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Abstract

We give an algebraic characterization for the conjugate endomorphism ρ̄ of an en-
domorphism ρ of infinite index of a properly infinite von Neumann algebra M such
that the set of normal faithful conditional expectations E(M,ρ(M)) is not empty. In
the particular case of irreducible endomorphisms we obtain the same result holding
in finite index case and in the representation theory of compact groups, that is if ρ
is an irreducible endomorphism of an infinite factor, with E(M,ρ(M)) 6= ∅, then an
irreducible endomorphism σ is conjugate to ρ iff σρ � id; moreover the identity is
contained only once in σρ. Some applications of the above results are also given.

1. Introduction

In the category of representations of a compact group, the notion of conjugate repre-
sentation exists naturally via a spatial definition [10]. For irreducible representations,
one can easily characterize the conjugate by a simple algebraic property: if σ, π are
irreducible, σ is conjugate to π iff the tensor product π ⊗ σ contains the identity
representation.
Motivated by early works in local quantum theory [2], [3], where a (compact) gauge
group was strongly related to the particle-antiparticle symmetry, S. Doplicher and
J.E. Roberts have recently shown an isomorphism between a monoidal C*-category
of endomorphisms with conjugates and permutation symmetry and the category of
representations of a compact group, see [4], [5], [6].
The superselection structure, naturally appearing in local quantum theory, was a point
of departure also for R. Longo, in connecting [15] the statistical dimension of a sec-
tor [2] with Jones’ index theory for inclusions [12], and for giving [16] a notion of a
conjugate map for the semigroup Sect(M) of (normal faithful unital) endomorphisms,
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of a properly infinite von Neumann algebra M , modulo inner automorphisms. This
conjugation assumes the following simple form

ρ̄ = ρ−1γ

where γ is Longo’s canonical endomorphism relative to the inclusion ρ(M) ⊂M , [14].
This formula seems to cover all interesting cases (locally compact groups, particle-
antiparticle symmetry for infinite statistics in local quantum theory, quantum groups).
In this context also there is a characterization, analogous to that holding in the rep-
resentation category of a compact group, for the conjugate of an irreducible endomor-
phism ρ of finite index: σ is a conjugate to ρ iff the product endomorphism σρ contains
the identity automorphism [16].
In this paper we want to give a purely algebraic characterization of the conjugate sector
(i.e. endomorphisms modulo inner automorphisms) for inclusions of von Neumann
algebras arising from some relevant classes of endomorphisms (see below). This covers
some interesting cases of non-factor inclusions of arbitrary (i.e. non necessarily finite)
index.
In more detail, we start with an endomorphism ρ ∈ End(M) of a properly infinite
von Neumann algebra M for which there is a normal faithful conditional expectation
from M onto ρ(M), and determine, using algebraic conditions on Jones’ projection, the
conjugate endomorphism of ρ. As an immediate corollary we have an algebraic char-
acterization of an endomorphism ρ for which there exists a normal faithful conditional
expectation from ρ(M)′ onto M ′.
In case ρ is irreducible (and E(M,ρ(M)) 6= ∅) one obtains the same condition holding
in finite index inclusions, that is an irreducible endomorphism σ is conjugate to ρ iff
σρ � id; besides we prove that the identity is contained only once (as in the finite
index case).
For an endomorphic inclusion of von Neumann algebras with arbitrary but finite index,
we give necessary and sufficient conditions for the conjugate which extend the result in
[11]. This characterization coincides with the definition of the conjugate map appearing
in [2],[3] for particle-antiparticle symmetry in local quantum theory, and in the more
general context of monoidal C∗-categories [5], [6].
An interesting problem is to give an abstract characterization of the canonical endo-
morphism, as in [18] for the finite index case. Unfortunately we are presently able to
answer this question only in a particular case, but we hope to return to this problem
in the near future.

For convenience of the reader we recall the following notations, used throughout the
paper.
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We consider in the following, for simplicity, only inclusions of von Neumann algebras
with separable predual. Let M ⊂ B(H) be a von Neumann algebra, then sM (e) is the
support in M of the projection e ∈ B(H). If N is a von Neumann subalgebra of M
then C(M,N) and E(M,N) are the set of normal, resp. normal faithful, conditional
expectations from M onto N . End(M) is the set of normal faithful unital endomor-
phisms of M , and for ρ, σ ∈ End(M), (σ, ρ) is the vector space of intertwiners between
ρ and σ,

(σ, ρ) := {v ∈M : vσ(x) = ρ(x)v, x ∈M}.

Finally γ is a canonical endomorphism for the inclusion N ⊂ M , ρ̄ is a conjugate
endomorphism of ρ given by ρ̄ = ρ−1 · γ, and [ρ] ∈ Sect(M) is the sector determined
by ρ in End(M) modulo inner automorphisms.
For the general theory of von Neumann algebras we refer to [23], [22], [24]

2. An algebraic characterization of the basic construction

In this section we provide a purely algebraic characterization of Jones’ basic construc-
tion, based on spatial theory, for an inclusion N ⊂M of von Neumann algebras [12].
This is a generalization to the case of non factor inclusions, possibly with non finite
index, of theorem 1.2 of [21], and is crucial for all that follows.

Theorem 2.1. Let N ⊂ M ⊂ L be von Neumann algebras, E ∈ E(M,N), f ∈
Proj(L) s.t.
(i) fxf = E(x)f, x ∈M ,
(ii) L = 〈M,f〉,
(iii) sZ(L)(f) = 1, sN (f) = 1.
Then there exists an isomorphism φ : L → M1, where M1 := 〈M, e〉 is Jones’ basic
construction of N ⊂M , s.t. φ|M = idM and φ(f) = e.
Proof.
Let us first suppose that N ⊂M ⊂ L ⊂ B(H) be properly infinite and act standardly
on H, and f be infinite relative to N ′.
Observe that f ∈ N ′ ∧ L as fxf = E(x)f = xf, x ∈ N . Besides Nf , which is isomor-
phic to N by (iii), acts standardly on fH, therefore ∃ξ ∈ fH, cyclic and separating
for Nf . It follows that ξ is separating for both N , M . Indeed, if x ∈ N, xξ = 0 then
fxfξ = xξ = 0, which implies, as ξ is separating for Nf , xf = 0 that is x = 0. Now,
if x ∈ M, xξ = 0 then 0 = fx∗xfξ = E(x∗x)fξ = E(x∗x)ξ, which implies, as ξ is
separating for N , E(x∗x) = 0, that is x = 0.
Note that ωξ · E = ωξ, where ωξ := (ξ, ·ξ), and [Nξ] = [Nfξ] = f .
Introduce now p := [Mξ] ∈ M ′ and observe that p ≥ f so that pf = fp and, by (ii),
p ∈ L′ ≡ {x ∈M ′ : xf = fx}.
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Therefore we can define an homomorphism φ : x ∈ L → xp ∈ Lp which is in fact an
isomorphism as sZ(L)(p) ≥ sZ(L)(f) = 1.
Let us now observe that Lp = 〈Mp, fp〉 and that Np ⊂ Mp ⊂ 〈Mp, fp〉 is Jones’
basic construction. Indeed ξ is cyclic and separating for Mp, and, setting φ0 := φ|M ,
Ep := φ0 · E · φ−1

0 ∈ E(Mp, Np), and ω := ωξ · φ−1
0 ∈ E(Mp), we get ω · Ep = ω,

ω = (ξ, ·ξ) and fp = [Npξ] is Jones’ projection.
In the general case let us take the tensor product of L with a type III factor F and
apply the above reasoning to N ⊗ F ⊂ M ⊗ F ⊂ L ⊗ F with E ⊗ id and f ⊗ 1 in
place of E and f respectively. Therefore we obtain the existence of an isomorphism
φ̃ : L ⊗ F → M1 ⊗ F , where M1 ⊗ F is Jones basic construction for the inclusion
N ⊗ F ⊂M ⊗ F , and φ̃|M⊗F = idM⊗F . Then φ̃(L⊗ 1) = M1 ⊗ 1, as L = 〈M,f〉 and
φ̃(f ⊗ 1) = e⊗ 1.

ut

3. The conjugate endomorphism for some infinite index inclusions

In this section we characterize the conjugate sector in a purely algebraic fashion in the
spirit of [16], [18]. This result is applied in the following section to some interesting
cases.
We begin with some technical lemmas, which are used repeatedly in the sequel.

Lemma 3.1. Let N ⊂ M ⊂ B(H), E ∈ C(M,N), f ∈ Proj(B(H)) s.t. E(x)f =
fxf, x ∈M . Then
(i) sN ′∧M (f) = sM (f);
(ii) E is faithful and sN (f) = 1 ⇐⇒ sM (f) = 1.
Proof.
(i) It follows from sN ′∧M (f) = [(N ∨ M ′)fH] = [

∑
nim

′
ifH] = [

∑
m′ifniH] =

[M ′fH] = sM (f).
(ii) (⇒) Let p ∈ Proj(M) be s.t. pf = 0. Then 0 = fpf = E(p)f ⇒ E(p) = 0⇒ p =
0.
(⇐) Let p ∈ Proj(M) be s.t. E(p) = 0. Then 0 = E(p)f = fpf ⇒ pf = 0⇒ p = 0.

ut

We want to show two cases where the support of a projection is very easily calculated.

Lemma 3.2.
(i) Let N ⊂ M ⊂ M1 = 〈M, e〉 be Jones’ basic construction. Then sM ′∧M1(e) =
sN ′∧M (e) = 1.
(ii) Let M be properly infinite, ρ ∈ End(M), v ∈ (id, ρ) isometry. Then sρ(M)(vv∗) =
1.
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Proof.
(i) It follows immediately from the fact that the range of e contains, by construction,
a cyclic and separating vector for M .
(ii) Let p = ρ(q) ∈ Proj(ρ(M)) s.t. pvv∗ = 0. Then 0 = pv = ρ(q)v = vq so that
q = 0 that is p = 0.

ut

For the reader’s convenience we report the following

Lemma 3.3. [15, Prop. 5.1] Let N ⊂ M be properly infinite von Neumann algebras.
Then ∀E ∈ E(M,N), there is an isometry v ∈ N s.t. E(x) = v∗γ(x)v, x ∈ M ,
v ∈ (id|N , γ|N ) and γ−1(vv∗) is Jones’ projection for the inclusion N ⊂M .
Proof.
Let Ω ∈ H be a cyclic and separating vector for N ⊂M , ω := (Ω, ·Ω) and set ϕ := ω ·E.
Let ξ ∈ L2(M,Ω)+ be a vector representative of ϕ. The map V : xΩ ∈ NΩ→ xξ ∈ Nξ
determines an isometry V ∈ N ′. Set e := V V ∗ ≡ [Nξ] ∈ N ′, so that e = JΩ

MeJ
Ω
M , and

v := JΩ
NV J

Ω
N ∈ N . Then, with Γ := JΩ

NJ
Ω
M , we get Γ∗v = Γ∗JΩ

NV J
Ω
N = JΩ

MV J
Ω
N =

JΩ
MJ

ξ
NV = V , where JξN = JΩ

M |eH, so that V JΩ
NV
∗ = JξN . There follows that

v∗γ(x)v = v∗ΓxΓ∗v = V ∗xV = V ∗exeV = V ∗E(x)eV = V ∗E(x)V = E(x), x ∈M,

and γ(x)v = ΓxΓ∗v = ΓxV = ΓV x = vx, x ∈ N . Finally vv∗ = JΩ
NV V

∗JΩ
N =

JΩ
NeJ

Ω
N = JΩ

NJ
Ω
MeJ

Ω
MJ

Ω
N = ΓeΓ∗ = γ(e), hence γ−1(vv∗) = e.

ut

We can now prove the main result of this section, concerning the algebraic characteri-
zation of the conjugate sector.

Theorem 3.4. Let M be a properly infinite von Neumann algebra and ρ, σ ∈ End(M).
Then the following are equivalent:
(i) E(M,ρ(M)) 6= ∅ and σ = ρ̄,
(ii) σρ � id, with v ∈ (id, σρ) an isometry s.t.

sσ(M)′∧M (vv∗) = 1

sσρ(M)′∧σ(M)(vv∗) = 1.

Remark. Observe that σ(M)′ ∧M ≡ (σ, σ) and σρ(M)′ ∧ σ(M) ≡ σ((ρ, ρ)).

Proof.
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(i)⇒ (ii) Let E ∈ E(M,ρ(M)) and consider the inclusions M ⊃ ρ̄(M) ⊃ ρ̄ρ(M). Then
by lemma 3.3 there exists an isometry V = ρ̄ρ(v) ∈ ρ̄ρ(M) s.t. γ′(x)V = V x, x ∈
ρ̄ρ(M) and V ∗γ′(x)V = F (x), x ∈ ρ̄(M), where γ′ : ρ̄(M) → ρ̄ρ(M) is the canonical
endomorphism and F := ρ̄ · E · ρ̄−1 ∈ E(ρ̄(M), ρ̄ρ(M)).

Then ρ̄ρ(x)v = vx, x ∈ M and E(x) = ρ(v∗ρ̄(x)v), x ∈ M . Indeed, as γ′ =
adΓ|ρ̄(M) = ρ̄ρ|ρ̄(M), [15, prop. 2.4], we have ρ̄ρ(ρ̄ρ(x)v) = ρ̄ρ(ρ̄ρ(x))V = V ρ̄ρ(x) =
ρ̄ρ(vx), x ∈M , and ρ̄ρ(v∗ρ̄(x)v) = V ∗ρ̄ρ(ρ̄(x))V = F (ρ̄(x)) = ρ̄ · E(x), x ∈M .

Finally, from lemma 3.3 it follows that Γ∗V V ∗Γ = Γ∗ρ̄ρ(vv∗)Γ = vv∗ is Jones’ projec-
tion for the inclusion ρ̄ρ(M) ⊂ ρ̄(M), so that by lemma 3.2 (i) we have

sρ̄(M)′∧M (vv∗) = sρ̄ρ(M)′∧ρ̄(M)(vv∗) = 1.

(ii) ⇒ (i) From lemma 3.1 (i) it follows that sσ(M)(f) = sσρ(M)′∧σ(M)(f) = 1, where
f := vv∗ is the range projection of v, so that by lemma 3.1 (ii) the expectation
F := σρ(v∗ ·v) ∈ C(σ(M), σρ(M)) is faithful, as F (x)f = σρ(v∗xv)vv∗ = v(v∗xv)v∗ =
fxf, x ∈ σ(M). Besides sσρ(M)(f) ≥ sσ(M)(f) = 1. Finally, with L := 〈σ(M), f〉, we
have sZ(L)(f) ≥ sσ(M)′∧M (f) = 1. Therefore, from theorem 2.1, σρ(M) ⊂ σ(M) ⊂ L

is Jones’ basic construction for the inclusion σρ(M) ⊂ σ(M).

We now want to prove that 〈σ(M), f〉 = M . Let us first observe that f〈σ(M), f〉f =
fσρ(M)f = {σρ(x)f : x ∈ M} = {vxv∗ : x ∈ M} = fMf so that 〈σ(M), f〉f = Mf .
Therefore L′f = 〈σ(M), f〉′f = M ′f , and, as sZ(L)(f) = 1 the map L′ → L′f is an
isomorphism which restricts to the isomorphism M ′ →M ′f ≡ L′f so that L′ = M ′ that
is L = M .

We want to show that σ is conjugate to ρ; to do this we follow the same computations
of [16, page 296], which we report here for the reader’s convenience.

Choose Ω ∈ H cyclic and separating for M,ρ(M), σ(M) and set J := JΩ
M , Jρ :=

JΩ
ρ(M). Let U be the canonical unitary implementation of σ with respect to Ω, and let
σ−1 := adU∗. From the hypotheses it follows that σ−1(M) = 〈M,σ−1(e)〉 = M1 =
Jρ(M)′J . Therefore σ−1(v), σ−1(e) ∈ M1 = Jρ(M)′J , so that v0 := Jσ−1(v)J ∈
ρ(M)′. From the proof of theorem 2.1 it follows that there exists ξ ∈ σ−1(e)H cyclic
and separating for M s.t. σ−1(e) = [ρ(M)ξ]. The canonical unitary implementation of
the isomorphism y ∈ ρ(M)→ yσ−1(e) ∈ ρ(M)σ−1(e) with respect to Ω and ξ, is given
by the isometry w0 = v0z, where z ∈ ρ(M)′ is unitary. Then, from [15, prop. 3.1], we
get Γρ := JρJ = w∗0Jw0J = z∗v∗0Jv0zJ = z∗v∗0Jv0JJzJ , thus, to compute the class of
γρ := adΓρ, the canonical endomorphism of M into ρ(M), we may assume w0 = v0.
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Then we have, ∀x ∈M ,

ΓρxΓ∗ρ = v∗0Jv0JxJv
∗
0Jv0

= Jσ−1(v)∗Jσ−1(v)xσ−1(v)∗Jσ−1(v)J

= Jσ−1(v)∗Jσ−1(vσ(x)v∗)Jσ−1(v)J

= Jσ−1(v)∗Jσ−1(vv∗σρσ(x))Jσ−1(v)J

= Jσ−1(v)∗Jσ−1(e)ρσ(x)Jσ−1(v)J

= Jσ−1(v)∗Jσ−1(e)Jσ−1(v)Jρσ(x)

= Jσ−1(v∗ev)Jρσ(x)

= ρσ(x),

because Jσ−1(v)J ∈ ρ(M)′ and Jσ−1(e)J = σ−1(e). Hence we get [ρσ] = [γρ], that is
ρ and σ are conjugate.

ut

As an immediate consequence of theorem 3.4 we have:

Corollary 3.5. Let M be a properly infinite von Neumann algebra and ρ, σ ∈ End(M).
Then the following are equivalent:
(i) E(ρ(M)′,M ′) 6= ∅ and σ = ρ̄,
(ii) ρσ � id, with w ∈ (id, ρσ) an isometry s.t.

sρ(M)′∧M (ww∗) = 1

sρσ(M)′∧ρ(M)(ww∗) = 1.

ut

Remark. Observe that in [9] Herman and Ocneanu adopt the following terminology.
Let N ⊂M be an inclusion of von Neumann algebras. They say
(i) N ⊂M is discrete if E(M,N) 6= ∅,
(ii) N ⊂M is compact if E(N ′,M ′) 6= ∅.
According to this definition, one could say an endomorphism ρ of M is discrete (com-
pact) if ρ(M) ⊂M is discrete (compact).
As Herman and Ocneanu observed in [9], if M = N ×α G where α is an action of an
abelian locally compact group G, the inclusion N ⊂ M is discrete (resp. compact) iff
G is discrete (resp. compact).

4. An interesting case: irreducible inclusions
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In the category of unitary representations of a compact group G we have a very simple
characterization for the conjugate class of an irreducible representation, as pointed out
in the introduction, namely π, σ ∈ Irr(G) are conjugate to each other iff π ⊗ σ � id,
besides the identity representation is contained with multiplicity one.
These results are also true for irreducible endomorphisms of a factor M , that is ρ, σ ∈
End(M), irreducible and of finite index, are conjugate to each other iff ρσ � id,
moreover the identity automorphism appears only once [16, th 4.1].
In the compact group case, due to Peter-Weyl theorem [10], the roles of π and σ are
symmetric. The same is true in the case of endomorphisms of finite index of a factor,
in fact the inclusion ρ(M) ⊂M has finite index iff it is both discrete and compact, in
the terminology of [9], so that one can exchange the roles of ρ and σ.
In the general case of possibly infinite index, one cannot exchange ρ and σ but we
prove that the above characterization also holds for the discrete case. Besides we show
that id appears only once in the product ρ̄ρ, also in this case.

Theorem 4.1. Let M be an infinite factor, σ, ρ ∈ End(M) and irreducible; then the
following are equivalent:
(i) E(M,ρ(M)) 6= ∅ and σ = ρ̄;
(ii) σρ � id.
Moreover (id, σρ) is one dimensional.
Proof.
The equivalence of (i) and (ii) follows easily from theorem 3.4. Let e, f ∈ Proj(M) be
two Jones’ projections for the inclusion σρ(M) ⊂ σ(M) s.t. 〈σ(M), e〉 = 〈σ(M), f〉 =
M and let v, w ∈ (id, σρ) isometries s.t. vv∗ = e, ww∗ = f . Then, by theorem
2.1, there exists α ∈ Aut(M) s.t. α(e) = f and α|σ(M) = id. Therefore α(v) ∈
(σρ, α), indeed σρ(x)α(v) = α(σρ(x)v) = α(vx) = α(v)α(x) x ∈ M , so that σρ � α.
As α(v)∗α(v) = f = ww∗, u := α(v)∗w ∈ M is unitary and xu∗ = xw∗α(v) =
w∗σρ(x)α(v) = w∗α(v)α(x) = u∗α(x), x ∈ M , so that α(x) = uxu∗, x ∈ M ; as
α|σ(M) = id, we get u ∈ σ(M)′ ∧M ≡ C, because σ is irreducible. Therefore α = id

and e = f .
Let us now consider vw∗ = evw∗e ∈ eMe = σρ(M)e, that is, there exists λ ∈ M s.t.
vw∗ = σρ(λ)e = σρ(λ)ww∗, which implies v = σρ(λ)w = wλ, and w∗v = λ. But we
have also w∗v ∈ Z(M) ≡ C, so that v = λw, with λ ∈ C, |λ| = 1.

ut

The last part of the previous theorem holds also in the general case of irreducible
inclusions of infinite factors.

Corollary 4.2. Let N ⊂ M be an irreducible inclusion of infinite factors. Then
(id|N , γ|N ) is at most one dimensional.
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Proof.
If E(M,N) = ∅, supposing that there were v ∈ (id|N , γ|N ) then E := v∗γ(·)v would
belong to C(M,N), and by ([22], 10.17) it would be (unique) and faithful, contradicting
the hypothesis.
If E(M,N) 6= ∅, upon tensoring with and absorbing factor ([17], lemma 2.3) we may
assume that N is isomorphic with M , that is N = ρ(M) with ρ ∈ End(M), and from
theorem 3.4 it follows that there is v ∈ (id|N , γ|N ), which is unique by theorem 4.1.

ut

5. Finite index case

For finite index inclusions one can characterize the conjugate endomorphism via con-
ditions on some intertwiner operators between the products σρ, ρσ and the identity.
This is known in the factor case [16] and, at least as a sufficient condition, for scalar
index inclusions of general von Neumann algebras [11].
Analogous conditions can be used to provide a purely algebraic definition of a conju-
gation in braided categories of endomorphisms [5], [1].
In the following theorem we adopt the definition of index given by Kosaki in [13].

Theorem 5.1. Let M be a properly infinite von Neumann algebra, ρ, σ ∈ End(M),
then the following are equivalent:
(i) σ is conjugate to ρ and Ind(ρ) <∞;
(ii) there exist v ∈ (id, σρ), w ∈ (id, ρσ) isometries s.t. w∗ρ(v) = z, v∗σ(w) = σ(z′),
with z, z′ ∈ Z(M)+ and invertible.
Moreover, setting E := ρ(v∗σ(·)v) ∈ C(M,ρ(M)), E is faithful and IndE(ρ) = z−2;
(iii) there exist w′ ∈ (id, ρσ), v′ ∈ (id, σρ) isometries s.t. v′

∗
σ(w′) = c, w′

∗
ρ(v) =

ρ(c′), with c, c′ ∈ Z(M)+ and invertible.
Moreover, setting E := σ(w′∗ρ(·)w′) ∈ C(M,σ(M)), E is faithful and IndE(σ) = c−2.
Proof.
(i) ⇒ (ii) Let E ∈ E(M,ρ(M)) be s.t. IndE(ρ) < ∞. Then by lemma 3.3 there
is v ∈ (id, σρ) isometry s.t. E(x) = ρ(v∗σ(x)v), x ∈ M . Besides e := vv∗ is Jones’
projection for the inclusion σρ(M) ⊂ σ(M). Let F be the dual expectation of σ·E ·σ−1,
then we get σρσ(y)F (v) = F (σρσ(y)v) = F (vσ(y)) = F (v)σ(y), y ∈M , and applying
σ−1 we get ρσ(y)φ(v) = φ(v)y, y ∈ M , where φ := σ−1 · F is the left inverse of σ
relative to F . Then σ(Ind(E)) ≡ Ind(σ · E · σ−1) = F (e)−1 ∈ σ(Z(M)) ≡ Z(σ(M))
and, by the push-down lemma [20], we get v = ev = eσ(m) with m ∈ M uniquely
determined by σ(m) = F (e)−1F (v), so that F (v)∗F (v) = σ(m)∗F (e)F (e)σ(m) =
F (e)σ(m)∗F (e)σ(m) = F (e)F (σ(m)∗eσ(m)) = F (e)F (v∗v) = F (e). So, applying σ−1

we obtain φ(v)∗φ(v) = φ(e) = σ−1 · σ(Ind(E)−1) = Ind(E)−1 ∈ Z(M). Let now
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φ(v) = wz be the polar decomposition of φ(v), so that z2 ≡ φ(v)∗φ(v) = Ind(E)−1,
therefore z = Ind(E)−1/2 ∈ Z(M)+ and invertible, which implies that w is an isometry,
and from ρσ(y)wz = wzy, y ∈M we obtain w ∈ (id, ρσ). Finally we compute:

w∗ρ(v) = z−1φ(v)∗ρ(v) = z−1φ(v∗σρ(v))

= z−1φ(vv∗) = z−1φ(e)

= z−1Ind(E)−1 = z

v∗σ(w) = v∗σ(φ(v)z−1) = v∗F (v)σ(z)−1

= v∗F (eσ(m))σ(z)−1 = v∗F (e)σ(m)σ(z)−1

= v∗σ(z2)σ(m)σ(z)−1 = v∗σ(m)σ(z)

= v∗eσ(m)σ(z) = v∗vσ(z) = σ(z).

(ii)⇒ (i) We divide the proof in two lemmas.

Lemma 5.2. E := ρ(v∗σ(·)v) ∈ E(M,ρ(M)).
Proof.
We have only to prove faithfulness. Let us set G(y) := σ · E · σ−1(y) and prove that
G ∈ E(σ(M), σρ(M)) from which it will follow immediately that E ∈ E(M,ρ(M)).
Set e := vv∗ ∈ Proj(M); then σρ(x)e = σρ(x)vv∗ = vxv∗ = vv∗σρ(x) = eσρ(x),
∀x ∈M , that is e ∈ σρ(M)′ ∧M . Besides

eσ(x)e = vv∗σ(x)vv∗ = σρ(v∗σ(x)v)vv∗ = σ(E(x))e,∀x ∈M,

that is G(y)e = eye, ∀y ∈ σ(M).
Now, if y = σ(x) ∈ σ(M) and G(y∗y) = 0, we have 0 = G(y∗y)e = ey∗ye, that
is 0 = ye = σ(x)e, that is σ(x)v = 0, that is ρσ(x)ρ(v) = 0, which implies 0 =
w∗ρσ(x)ρ(v) = xw∗ρ(v) = xz, that is x = 0, which implies y = 0 and the faithfulness
of G.

ut

Lemma 5.3. M = 〈σ(M), e〉, that is σρ(M) ⊂ σ(M) ⊂ M = 〈σ(M), e〉 is Jones’
basic construction.
Proof.
Let us observe that 〈σ(M), e〉e = σρ(M)e = Me and 〈σ(M), e〉′e = M ′e.
Since

sZ(〈σ(M),e〉)(e) ≥ sσ(M)′∧〈σ(M),e〉(e) ≥ sσ(M)′(e)

= [σ(M)vv∗H] ≥ [σ(w)∗vv∗H] = [σ(z′)H] = 1

we get M ′ = 〈σ(M), e〉′ that is M = 〈σ(M), e〉.
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Now from lemma 3.2 (ii) it follows that sσρ(M)(e) = 1 so that, by theorem 2.1 we get
the thesis.

ut

End of proof of theorem 5.1.
From lemma 5.3 and theorem 3.4 we get the conclusion.

ut

6. The canonical endomorphism in the ‘discrete’ case

Theorem 3.4 immediately allows us to characterize the canonical endomorphism of non
necessarily finite index inclusions of von Neumann algebras, at least in the discrete case.

Proposition 6.1. Let M be a properly infinite von Neumann algebra, λ ∈ End(M);
then the following are equivalent:
(i) there exist N ⊂M , E ∈ E(M,N) s.t. λ : M → N is the canonical endomorphism;
(ii) there exists an isometry v ∈ (λ, λ2) s.t.

λ(v)v = v2, λ(v)∗v = vv∗,

and,
sλ(M)′∧M (vv∗) = sλ(λ(M)′∧M)(vv∗) = 1.

Proof.
(i) ⇒ (ii) From lemma 3.3 there exists v ∈ N isometry s.t. v∗λ(x)v = E(x), x ∈ M ,
and λ(x)v = vx, x ∈ N , and finally vv∗ is Jones’ projection for the inclusion λ(N) ⊂
λ(M). Therefore λ(λ(x))v = vλ(x), x ∈ M , that is v ∈ (λ, λ2); λ(v)v = v2, and
λ(v)∗v = vv∗ are immediate and sλ(M)′∧M (vv∗) = sλ(λ(M)′∧M)(vv∗) = 1 follow from
lemma 3.2.
(ii) ⇒ (i) Let us set E := v∗λ(·)v. Then, as in [18, lemma 5.2], E ∈ C(M,N),
where N := E(M) is a von Neumann subalgebra of M . We want to show that E is
faithful. Let us set F := λ · E · λ−1 ∈ C(λ(M), λ(N)) and e := vv∗ and observe that
F (x)e = exe, x ∈ λ(M), and sλ(M)(e) = sλ(N ′∧M)(e) ≥ sλ(λ(M)′∧M)(e) = 1, so that,
by lemma 2.3 (ii), F is faithful, and so is E. Let us observe that sλ(N)(e) ≥ sλ(M)(e) = 1
and sZ(〈λ(M),e〉)(e) ≥ sλ(M)′∧M (e) = 1 so that, by theorem 2.1, 〈λ(M), e〉 is Jones’
basic construction for the inclusion λ(N) ⊂ λ(M). Besides we have Ne = {exe :
x ∈ N} = {vv∗xvv∗ : x ∈ N} = {λ(v∗xv)vv∗ : x ∈ N} = by [18, lemma 5.3]
= λ(N)e = 〈λ(M), e〉e so that we can conclude, analogously to theorem 3.4, that
N = 〈λ(M), e〉. Now calculations similar to those in the proof of theorem 3.4 can be
done to show that λ is a canonical endomorphism for the inclusion N ⊂M .
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ut

Remarks. We cannot give conditions under which the canonical endomorphism is
associated to an irreducible inclusion.
Another interesting open problem would be to characterize the canonical endomor-
phism associated to a ‘compact’ inclusion. This has applications in the characterization
of crossed products of von Neumann algebras by actions of discrete infinite dimensional
Kac algebras, as in [18], [9], or by more general objects as ‘quantum groups’ naturally
appearing in low dimensional quantum field theories [19], [7], [8], [16].

Acknowledgment We thank prof. R. Longo for suggesting us the problem and for
many fruitful conversations.
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