation is just a particular example of metric adjusted correlation. We prove that the metric
adjusted correlation has the same basic properties of Wigner-Yanase correlation. In particular we show,
by the same example as in [24], that the general f -correlation behaves as the Wigner-Yanase correlation
with respect to entanglement. Note that we consider a symmetrized version of the f -correlation.

Definition 7.1. For A,B ∈ Mn,sa, ρ ∈ D1
n and f ∈ Fop, the metric adjusted correlation (or f -

correlation) is defined as

Corrf
ρ(A,B) :=

f(0)
2
〈i[ρ,A], i[ρ,B]〉ρ,f = Tr(ρAB)− Tr(mf̃ (Lρ, Rρ)(A) ·B).

Proposition 7.1. [5]

Corrf
ρ(A,B) = Covρ(A,B)− Tr(mf̃ (Lρ, Rρ)(A0)B0)

= Covρ(A,B)−
∑

i,j mf̃ (λi, λj)aijbji.

Note that there is no relation between covariance and correlation as underlined by the following
Proposition (see Examples 3,4 in [24]).

Proposition 7.2. The inequalities

Corrf
ρ(A,B) > Covρ(A,B),

Corrf
ρ(A,B) < Covρ(A,B),

are false in general.

Proof. The expression ∑
i,j

mf̃ (λi, λj)aijbji

can have arbitrary sign (depending on A and B); therefore, from from Proposition 7.1 one gets the
conclusion.
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Proposition 7.3. [5] If ρ is pure, then

Corrf
ρ(A,B) = Covρ(A,B) ∀f ∈ Fop.

Proposition 7.4. If a, b are real constants and U is unitary we get:
i) Corrf

ρ(A− aI,B − bI) = Corrf
ρ(A,B);

ii) Corrf
ρ(aA, bB) = abCorrf

ρ(A,B);
iii) Corrf

UρU−1(A,B) = Corrf
ρ(U−1AU,U−1BU).

Proof. i) and ii) follow easily from the definition and iii) is a direct consequence of the unitarily covariance
of quantum Fisher information, namely of Proposition 2.5.

Consider, now,

ρ :=
1
2


1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1

 , ρ′ :=
1
2


1 0 0 1
0 0 0 0
0 0 0 0
1 0 0 1


Note that the first state is a mixture of two disentangled states while the second is a Bell state which

is maximally entangled (see [24] [21]).
Set

A :=
1
2


1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

 , B :=
1
2


1 0 0 1
0 −1 0 0
0 0 1 0
1 0 0 −1

 .

In [24] [21] it is shown that
Covρ(A,B) = Covρ′(A,B) = 1, (7.1)

while
CorrfW Y

ρ (A,B) = 0, CorrfW Y

ρ′ (A,B) = 1.

Due to Proposition 7.1, this result holds more generally for any f -correlation.

Proposition 7.5. For any f ∈ Fop one gets

Corrf
ρ(A,B) = 0, Corrf

ρ′(A,B) = 1.

Proof. Since ρ′ is a pure state, from Proposition 7.3 and due to (7.1) one has that Corrf
ρ′(A,B) =

Covρ′(A,B) = 1.
Consider, now, the state ρ and let {e1, e2, e3, e4} be the canonical basis. A direct computation shows

that its eigenvalues are λ1 = λ4 = 1
2 and λ2 = λ3 = 0, and the corresponding eigenvectors are {e1, e4}

and {e2, e3}, respectively. Observe that A and B are centered with respect to both the states ρ and ρ′

(namely A = A0, B = B0). Moreover, since the eigenvectors are the canonical basis one gets Aij = aij

and Bij = bij .
This implies that

4∑
i,j=1

mf̃ (λi, λj)aijbji =
4∑

i=1

mf̃ (λi, λi)AiiBii

=
4∑

i=1

λiAiiBii = 1,

where we used the mean property that mf (x, x) = x, for any non negative x. Again from (7.1), one
obtains Corrf

ρ(A,B) = 0.
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