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Abstract. Continuing the analysis in [19, 5], we give purely al-
gebraic characterization of the canonical endomorphism in inter-
esting infinite index cases. We apply these results when compact
and discrete (but not necessarily finite dimensional) Woronowicz
algebras [22] act alternately on the factors in the various levels of
Jones’ tower. We characterise when the acting algebra is a Kac
algebra.
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1. Introduction

The purpose of this work is to extend some results of [19] beyond
the finite index case, namely to find necessary and sufficient algebraic
conditions on an endomorphism γ of a von Neumann algebra M which
guarantee the existence of a subalgebra N ⊂ M for which γ is the as-
sociated canonical endomorphism. We solve this problem in the cases
(dual to each other) when there is a faithful normal conditional expec-
tation either from M to N or from N ′ to M ′. We use Pimsner-Popa
basis (relative to an inclusion possessing a faithful conditional expecta-
tion) made of elements of the bigger algebra (and not merely affiliated
to it), whose existence we show in case the algebras involved are prop-
erly infinite. Finally we apply our results to the context of Longo’s
Q-systems [19] and to give a different characterisation of (semicompact
or semidiscrete) depth 2 inclusions, which have been recently proved
in [2, 3] to be generated as crossed products by Woronowicz algebras
[22]. Besides we characterise when the Woronowicz algebra is indeed a
Kac algebra, using the formalism of Q-systems.
Our main motivation for studying, here and in [5], the canonical endo-
morphism γ of an inclusion N ⊂ M of von Neumann algebras, is that
the latter can be interpreted as being generated by means of a crossed
product by the action, onN , of an implicitly defined “quantum object”,
and γ should be regarded in some sense as the “regular representation”
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2 FRANCESCO FIDALEO AND TOMMASO ISOLA

of the “quantum object”. This is to be interpreted by analogy with the
case of inclusions N ⊂ N ×α G coming from outer actions of finite
groups, where the irreducible decomposition of λ is λ ∼= ⊕g∈Gαg, while
λ|N ∼= ⊕π∈Gdπρπ, where ρπ’s are (irreducible) endomorphisms of N in
1 − 1 correspondence with the irreducible representations π of G (see
[14] for example).

This paper is organized as follows.
After a preliminary section, Section 3 is devoted to Pimsner-Popa bases;
namely, given an inclusion N ⊂ M of properly infinite von Neumann
algebras with a faithful normal conditional expectation E : M → N ,
we construct a Pimsner-Popa basis for the left N -module NM , com-
pletely made of elements of M (not just affiliated to M , as it happens in
the type II1 case considered by Popa [26]). Using this basis, we charac-
terise in a purely algebraic way when an endomorphism λ ∈ End(M)
is a canonical one. This is made in Section 4 in two cases (dual to
each other), first when there exists a faithful conditional expectation
E : N → λ(M), which we call semidiscrete, and secondly when there
exists a faithful conditional expectation E : M → N , which we call
semicompact.
Section 5 concerns the extension of the notion of Longo’s Q-system [19]
to the semicompact and semidiscrete cases, and to the proof of a dual-
ity theory between them. If one implements a Q-system concretely as
an inclusion of von Neumann algebras, the dual Q-system appears, us-
ing the canonical endomorphism, in a natural way in the Jones-Longo
tunnel

· · · ⊂ γ(N) ⊂ γ(M) ⊂ N ⊂M.

We conclude with a section where we prove an extension of a Frobenius
reciprocity result of [19] and apply it to (semidiscrete and semicompact)
Q-systems based on a factor-subfactor inclusion of depth 2, which we
prove are characterised as those for which the canonical endomorphism
has the “absorbing” property λ2 ∼= dλ, already known in the case
of compact groups [9], and of finite dimensional Kac algebras [19].
Therefore, using recent results in [2, 3], we can show that an irreducible
semicompact Q-system based on a factor-subfactor inclusion of depth 2
will appear as the crossed product of an irreducible semidiscrete (hence
automatically discrete according to the terminology in [11]) Q-system
by an outer action of a discrete Woronowicz algebra, so that Jones-
Longo tunnel is obtained via (alternate) crossed product procedures.
The dual case, corresponding to prime actions of compact Woronowicz
algebras, leads to a more complicated situation, already well known in
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case of compact group actions, see [23, 27]. We can characterize the
case when a Kac algebra appears, improving on [3], namely a discrete
Kac algebra, together with its compact dual algebra, appears iff the
canonical endomorphism γ ∈ Sect(M) decomposes as

γ = ⊕id(ρi)ρi,

where {ρi}i∈I ⊂ Sect(M) is a basis of finite index irreducible sectors
for the ∗-semiring generated by the same {ρi}. The above condition
is well known for compact (or discrete) groups and finite dimensional
Hopf ∗-algebras [19].
The cases of arbitrary Woronowicz algebras or more complicated quan-
tum symmetries such as weak and quasi-weak Hopf algebras, seem to
be very difficult; we hope to return on these open problems in the fu-
ture.

2. Notation and preliminaries

We consider in the following, for simplicity, only inclusions of von
Neumann algebras with separable predual. For the reader’s conve-
nience we recall some notation, used throughout the paper.
Let M ⊂ B(H) be a von Neumann algebra, then sM(e) is the support
in M of the projection e ∈ B(H), and Proj(M) is the set of projec-
tions in M . If N is a von Neumann subalgebra of M then C(M,N)
and E(M,N) are the set of normal, resp. normal faithful, conditional
expectations from M onto N , whereas P (M,N) is the set of normal
semifinite faithfulN -valued weights onM , and, if T ∈ P (M,N), NT :=
{x ∈ M : T (x∗x) ∈ N}, MT := span{x ∈ M+ : T (x) ∈ N} ≡ N∗

TNT is
the domain of T , and (N ′ ∧M)T := {x ∈ N ′ ∧M : σTt (x) = x, t ∈ R}
is the centralizer of T . End(M) is the set of normal faithful unital en-
domorphisms of M , and for ρ, σ ∈ End(M), (σ, ρ) is the vector space
of intertwiners between ρ and σ,

(σ, ρ) := {v ∈M : vσ(x) = ρ(x)v, x ∈M}.

Finally γ is a canonical endomorphism for the inclusion N ⊂M , ρ̄ is a
conjugate endomorphism of ρ given by ρ̄ = ρ−1 ·γ, and [ρ] ∈ Sect(M) is
the sector determined by ρ in End(M) modulo inner automorphisms.
For the general theory of von Neumann algebras we refer to [12, 28,
27, 29].
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Let us now recall the definition of H. Kosaki’s index ([13]) based on
A. Connes’ spatial theory and U. Haagerup’s operator valued weights
(see [27]). If N ⊂ M are von Neumann algebras, associated to ev-
ery E ∈ E(M,N) there is an M ′-valued operator weight on N ′, E−1,
uniquely determined by

d(ϕ · E)/dψ = dϕ/d(ψ · E−1),

for all normal semifinite faithful weights ϕ onN , ψ onM ′. Observe that
the index of E, Ind(E) := E−1(1) ∈ Z(M)+, the extended positive part
of Z(M), and does not depend on the representation of M (as the same
proof of [13], Theorem 2.2 works). Let ϕ be a faithful normal state on
N , and set ψ := ϕ·E; let Ψ ∈ H ≡ Hψ cyclic and separating for M and
such that ψ = (·Ψ,Ψ), and set e := [NΨ] ∈ N ′, the Jones projection of
the inclusion. The following propositions summarize standard results
on index theory for inclusions.

Proposition 2.1. ([13])
(i) E−1(e) = 1.
(ii) M1 := 〈M, e〉 ≡ JN ′J , where J ≡ JΨ

M . This algebra is called Jones
basic construction.

(iii) If J is a modular conjugation for M , and j := adJ , then E1 :=
j ·E−1 ·j(·) ∈ P (M1,M). E1 is called the dual (operator valued) weight
of E.

Proposition 2.2. ([5], Theorem 2.1)
Let N ⊂ M ⊂ L be von Neumann algebras, E ∈ E(M,N), f ∈
Proj(L) s.t.

(i) fxf = E(x)f, x ∈M ,
(ii) L = 〈M, f〉,
(iii) sZ(L)(f) = 1, sN(f) = 1.
Then there is an isomorphism φ : L→M1 s.t. φ|M = idM and φ(f) =
e.

Proposition 2.3. Let N ⊂ M be properly infinite von Neumann al-
gebras. Then for any E ∈ E(M,N), there is an isometry v ∈ N s.t.
E(x) = v∗γ(x)v, x ∈ M , v ∈ (id|N , γ|N) and γ−1(vv∗) is Jones’ pro-
jection for the inclusion N ⊂M .

Proof. See ([16], Proposition 5.1), or also ([5] Lemma 3.3) �
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For the reader’s convenience we report some results in [5] the first of
them being based on an argument in ([17], Theorem 4.1 ).

Proposition 2.4. Let N ⊂M be properly infinite von Neumann alge-
bras, λ ∈ End(M), v ∈ M an isometry s.t. vx = λ(x)v, x ∈ N , and
λ(M) ⊂ N ⊂ 〈N, vv∗〉 ≡M , is Jones’ basic construction.
Then λ is a canonical endomorphism for N ⊂M .

Proof. Let Ω be a cyclic and separating vector for λ(M), N , and set
J := JΩ

N , J0 := JΩ
λ(M). Set v0 := JvJ ∈ J〈N, vv∗〉J = λ(M)′. Let

ξ be cyclic and separating for N s.t. vv∗ = [λ(M)ξ]. The canonical
implementation of y ∈ λ(M) → yvv∗ ∈ λ(M)vv∗ w.r.t. Ω and ξ is given
by w0 = v0z, where z ∈ λ(M)′ is unitary. Then by ([16], Proposition
3.1) Γ := J0J = w∗

0Jw0J = z∗v∗0Jv0JJzJ , so that, to compute the
sector of γ := adΓ|N , it is sufficient to assume w0 = v0. Then, for all
x ∈ N ,

ΓxΓ∗ = v∗0Jv0JxJv
∗
0Jv0 = Jv∗Jvxv∗JvJ

= Jv∗Jλ(x)vv∗JvJ = λ(x)Jv∗Jvv∗JvJ

= λ(x)Jv∗vv∗vJ = λ(x),

where we used Jvv∗J = vv∗, as vv∗ is Jones’ projection for λ(M) ⊂ N .
Therefore λ|N is a canonical endomorphism for λ(M) ⊂ N , so that λ
is a canonical endomorphism for N ⊂M . �

Proposition 2.5. Let N ⊂M be properly infinite von Neumann alge-
bras, λ ∈ End(M), v ∈ N an isometry s.t. vx = λ(x)v, x ∈ λ(M) and
λ(N) ⊂ λ(M) ⊂ 〈λ(M), vv∗〉 ≡ N , is Jones’ basic construction.
Then λ is a canonical endomorphism for N ⊂M .

Lemma 2.6. Let N ⊂ M be properly infinite von Neumann algebras,
ρ ∈ End(M), v ∈ (id, ρ) be s.t.

(i) ρ(M) ⊂ N ⊂ 〈N, vv∗〉 =: L is Jones’ basic construction,
(ii) sZ(L)(vv

∗) = 1.
Then M = 〈N, vv∗〉.

Proof. Set f := vv∗, and observe that f〈N, f〉f = fρ(M)f = {ρ(x)f :
x ∈M} = {vxv∗ : x ∈M} = fMf , that is 〈N, vv∗〉f = Mf . Therefore
L′f = 〈N, f〉′f = M ′

f , and, as sZ(L)(f) = 1 the map L′ → L′f is an
isomorphism which restricts to the isomorphism M ′ → M ′

f ≡ L′f , so
that L′ = M ′, that is L = M . �
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3. On the Pimsner-Popa basis

Let N ⊂ M be an inclusion of von Neumann algebras and T ∈
P (M,N). A Pimsner-Popa basis is a basis for the self dual completion
XT of the left N -module N(MT ) relative to the N -valued inner product
< x, y >T= T (xy∗) as in [24].
It is a celebrated result that, if E(M,N) 6= ∅, there exists a Pimsner-
Popa basis consisting of elements affiliated to M , in the sense explained
in [26].
In this section we strengthen this result by showing that, if N ⊂M are
properly infinite von Neumann algebras, a Pimsner-Popa basis consist-
ing of elements in M can be chosen. The proof also shows how such a
basis can be constructed. We need some preliminary lemmas.

Lemma 3.1. Let N ⊂ M be an inclusion of properly infinite von
Neumann algebras, with E(M,N) 6= ∅. Then

(i) Jones’ projection e ∈M1 is properly infinite,
(ii) if q̂ ∈ Proj(M1) is majorized by e, then there exists q ∈ Proj(N)
such that qe = q̂.

Proof. (i) We have isometries v, w ∈ N with orthogonal ranges satis-
fying vv∗ + ww∗ = 1. We can define v̂ := ve, ŵ := we and obtain two
partial isometries with ortogonal ranges that satisfy v̂∗v̂ = e = ŵ∗ŵ,
v̂v̂∗ + ŵŵ∗ = e. The assertion follows by [28], 4.12.
(ii) As eM1e ∼ Ne, see [25], there exists q ∈ N such that qe = q̂ ≡ eq̂e;
moreover q̂ ∈ ME1 and q = E1(q̂), where E1 ∈ P (M1,M) is the dual
weight of E ∈ E(M,N). Finally q ∈ Proj(N) as q∗q = E1(q

∗qe) =
E1(eq

∗qe) = E1(q̂
∗q̂) = E1(q̂) = q. �

The proof of the following lemma is heavily based on ([8], Lemma
2.2 ).

Lemma 3.2. Let N ⊂ M be an inclusion of von Neumann algebras
and T a normal N-valued weight on M . The following are equivalent

(i) T is semifinite,
(ii) there is x ∈ (MT )+ s.t. sM(x) = 1,
(iii) there is a sequence {pn} of orthogonal projections in MT s.t.

∑
pn =

1.

Proof. (i) ⇒ (ii) As the unit ball of M+ is metrizable in the strong
topology ([12], 5.7.46), there is a strongly dense sequence {xn} in the
unit ball of (MT )+. Then

∑∞
n=1 2−n xn

‖1+T (xn)‖ converges in norm to x ∈
M+. As T is normal, x ∈ (MT )+, in fact T (x) =

∑∞
n=1 2−n T (xn)

‖1+T (xn)‖ ∈
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N . Finally, if p ∈ Proj(M) is s.t. xp = 0, then 0 =
∑∞

n=1 2−n pxnp
‖1+T (xn)‖ ,

which implies pxnp = 0 for all n, that is pxn = 0, which implies p = 0,
due to the density of {xn}.
(ii) ⇒ (iii) Set pn := χ[ 1

n+1
, 1
n

)(x). Then {pn} are mutually orthogonal

projections in M , and
∑

n pn = sM(x) = 1. Finally T (pn) ≤ (n +
1)T (xpn) ≤ T (x) ∈ N+.
(iii) ⇒ (i) is obvious. �

The following lemma is essentially ([11], Lemma 2.2) (which is only
proved in case N ⊂M are factors).

Lemma 3.3. (Push-down Lemma)
Let N ⊂ M be an inclusion of von Neumann algebras, E ∈ E(M,N).
Then, for all x ∈ NE1, we have eE1(ex) = ex.

Proof. The same proof of ([11], Lemma 2.2) works. Just observe that
A := MeM is still weakly dense in M1. Indeed, as Ā is a weakly-
closed two-sided ideal in M1, there is a central projection z ∈ M1, s.t.
zM1 = Ā. Then z = 1, as (1− z)e = 0, so that z ≥ sZ(M1)(e) = 1. �

We can now prove the main result of this Section, namely that a
basis {mi}i∈I for M made of elements in M can be chosen.

Remark 3.4. Recall [26] that the following equivalent properties char-
acterize a Pimsner-Popa basis:

(i) E(mim
∗
j) = δijqj ∈ Proj(N) \ {0}, and

∑
i∈I m

∗
i emi = 1

(ii) m∗
i emi are mutually ortogonal projections inM1, and (

∑
im

∗
i eH)− =

H.
In general the sequence {mi} is made of elements affiliated to M , as
was explained in [26].

Theorem 3.5. Let N ⊂ M be an inclusion of properly infinite von
Neumann algebras and E ∈ E(M,N). Then there exists a Pimsner-
Popa basis for the left module NM made of elements of M .

Proof. Let {pi}i∈I be a family of ortogonal projections of M1 such that
pi ∈ ME1 and

∑
i∈I pi = 1, as in Lemma 3.2. Thanks to sZ(M1)(pi) ≤

sZ(M1)(e) ≡ 1, and e being properly infinite, we get a collection {vi}i∈I ⊂
M1 of partial isometries such that

v∗i vi = pi, q̂i := viv
∗
i ≤ e i ∈ I.

Hence vi ≡ evipi ∈ ME1 and we take mi := E1(vi) as a Pimsner-Popa
basis. Indeed mi is the push-down of vi, as vi = evi = eE1(evi) =
eE1(vi). Besides

pi = v∗i vi = v∗i evi = m∗
i emi
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and summing up we obtain
∑

im
∗
i emi = 1.

Moreover we get

E(mim
∗
j) = E1(eE(mim

∗
j)) = E1(emim

∗
je)

= E1(eviv
∗
j e) = δijE1(eq̂j)

= δijE1(eqj) = δijqj.

�

Proposition 3.6. If {mi}i∈I ⊂M is a Pimsner-Popa basis for N ⊂M
then every x ∈M has the following expansion

x =
∑
i∈I

E(xm∗
i )mi (1)

where the last sum converges unconditionally relative to the topology
generated by the separating family of seminorms {pϕ : ϕ ∈ (N∗)+},
with pϕ(x) := ϕ ◦ E(xx∗)1/2.

Proof. Observe that mi = qimi. In fact E((mi − qimi)(mi − qimi)
∗) =

E(mim
∗
i )−E(qimim

∗
i )−E(mim

∗
i qi)+E(qimim

∗
i qi) = 0, and the thesis

follows by faithfulness of E.
We now prove the convergence of (1) in the topology generated by the
above seminorms.
As pA :=

∑
i∈Am

∗
i emi ↗ 1, in the strong operator topology when the

finite subset A ⊂ I tends to the whole index set I, for x ∈M we have

‖(1− pA)Λϕ̂(x
∗e)‖2

ϕ̂ −→ 0

that is

ϕ̂(ex(1− pA)x∗e) −→ 0

for every ϕ̂ normal semifinite faithful weight on M1 given by ϕ̂ :=
ϕ ◦ E ◦ E1, ϕ ∈ (N∗)+. Finally we get

ϕ̂(ex(1− pA)x∗e) = ϕ ◦ E(xx∗)−
∑
i∈A

ϕ ◦ E(E(xm∗
i )E(mix

∗))

= ϕ ◦ E(xx∗)−
∑
i,j∈A

ϕ ◦ E(E(xm∗
i )mim

∗
jE(mjx

∗))

≡ ϕ ◦ E((x− xA)(x∗ − x∗A))

where xA :=
∑

i∈AE(xm∗
i )mi and we have appliedmi = qimi, E(mim

∗
j) =

δijqj. �

Remark 3.7. Note that

IndE =
∑
i∈I

m∗
imi ∈ Z(M)+
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and the index is finite iff
∑

i∈I m
∗
imi ∈ Z(M).

As a direct consequence of the Theorem 3.5 we have the following

Corollary 3.8. The self-dual completion NX of the left N-module NM
is isomorphic to the ultraweak direct sum

NX ∼=
⊕
j∈J

Nqj.

Proof. Follows by the above considerations and [24] Theorem 3.12. �

4. The canonical endomorphism in the semidiscrete and
semicompact cases

In this Section we provide the announced conditions which are equiv-
alent to the fact that an endomorphism is canonical. We treat only the
semidiscrete and semicompact cases, that is the cases when the canon-
ical endomorphism λ is associated to an inclusion N ⊂ M such that
E(N, λ(M)) 6= ∅ or E(M,N) 6= ∅. These conditions allow us to ex-
tend the definition of a Q-system given in [19] to nontrivial examples
of infinite index.

Theorem 4.1. (semidiscrete case) Let M be a properly infinite von
Neumann algebra with separable predual, λ ∈ End(M). Then the fol-
lowing are equivalent

(i) there is N ⊂ M , with E(N, λ(M)) 6= ∅, s.t. λ is a canonical endo-
morphism for N ⊂M

(ii) there are an isometry v ∈ (id, λ) and {mi} ⊂M s.t.
∑

im
∗
i vv

∗mi =
1, and, setting N := 〈λ(M), {mi}〉, one has x ∈ N , xv = 0 ⇒ x = 0.
Moreover, if v∗mim

∗
jv = δijqi, qi ∈ Proj(λ(M)) \ {0}, then {mi} is a

Pimsner-Popa basis for the inclusion λ(M) ⊂ N .

Proof. (i) ⇒ (ii)
Let E ∈ E(N, λ(M)), then from Proposition 2.3 it follows that there is
an isometry v ∈ M s.t. λ(x)v = vx, x ∈ M , λ(v∗ · v) = E, and finally
vv∗ is Jones’ projection for the inclusion λ(M) ⊂ N .
By Theorem 3.5 there are {mi}i∈I ⊂ N , s.t.

∑
i∈I m

∗
i vv

∗mi = 1, and
N = 〈λ(M), {mi}〉, which can be shown as in the proof of ([6], Propo-
sition 6).
Finally, if x ∈ N is s.t. xv = 0, then 0 = λ(v∗x∗xv) = E(x∗x), which
implies x = 0, as E is faithful.
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(ii) ⇒ (i)
Let us set E := λ(v∗ ·v) ∈ C(N, λ(M)). Then E is faithful as E(p) = 0
for some p ∈ Proj(N) implies pv = 0, and therefore p = 0.
We want to prove that λ(M) ⊂ N ⊂ 〈N, vv∗〉 is Jones’ basic con-
struction. Indeed, setting f := vv∗, we observe that E(x)f = fxf ,
x ∈ N , so that sλ(M)(f) = 1, from ([5], Lemma 3.2(ii) ). Finally
sZ(〈N,vv∗〉)(f) ≥ sN ′∧M(f) = 1, because, if p ∈ Proj(N ′ ∧ M) is s.t.
pvv∗ = 0, then p = p

∑
im

∗
i vv

∗mi =
∑

im
∗
i pvv

∗mi = 0. From Propo-
sition 2.2 we conclude.
Therefore, by Lemma 2.6, 〈N, vv∗〉 ≡ M , and, by Lemma 2.4, λ is a
canonical endomorphism for N ⊂M . �

Theorem 4.2. (semicompact case) Let M be a properly infinite von
Neumann algebra with separable predual, λ ∈ End(M). Then the fol-
lowing are equivalent

(i) there is N ⊂ M , with E(M,N) 6= ∅, s.t. λ is a canonical endomor-
phism for N ⊂M

(ii) there are an isometry v ∈ (λ, λ2) and {mi} ⊂ λ(M) s.t.
∑

im
∗
i vv

∗mi =
1, λ(v)v = v2, λ(v)∗v = vv∗, and x ∈M , λ(x)v = 0 ⇒ x = 0.
Moreover, if v∗mim

∗
jv = δijqi, qi ∈ Proj(N) \ {0}, then {mi} is a

Pimsner-Popa basis for the inclusion N ⊂M .

Proof. (i) ⇒ (ii)
Let E ∈ E(M,N), then from Proposition 2.3 it follows that there are
an isometry v ∈ N s.t. λ(x)v = vx, x ∈ N , v∗λ(·)v = E, and finally
vv∗ is Jones’ projection for the inclusion λ(N) ⊂ λ(M).
Therefore λ(λ(x))v = vλ(x), x ∈ M , that is v ∈ (λ, λ2); λ(v)v = v2,
and λ(v)∗v = vv∗ are immediate.
Besides, if x ∈M , λ(x)v = 0, then λ(x)vv∗ = 0, so that λ(x) = 0, and
x = 0, as vv∗ is separating for λ(M).
Finally by Theorem 3.5 there are {mi} ⊂ λ(M) s.t.

∑
im

∗
i vv

∗mi = 1.
(ii) ⇒ (i)
Let us set E := v∗λ(·)v. Then, as in ([19], Proposition 5.2), E ∈
C(M,N), where N := E(M) is a von Neumann subalgebra of M . We
want to show that E is faithful, so let x ∈M , be s.t. E(x∗x) = 0, then
v∗λ(x∗x)v = 0, that is λ(x)v = 0, and x = 0, from the hypothesis.
Let us observe that f := vv∗ ∈ N , as E(vv∗) = v∗λ(v)λ(v)∗v =
vv∗vv∗ = vv∗.
We want to prove that λ(N) ⊂ λ(M) ⊂ 〈λ(M), f〉 is Jones’ basic con-
struction, by using Proposition 2.2.
At first sλ(M)(f) = 1, because, if λ(p) ∈ Proj(λ(M)) is s.t. λ(p)vv∗ =
0, then p = 0.
Besides sZ(〈λ(M),f〉)(f) ≥ sλ(M)′∧N(f) = 1, because, if p ∈ Proj(λ(M)′∧
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N) is s.t. pvv∗ = 0, then p = p
∑

im
∗
i vv

∗mi =
∑

im
∗
i pvv

∗mi = 0.
Finally, observing that F := λ · E · λ−1 ∈ E(λ(M), λ(N)), is s.t.
F (x)f = fxf, x ∈ λ(M), we get the thesis.
Therefore, by Lemma 2.6, 〈λ(M), f〉 ≡ N , and, by Lemma 2.5, λ is a
canonical endomorphism for N ⊂M . �

Remark 4.3. The above properties are also equivalent to
(iii) there exists an isometry v ∈ (λ, λ2) s.t. λ(v)v = v2, λ(v)∗v = vv∗,
and

sλ(M)′∧M(vv∗) = sλ(λ(M)′∧M)(vv
∗) = 1,

as follows from ([5], Proposition 6.1).

In the following Sections we extend the notion ofQ-system to semidis-
crete and semicompact inclusions and analyse the Takesaki duality
which naturally appears considering the Jones-Longo tunnel, and the
canonical mirroring on it. As an application we have conditions on the
canonical endomorphism which are equivalent to the fact that an inclu-
sion arises as a crossed product by a compact or discrete Woronowicz
(or Kac) algebra. In the discrete case these conditions can be stated
directly in terms of Q-systems.

5. Duality for Q-systems

Q-systems in the finite index case were introduced in [19] to con-
sider the canonical endomorphism as a relevant means to handle the
problem of the actions of “quantum symmetries” on von Neumann al-
gebras. This situation typically appears in QFT where in the physical
Minkowski space an ordinary compact group acts on the algebra of
fields, but, for low-dimentional theories, a braid group statistics ap-
pears, and it is expected that a quantum symmetry acts [21, 20].
We analyse Q-systems in the (semidiscrete and semicompact) infinite
index case and apply the results to the depth 2 factor-subfactor inclu-
sions, that is when compact or discrete Woronowicz algebras naturally
appear [2]. This Section extends [19] Section 6.

Although some of the properties required in the following definition
are unnecessary to characterize a canonical endomorphism λ we pre-
fer to define a Q-system s.t. the sequence {mi} directly provides a
Pimsner-Popa basis for the relevant inclusions.

Definition 5.1.
(i) A Q-system of semidiscrete type (semidiscrete Q-system for short) is
a couple (M,Λ) where M is a properly infinite von Neumann algebra
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and Λ := (λ, v, {mi}i∈I) satisfies the properties given in Proposition
4.1, that is v ∈ (id, λ) is an isometry, and {mi} ⊂M are s.t.∑

i

m∗
i vv

∗mi = 1

v∗mim
∗
jv = δijqi,

qi ∈ Proj(λ(M))\{0}, and, settingN := 〈λ(M), {mi}〉, one has x ∈ N ,
xv = 0 ⇒ x = 0.

(ii) A Q-system of semicompact type (semicompact Q-system for short)
is a couple (M,Λ) where M is a properly infinite von Neumann algebra
and Λ := (λ, v, {mi}i∈I) satisfies the properties given in Proposition
4.2, that is v ∈ (λ, λ2) is an isometry s.t. λ(v)v = v2, λ(v)∗v = vv∗,
and {mi} ⊂ λ(M) are s.t.∑

i

m∗
i vv

∗mi = 1

v∗mim
∗
jv = δijqi,

qi ∈ Proj(N) \ {0}, and x ∈M , λ(x)v = 0 ⇒ x = 0.

As we have proved, λ is the canonical endomorphism for an inclu-
sion of von Neumann algebras N ⊂M . Contrary to what we did in [5],
but in accordance with [11] we say that a subalgebra N of a properly
infinite von Neumann algebra M is semicompact if E(M,N) 6= ∅, and
semidiscrete if E(N ′,M ′) 6= ∅, which is equivalent to E(M1,M) 6= ∅
and to E(N, γ(M)) 6= ∅, with γ a canonical endomorphism for N ⊂M .
Therefore, if we say that an inclusion N ⊂M is a concrete Q-system,
the two previous definitions coincide.

The irreducibility of an inclusion N ⊂M seems to be deeply related
to the structure of (idN , γ|N), where γ is the canonical endomorphism
of the inclusion, see [16, 5]. The following result partially confirms the
above considerations.

Theorem 5.2. Let A ⊂ B be a semicompact inclusion of properly
infinite von Neumann algebras. The following are equivalent:

(i) A ⊂ B is irreducible, that is A′ ∧B = Z(A)
(ii) E(B,A) is a singleton
(iii) The Z(A)-module (idA, γ|A) is cyclic.

Proof. (i) ⇐⇒ (ii) is a well-known result by Combes-Delaroche [1].
(iii) ⇒ (ii) Let v0 be a generator of the Z(A)-module (idA, γ|A), which
must be an isometry, as follows from Proposition 2.3. Therefore, again
by the same Proposition, E(B,A) must be a singleton.
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(ii) ⇒ (iii) Let s ∈ (idA, γ|A), then s∗s ∈ (idA, idA) ≡ Z(A) and
we can restrict ourselves to the case when s = v = vp, where v ∈
(idA, γ|A) is a partial isometry with p ∈ Z(A) as domain projection,
and a subprojection of p as range projection. As by Proposition 2.3
there is an isometry v0 ∈ (idA, γ|A), we can construct w := vp + v0p

⊥,
which is an isometry. By the following Lemma 5.3, there is z ∈ Z(A)
s.t. w = zv0, so that s = v = vp = zpv0 that is v0 is a generator. �

Lemma 5.3. Let A ⊂ B be properly infinite von Neumann algebras,
and assume that E(B,A) is a singleton. If v, w ∈ (idA, γ|A) are isome-
tries, then there is a unitary z ∈ Z(A) s.t. v = zw.

Proof. As v∗γ(·)v, w∗γ(·)w ∈ C(B,A) ≡ E(B,A), because of the hy-
pothesis, we get E := v∗γ(·)v = w∗γ(·)w. Let us prove that e := vv∗,
f := ww∗ are Jones’ projections for the inclusion γ(A) ⊂ γ(B). In-
deed, setting F := γ ◦E ◦ γ−1 ∈ E(γ(B), γ(A)), we have F (x)e = exe,
x ∈ γ(B), so that sγ(A)(e) = 1, and sZ(〈γ(B),e〉)(e) ≥ sγ(B)′∧A(e) =
sZ(A)(e) = 1, because, if p ∈ Proj(Z(A)) is s.t. pe = 0, then p = 0,
therefore from Proposition 2.2 we conclude. Then 〈γ(B), e〉 = A as
follows from Lemma 2.6. Analogously f is Jones’ projections for the
inclusion γ(A) ⊂ γ(B) and 〈γ(B), f〉 = A. Therefore, by ([14], Ap-
pendix A), f = e. Let us now consider vw∗ = evw∗e ∈ eAe = γ(A)e,
that is, there exists z ∈ A s.t. vw∗ = γ(z)e = γ(z)ww∗, which implies
v = γ(z)w = wz, and w∗v = z. But we have also w∗v ∈ Z(A), so that
1 = v∗wz = z∗z, and z is a unitary operator in Z(A). �

The above Theorem suggests the following

Definition 5.4.
(i) A Q-system of semidiscrete type (M,Λ) is called irreducible if there
is a unique v ∈ (id, λ), up to multiplication by a unitary operator in
Z(M).

(ii) A Q-system of semicompact type (M,Λ) is called irreducible if there
is a unique v ∈ (idN , λ|N), up to multiplication by a unitary operator
in Z(N).

Hence in both cases the irreducibility condition on the Q-system
means that a suitable inclusion in the Jones-Longo tower

· · · ⊂ γ(M) ⊂ N ⊂M ⊂M1 ⊂M2 ⊂ · · ·
is irreducible.

There is a natural notion of isomorphism, namely (M1,Λ1) and
(M2,Λ2) are isomorphic if there is an isomorphism ϕ : M1 → M2,
s.t. λ2 = ϕ ◦ λ1 ◦ ϕ−1, v2 = ϕ(v1), and m2i = ϕ(m1i). It is easy to see
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that a Q-system isomorphic to a semidiscrete one, is itself semidiscrete.
Analogously for the semicompact case.

Definition 5.5.
(i) Q-systems of discrete type (M,Λ1) and (M,Λ2) are inner conjugate
if there is a unitary operator u ∈ M , s.t. λ2 = uλ1(·)u∗, v2 = uv1,
m2i = um1i.

(ii) Q-systems of compact type (M,Λ1) and (M,Λ2) are inner con-
jugate if there is a unitary operator u ∈ M , s.t. λ2 = uλ1(·)u∗,
v2 = uλ1(u)v1u

∗, m2i = uλ1(u)m1iu
∗.

Finally, Q-systems are cocycle equivalent if the first is isomorphic to
an inner conjugate copy of the second.

Theorem 5.6. (cfr. [19], Theorem 6.1)
Let M be a properly infinite von Neumann algebra. Then there is a
bijective correspondence between (irreducible) semidiscrete subalgebras
N of M , and (irreducible) semidiscrete Q systems based on M . Con-
jugate inclusions correspond to cocycle equivalent Q-systems.
The same holds if we replace semidiscrete with semicompact every-
where.

Proof. Bijective correspondence follows from Propositions 4.1 e 4.2.
Irreducibility assumption for a Q-system corresponds to irreducibility
of the subalgebra by Theorem 5.2. Finally cocycle equivalence follows
from the Radon-Nikodym property of the canonical endomorphism [15].

�

We now deal with Takesaki duality in the context of Q-systems.

Let (M,λ, v, {mi}) be a semidiscrete Q-system, N ⊂ M the corre-
sponding subalgebra. Then λ is a canonical endomorphism for N ⊂M ,
that is λ = adΓ, with Γ := JNJM . Then

Definition 5.7. (M̃, λ̃, ṽ, {m̃i}) is called the dual Q-system, where

M̃ := Γ∗NΓ is the crossed product of M by Λ, λ̃ := adΓ|M̃ , ṽ := v,
m̃i := mi.

Let (M,λ, v, {mi}) be a semicompact Q-system, N ⊂ M the corre-
sponding subalgebra. Then λ is a canonical endomorphism for N ⊂M ,
that is λ = adΓ, with Γ := JNJM . Then

Definition 5.8. (M̃, λ̃, ṽ, {m̃i}) is called the dual Q-system, where

M̃ := Γ∗NΓ is the crossed product of M by Λ, λ̃ := adΓ|M̃ , ṽ := Γ∗vΓ,
m̃i := Γ∗miΓ.
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It is easy to see that the dual of a semidiscrete Q-system is semi-
compact and viceversa.

In this context Takesaki duality holds, too. The bidual Q-system,
that is the double crossed product, is obtained by shifting all the struc-
ture two steps upwards in Jones’ tower.

6. Actions of Woronowicz and Kac algebras

In this Section we analyse more deeply what happens in case of depth
2 irreducible inclusions of infinite factors.
The following Proposition, while being the crucial step in proving The-
orem 6.2, could be considered as a version of Frobenius reciprocity in
its own right.

Proposition 6.1. Let ρ(M) ⊂ M be an irreducible endomorphic in-
clusion of infinite factors and σ ∈ End(M).

(i) Suppose that σρ � id. Then σ � ρ̄.
(ii) Suppose that ρσ � id. Then σ � ρ̄.

Proof. (i) Let v ∈ (id, σρ), and let u ∈ M be an isometry s.t. uu∗ =
p := sσ(M)′∧M(vv∗) ≤ 1 (as p is an infinite projection), so that uu∗v = v,
and set τ := u∗σ(·)u. Then τ ∈ End(M), as it is easily shown. Set
z := u∗v, which is an isometry, and satisfies τρ(x)z = u∗σρ(x)uu∗v =
u∗σρ(x)v = u∗vx = zx, so that z ∈ (id, τρ), that is τρ � id.
Besides sτρ(M)′∧τ(M)(zz

∗) = 1, as ρ(M)′ ∧M = C.
If we could prove that sτ(M)′∧M(zz∗) = 1, by Proposition 7.1, we would
have σ � τ ∼= ρ̄. So all that is left to prove is sτ(M)′∧M(zz∗) = 1.
First let us prove that (τ, τ) = u∗(σ, σ)u. Indeed a ∈ (τ, τ) is equiv-
alent to au∗σ(x)u = u∗σ(x)ua, x ∈ M , which implies uau∗σ(x)uu∗ =
uu∗σ(x)uau∗, that is uau∗σ(x) = σ(x)uau∗, as uu∗ ∈ (σ, σ). Setting
b := uau∗, we get a = u∗bu, with b ∈ (σ, σ). Conversely, if b ∈ (σ, σ),
we get

u∗buτ(x) = u∗buu∗σ(x)u = u∗σ(x)bu

= u∗σ(x)uu∗bu = τ(x)u∗bu.

Besides, if q ∈ (τ, τ) is a projection s.t. qzz∗ = 0, then q = u∗fu, with
f ∈ (σ, σ). As q = q∗q implies u∗fu = u∗f ∗uu∗fu, we can, substituting
f ∗uu∗f for f , consider f positive. Then qzz∗ = 0 ⇐⇒ qz = 0, that is
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u∗fuu∗v = 0, which implies v∗uu∗fuu∗v = v∗fv = 0, which is equiva-
lent to fvv∗ = 0, that is s(f)vv∗ = 0, which, recalling uu∗ = s(σ,σ)(vv

∗),
implies s(f)uu∗ = 0, that is fuu∗ = 0, and finally q = 0.

(ii) The proof is the same as above if one looks at v ∈ (id, ρσ) and
takes p := ρ−1(sρ(σ(M)′∧M)(vv

∗)). p is an infinite projection hence there
exists an isometry u such that uu∗ = p. In this case τ := u∗σ(·)u gives
rise to a conjugate of ρ with the isometry ρ(u∗)v which intertwiners id
and ρτ . �

We are now ready to extend Frobenius reciprocity, in Longo’s setting,
to the semidiscrete and semicompact cases.

Theorem 6.2. Let M be an infinite factor and ρ, η ∈ Sect(M) be ir-
reducible sectors.

(i) (semidiscrete case) Suppose that ρρ̄ � id, ηη̄ � id and α ∈ Sect(M)
is a sum of finite index sectors. Then, for every β ∈ Sect(M) we have

αρβ � η ⇐⇒ ᾱηβ̄ � ρ

with equal multiplicities.
(ii) (semicompact case) Suppose that ρ̄ρ � id, η̄η � id and β ∈ Sect(M)
is a sum of finite index sectors. Then, for every α ∈ Sect(M) we have

αρβ � η ⇐⇒ ᾱηβ̄ � ρ

with equal multiplicities.

Proof. Same as [19], making a repeated use of the above Proposition.
�

Now we can apply the previous results to the duality for semidiscrete
(or equally well semicompact) factor-subfactor inclusions of depth 2,
that is when discrete and compact dual Woronowicz algebras (see [22])
alternately act on Jones’ tower [2, 3].
Moreover we provide a condition on the canonical endomorphism for
the above inclusion to be generated by the crossed product by a (dis-
crete or compact) Kac algebra.

Theorem 6.3. Let N ⊂ M be an irreducible inclusion of infinite fac-
tors.

(a) Suppose that γ contains the identity sector. Then the following are
equivalent.

(i) N ⊂M is depth 2
(ii) γ2 ∼= d · γ for some d ∈ N ∪ {∞}
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(iii) M is the crossed product of N by an outer action of a compact
Woronowicz algebra.

(b) Suppose that γ|N contains the identity sector. Then the following
are equivalent.

(i) N ⊂M is depth 2
(ii) γ2 ∼= d · γ for some d ∈ N ∪ {∞}
(iii) M is the crossed product of N by an outer action of a discrete
Woronowicz algebra.

Proof. It is a consequence of the following Proposition and [2, 3]. �

Proposition 6.4. Let N ⊂ M be an inclusion of infinite factors and
γ : M → N the canonical endomorphism. Suppose that γ contains the
identity sector and consider the following statements

(i) N ⊂M is depth 2
(ii) γ2 ∼= d · γ for some d ∈ N ∪ {∞}
(iii) there exists a sequence of finite index irreducible sectors {ρi}i∈I ⊂
Sect(M) which is a basis for the ∗-semiring generated by the same {ρi},
such that

γ = ⊕id(ρi)ρi.

Then (i) ⇐⇒ (ii) ⇐ (iii).

Proof. Up to tensoring with an absorbing factor [18], we may assume
that N = ρ(M) for some irreducible endomorphism ρ ∈ End(M). We
have v ∈ (id, ρρ̄) ⊂ (ρ, ρρ̄ρ), ρ̄(v) ∈ (ρ̄, ρ̄ρρ̄) hence the inclusion is reg-
ular according to [2], sec.5.

By [2], Proposition 6.3, condition (i) means that ρρ̄ρ ∼= d ·ρ, whereas
condition (ii) translates into ρρ̄ρρ̄ ∼= d · ρρ̄.
(i) ⇒ (ii) Follows multiplying on the right by ρ̄.
(ii) ⇒ (i)
Note that if d ∈ N the proof is contained in ([19], Lemma 6.3), in the
general case we may proceed as follows.
Let us set σ := ρρ̄ρ. Then σρ̄ ∼= dρρ̄ � d · id � id. Therefore, by a
repeated application of Proposition 6.1, we obtain σ ∼= kρ ⊕ τ , where
k ∈ N ∪ {∞}, τ 6� ρ. We want to prove that k = d and τ = 0.
Suppose that τ 6= 0. Then, as ρρ̄ρ ∼= kρ ⊕ τ , we have dρρ̄ ∼= ρρ̄ρρ̄ ∼=
kρρ̄ ⊕ τ ρ̄. Therefore τ ρ̄ � ρρ̄, then τ ρ̄ � id, and, by Proposition 6.1
applied to ρ̄, τ � ρ which is absurd. Then τ = 0, so that k = d.
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(iii) ⇒ (ii) Due to completeness we have

ρiρj = ⊕kN
k
ijρk

with ∑
k

Nk
ijdk = didj

with finite sum, because of finite index condition. It follows from Frobe-
nius reciprocity that

Nk
ijρk ≺ ρiρj ⇐⇒ Nk

ijρi ≺ ρkρ̄j.

Again by completeness we get

ρkρ̄j = ⊕kN
i
k,l(j)ρi

where j → l(j) is the permutation relative to the conjugation, hence
we have Nk

i,j = N i
k,l(j). Finally we have

γ2 =
⊕
ijk

didjN
k
i,jρk

=
⊕
ijk

didjN
i
k,l(j)ρk

=
⊕
k

∑
ij

didjN
i
k,l(j)ρk

=
⊕
k

∑
j

djdkdl(j)ρk

=
⊕
k

dk(
∑
j

d2
j)ρk

= d · γ,
where d ≡

∑
j d(ρj)

2. �

We apply this result to Q-systems of semidiscrete type.

Corollary 6.5. Let (M,Λ) be an irreducible semidiscrete Q-system
s.t. M is an infinite factor and λ2 ∼= d · λ. Then the dual Q-system
(M̃, Λ̃) is the crossed product of (M,Λ) by an outer action of a discrete
Woronowicz algebra.

Proof. The irreducibility condition means that N ′ ∧M = Z(M) = C.
The assertion now follows by the above considerations. �

We cannot give the result involving semicompact Q-systems. Even
for actions of compact groups on factors we need additional conditions
to assure that a crossed product of a factor by a prime action of a com-
pact group is itself a factor, see [27], Section 21, and [23], Section IV.3.
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This problem seems to be directly related to the fact that the irre-
ducibility condition for both semidiscrete and semicompact Q-systems
is equivalent to the irreducibility of the same kind of inclusion in Jones
tower, namely the one with the conditional expectation, (see 5.2), hence
we have the inapplicability of the result by Combes-Delaroche ([1]) for
the dual statement in Theorem 5.6.

As we said previously, we now show that property (iii) in Proposition
6.4 characterises when a depth 2 factor-subfactor inclusion arises as the
crossed product by a Kac algebra.

Theorem 6.6. Let N ⊂ M be an irreducible inclusion of infinite fac-
tors.

(a) The following are equivalent.
(i) M is the crossed product of N by an outer action of a compact Kac
algebra.

(ii) there exists a sequence of finite index irreducible sectors {ρi}i∈I ⊂
Sect(M) which is a basis for the ∗-semiring generated by the same {ρi},
such that

γ = ⊕id(ρi)ρi.

(b) The following are equivalent.
(i) M is the crossed product of N by an outer action of a discrete Kac
algebra.

(ii) there exists a sequence of finite index irreducible sectors {ρi}i∈I ⊂
Sect(N) which is a basis for the ∗-semiring generated by the same {ρi},
such that

γ|N = ⊕id(ρi)ρi.

Proof. We only prove part (a), part (b) being analogous.
(i) ⇒ (ii) Assume M is the crossed product of N by an outer action
of a compact Kac algebra, which is isomorphic to γ(N)′ ∧ N ([3]).
Then γ(M)′∧M is a discrete Kac algebra isomorphic to ⊕iB(Hi), and
di := dim(Hi) < ∞ ([4]). Finally, if E ∈ E(N, γ(M)) is given by
E := γ(v∗ · v), and E1 := jN ◦ E−1 ◦ jN ∈ P (M,N), with jN := adJN ,
is the dual weight, it follows from [4], that E1|γ(M)′∧M =

∑
i diTri,

where Tri is the canonical (unnormalized) trace on B(Hi). Set T :=
E ◦ E1 ∈ P (M,γ(M)), let pi be the minimal central projections in
γ(M)′ ∧ M , and vi ∈ M be isometries s.t. pi = viv

∗
i , so that, with

σi := v∗i γ(·)vi ∈ End(M), we have γ ∼= ⊕σi and σi(M)′ ∧M ∼= B(Hi).
Then, by [7] Theorem 6.6 and Corollary 6.10, pi ∈ (γ(M)′∧M)T ∩MT ,
so that, by the following Lemma 6.7, we have Ind(Tpi

) = (Tpi
)−1(pi) =

T−1(T (pi)pi)pi. As T (pi) = d2
i , and jM ◦T−1 ◦ jM = γ−1 ◦T ◦γ, so that

T−1(pi) = d2
i , we get Ind(σi) = Ind(Tpi

) = d4
i . Decomposing each σi

in irreducible equivalent sectors σi ∼= diρi, we get d2
i = d(σi) = did(ρi),
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so that d(ρi) = di, and therefore γ ∼= ⊕id(ρi)ρi.
Finally, as Proposition 6.4 (ii) is true, we obtain ⊕ijdidjρiρj ∼= γ2 ∼=
dγ ∼= ⊕ddiρi, that is the irreducibles contained in ρiρj are a subset of
{ρk}. Moreover ⊕diρ̄i ∼= γ̄ ∼= γ ∼= ⊕diρi, so that ρ̄i ∼= ρj(i) for some
j(i). All this shows that {ρk} is a basis for the ∗-semiring generated by
{ρk}.
(ii) ⇒ (i) By Theorem 6.3, M = N ×α A, where A is a compact
Woronowicz algebra, which appears as A = γ(N)′ ∧ N . The dual

algebra Â, which is a discrete Woronowicz algebra, is given by γ(M)′∧
M and is isomorphic to⊕iB(Hi), dim Hi = d(ρi). Let E ∈ E(N, γ(M))
be the unique expectation, E1 ∈ P (M,N) the dual weight, and consider
T := E ◦ E1 ∈ P (M,N). It is enough to prove that σTt = id, see [3].
Let {pi} be the minimal central projections of γ(M)′ ∧M , then, using
([11], Proposition 2.8), we obtain that E1|γ(M)′∧M ∈ P (γ(M)′ ∧ M)
and pi ∈ ME1 . Therefore, using next Lemma 6.7, we can define Tpi

∈
E(M,σi(M)), where σi := d(ρi)ρi, and obtain Ind(Tpi

) = d(ρi)
4, which

means that Tpi
is the minimal expectation. Therefore Tpi

|σi(M)′∧M is a
trace. As T |γ(M)′∧M =

∑
i T (pi)Tpi

|σi(M)′∧M , it is a trace. The thesis
follows from ([7], Corollary 6.10). �

Lemma 6.7. Let A ⊂ B be an inclusion of von Neumann algebras, G ∈
P (B,A), p ∈ (A′∧B)G∩MG a non-zero projection in B, and set Gp :=
G(x)G(p)−1p, x ∈ (Bp)+. Then Gp ∈ E(Bp, Ap) and (Gp)

−1(x) =
G−1(G(p)x)p, x ∈ (A′

p)+.

Proof. The proof is the same as [10], Proposition 1.4, with obvious
modifications. �

We remark that Corollary 6.5 can be stated also in the case of Kac
algebras, with obvious minor modification.

7. Appendix

Although we have already given a characterization of the conjugate
endomorphism (in the semidiscrete and semicompact cases) in ([5]), we
give here a different one, based on the methods of this paper.

Proposition 7.1. Let M be a properly infinite von Neumann algebra
with separable predual, ρ, σ ∈ End(M). Then the following are equiva-
lent

(i) E(M,ρ(M)) 6= ∅, σ = ρ̄,
(ii) σρ � id and there is an isometry v ∈ (id, σρ) s.t. x ∈ M , xv = 0
⇒ x = 0,
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(iii) σρ � id, with v ∈ (id, σρ) an isometry s.t.

sσ(M)′∧M(vv∗) = 1

sσρ(M)′∧σ(M)(vv
∗) = 1.

Proof. (i) ⇐⇒ (iii) is ([5], Theorem 3.4)
(i) ⇒ (ii)
Let E ∈ E(M,ρ(M)) and consider the inclusion ρ̄ρ(M) ⊂ ρ̄(M), and
set F := ρ̄ ·E · ρ̄−1 ∈ E(ρ̄(M), ρ̄ρ(M)). From Proposition 2.3 it follows
that there are an isometry V ∈ ρ̄ρ(M) and a choice of a canonical
endomorphism γ′ for the inclusion ρ̄ρ(M) ⊂ ρ̄(M), s.t. γ′(x)V = V x,
x ∈ ρ̄ρ(M), and V ∗γ′(·)V = F .
Set V = ρ̄ρ(v), v ∈ M . Then ρ̄ρ(x)v = vx, x ∈ M . Indeed, as
γ′ = adΓ|ρ̄(M) = ρ̄ρ|ρ̄(M) ([16], Proposition 2.4), we get, for all x ∈ M ,
ρ̄ρ(ρ̄ρ(x)v) = ρ̄ρ(ρ̄ρ(x))V = V ρ̄ρ(x) = ρ̄ρ(vx), and the thesis follows
from the injectivity of ρ̄ρ.
Besides E(x) = ρ(v∗ρ̄(x)v), x ∈M . Indeed ρ̄ρ(v∗ρ̄(x)v) = V ρ̄ρ(ρ̄(x))V =
F (ρ̄(x)) = ρ̄(E(x)), and the thesis follows from the injectivity of ρ̄.
Therefore, from Proposition 2.3, it follows that Γ∗V V ∗Γ = Γ∗ρ̄ρ(vv∗)Γ =
vv∗ is Jones’ projection for the inclusion ρ̄ρ(M) ⊂ ρ̄(M).
Hence, if x ∈M is s.t. xv = 0, then xvv∗ = 0, so that x = 0, as vv∗ is
separating for M .
(ii) ⇒ (i)
Let us set F (x) := σρ(v∗xv), x ∈ σ(M). Then F ∈ E(σ(M), σρ(M)),
as, if x ∈ σ(M) is s.t. F (x∗x) = 0, then σρ(v∗x∗xv) = 0, that is xv = 0,
so that x = 0.
Setting now, f := vv∗ and L := 〈σ(M), f〉, we want to show that
σρ(M) ⊂ σ(M) ⊂ L is Jones’ basic construction for the inclusion
σρ(M) ⊂ σ(M), by using Proposition 2.2. So we must prove sσρ(M)(f) =
1, which follows from ([5], Lemma 3.2), and sZ(L)(f) = 1. But we have
sZ(L)(f) ≥ sσ(M)′∧M(f) = 1, as follows from ([5], Lemma 3.1 (i) and
(ii) ).
Therefore, by lemma 2.6, 〈σ(M), f〉 = M .
Finally to show that σ is conjugate to ρ, set λ := σρ and observe that
Lemma 2.4 applied to λ gives that λ is a canonical endomorphism for
N ⊂M , hence ρ and σ are conjugate. �
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