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Abstract. Let Ω be a bounded symmetric domain of type IV and dimension

bigger than four. We show that a Stein manifold of the same dimension as Ω
and with the same automorphism group is biholomorphic to Ω.

1. Introduction

Let X be a complex manifold. The group Aut(X) of holomorphic automor-
phisms of X endowed with the compact-open topology is a topological group. We
say that X is characterized by its automorphism group if any complex manifold Y
of the same dimension as X and such that Aut(Y ) is topologically isomorphic to
Aut(X) is biholomorphic to X. By Theorem A in [BoMo], if the group Aut(X) is
topologically equivalent to a Lie group G , then it is itself a Lie group isomorphic
to G.

Most manifolds are not characterized by their automorphism group. For in-
stance two annuli { 0 < r < |z| < R } and { 0 < r′ < |z| < R′ } in the complex
plane have isomorphic automorphism groups, but they are biholomorphic if and
only if the ratio R/r is equal to R′/r′. In higher dimension similar examples are
given by domains of the form { z ∈ Cn : r < ‖z‖ < R } (cf. Isaev [Is1]). By
considering small deformations of the unit ball, one can construct infinitely many
non-biholomorphic strictly pseudoconvex domains in Cn with trivial automorphism
group (see [BSW]).

This suggests that connected manifolds which are characterized by their au-
tomorphism group should have a large automorphism group, e.g. transitive. The
space Cn is an example of such manifolds ([Is1]). As it was shown by Isaev (see
[Is2] and correction [Is3]), there exist exactly two non-biholomorphic complex man-
ifolds of dimension n with the same automorphism group as the unit ball Bn of
Cn, namely Bn and the complement of its closure in the complex projective space
Pn(C). Hence the unit ball Bn is characterized by its automorphism group among
n-dimensional Stein manifolds.

Kodama and Shimizu proved that the polydisc ∆n is characterized by its auto-
morphism group in the class of domains in Stein manifolds ([KdSh]). Furthermore,
Isaev showed that ∆n is characterized by its automorphism group also among
complex manifolds all of whose isotropy subgroups in the automorphism group are
compact ([Is4]). He also asked whether such a characterization holds true in the
class of all complex manifolds. In Section 1 we give a negative answer to this ques-
tion by exhibiting a complex manifold Y which is not biholomorphic to ∆n (not
even homotopic) but has the same automorphism group as ∆n (Example 2.1).

In this framework, it is natural to ask whether a bounded symmetric do-
main of dimension n is characterized by its automorphism group in the class of
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n-dimensional Stein manifolds. Let Ω = G/K be an irreducible bounded symmet-
ric domain of dimension n, where G is the connected component of its automor-
phism group and K is a maximal compact subgroup of G. As a first result we
obtain the following partial characterization.

Proposition 3.1. Let X be a Stein manifold of dimension n. Assume that G acts
effectively on X and that K has a fixed point in X. Then X is biholomorphic to
Ω = G/K.

The main result of the paper is the following characterization of bounded sym-
metric domains of type IV in the class of Stein manifolds.

Theorem 5.5. Let Ω be the n-dimensional bounded symmetric domain of type
IV and let X be a Stein manifold of the same dimension as Ω. If n > 4 and
the connected component of Aut(X) is isomorphic to G, then X is biholomorphic
to Ω.

In order to prove the above theorems, we embed X as a K-invariant domain
in its Stein universal KC-globalization X∗ (see Heinzner [He], Thm.6.6).

If K has a fixed point in X, then X∗ is biholomorphic to a domain in Cn

and X is realized as a complete circular domain invariant under a suitable linear
K-action. By applying Cartan’s Theorem on linear equivalence of complete circular
domains in Cn, we show that X contains the Harish-Chandra realization of Ω as
an open G-orbit. Furthermore the analytic continuation principle implies that the
Harish-Chandra embedding Cn → GC/Q is G-equivariant when restricted to X.
Here GC/Q denotes the compact dual symmetric space of Ω. As a consequence
X is biholomorphic to a Stein, G-invariant domain in GC/Q. Then, from the
G-invariant complex geometry of GC/Q, it follows that X is biholomorphic to Ω.

When K has no fixed points in X, we only consider symmetric pairs (G, K)
of type IV. In this case we are able to determine the universal globalization X∗

of X. This is done by classifying minimal K-orbits in X∗ and the corresponding
slice representations. As a result, X is realized as a K-invariant domain in a K-
equivariant line bundle L over the affine complex quadric of dimension n − 1. It
turns out that for n > 4 such a bundle is necessarily trivial. In this case we show
that no Stein, K-invariant subdomain of L has G as an automorphism group.
Indeed, by applying the criterion given in Lemma 5.1, we show that many of these
domains have infinite dimensional automorphism group.

The results of this paper suggest that a characterization of a larger class of
bounded symmetric domains by their automorphism groups may be possible. In
this framework we also mention the following characterization of bounded symmetric
domains in the class of Kobayashi hyperbolic manifolds, a result which we often use
in the proof of the main theorem.

Proposition 3.2. Let X be a hyperbolic manifold of dimension n. Assume that
Aut(X) is isomorphic to the automorphism group of a bounded symmetric domain
Ω of the same dimension. Then X is biholomorphic to Ω.

The paper is organized as follows. In Section 2, we collect some preliminary
results and fix the notation. We also exhibit a complex manifold Y which is not
biholomorphic to ∆n and whose automorphism group is the same as Aut(∆n). In
Section 3, we prove Proposition 3.1. and Proposition 3.2. In Section 4, we consider
bounded symmetric domains Ω = G/K of type IV and we explicitly determine the
Stein KC-globalization X∗, under the assumption that K has no fixed point in X.
In Section 5, we conclude the proof of Theorem 5.5.

After this paper was completed, we became aware of the article [HuIs] by
Huckleberry and Isaev, whose results have intersection with ours. Their goal is the
classification of complex manifolds on which a classical real Lie group acts almost
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effectively by holomorphic transformations, without requiring that the group coin-
cides with the automorphism group of the manifold. In addition, they assume a
certain relation to hold between the complex dimension of the manifold and the
dimension of the complex representation defining the group. As a result the dimen-
sion of the group is “large” with respect to the dimension of the manifold. Bounded
symmetric domains of type IV fulfill such conditions and Theorem 5.5 can also be
deduced from their classification. However, our methods are different from theirs.
It should be remarked that among bounded symmetric domains only those of type
IV fulfill the conditions of [HuIs], and the question of a possible characterization of
bounded symmetric domains by their automorphisms remains open.

2. Preliminaries

We begin this section by exhibiting two complex manifolds which are not bi-
holomorphic and have the same automorphism group. Denote by ∆n the polydisc
in Cn and by Y the complement of its closure in (P1(C))n. Note that Y is ho-
motopic to (P1(C))n \ Cn which is not contractible. One can also show that Y is
neither holomorphically convex, nor holomorphically separable. In particular it is
not biholomorphic to ∆n. A similar argument shows that the unit ball in Cn and
the complement of its closure in Pn(C) have the same automorphism group.

Example 2.1. The polydisc ∆n and Y have the same automorphism group.

Proof. It is well known that the group Aut(∆n) consists of the automorphisms of
(P1(C))n leaving ∆n invariant. Therefore the restriction map defines an inclusion
of Aut(∆n) into Aut(Y ).

Conversely let g ∈ Aut(Y ) and set L = (P1(C))n \ Cn. Note that L is
a compact subset of Y and that Y \ L is contained in Cn. In particular the
restriction of g to Y \g−1(L) is a holomorphic map into Cn. By Hartog’s theorem
such restriction extends to a holomorphic map g̃ : Cn\(g−1(L)∩Cn) → Cn. Gluing
g and g̃ together one obtains a holomorphic map G : (P1(C))n → (P1(C))n. A
similar argument applied to g−1 yields a holomorphic map F which, by the analytic
continuation principle, is the inverse of G. It follows that every g in Aut(Y )
extends to an automorphism of (P1(C))n. This implies that Aut(∆n) and Aut(Y )
coincide.

In the next lemma we recall some well known facts about the groups SU(2)×
SU(2) and SO(4), which are used in the sequel. For the sake of completeness, we
include a proof.

Lemma 2.2. (i) The only non-trivial, proper, connected, normal subgroups of
SU(2)× SU(2) are

{I2} × SU(2), SU(2)× {I2}.
(ii) The only 4-dimensional connected subgroups of SU(2) × SU(2) containing a
non-trivial, proper normal subgroup are of the form

S1 × SU(2), SU(2)× S1.

(iii) SU(2)× SU(2) is a double covering of SO(4) ∼= SU(2)× SU(2)/{±(I2, I2)}.
(iv) The restriction of the covering map to SU(2)×{I2} and to {I2}×SU(2) is an
embedding.

Proof. (i) Let H be a proper connected normal subgroup of SU(2)× SU(2) and
denote by p1 : SU(2) × SU(2) → SU(2) the projection onto the first component.
Then p1(H) is normal and connected in SU(2) and, since {±I2} is the unique
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non-trivial, proper normal subgroup of SU(2), either p1(H) is trivial or p1(H) =
SU(2).

In the first case H must coincide with {I2} × SU(2), since it is a non-trivial,
connected, normal subgroup of {I2} × SU(2).

In the case when p1(H) = SU(2), denote by K the kernel of the restriction
p1|H of p1 to H. Then K is a proper normal subgroup of {I2}×SU(2), otherwise
the dimension of H would be six, i.e. H would coincide with SU(2)× SU(2). It
follows that K is contained in {I2} × {±I2}.

We claim that H is contained in SU(2) × {±I2}. Assume by contradiction
that there exists (g1, g2) in H with g2 different from ±I2. Since H is invariant
under conjugation by elements of the form (I2, g) ∈ SU(2)× SU(2) , it necessarily
contains all elements of the form {g1} × γ with γ ∈ IntSU(2)(g2) . Note that the
conjugacy class IntSU(2)(g2) of g2 in SU(2) contains a real 1-dimensional torus.
As a consequence

(g−1
1 , g−1

2 ) · {g1} × IntSU(2)g2 = {I2} × g−1
2 IntSU(2)(g2)

is contained in K, contradicting the fact that K is contained in {I2} × {±I2}.
Thus H is contained in SU(2)× {±I2} as claimed.

Since H is connected and the restriction p1|H is surjective, the statement
follows.
(ii) Let H be a 4-dimensional connected subgroup of SU(2) × SU(2) contain-
ing e.g. SU(2) × {I2} (see (i)). Note that the kernel of p1|H is a closed, 1-
dimensional subgroup of {I2} × SU(2) which is connected, being p1(H) = SU(2)
simply connected. Thus it is of the form {I2} × S1. It follows that H contains
(SU(2)×{I2})({I2}×S1) = SU(2)×S1 and the statement is a consequence of the
fact that H has dimension 4 and it is connected.
For (iii) and (vi) we briefly recall the standard construction of the universal cover-
ing of SO(4, R). Consider the usual identification of SU(2) with the group of units
U in the ring of quaternions H. Observe that the action of U × U on H ∼= R4

defined by (g, h) ·v = gvh−1 is given by isometries, i.e. elements in SO(4, R). Then
the induced map U ×U → SO(4, R) realizes the desired covering map. For further
details we refer to [BtD], p.292. �

Throughout the paper a Lie group is denoted by a capital latin letter and its
Lie algebra by the corresponding gothic letter. The connected component of the
identity of a Lie group L is denoted by L0. For a Lie group L acting on a complex
manifold X the algebra of L-invariant holomorphic functions on X is denoted by
O(X)L.

3. The case when K has a fixed point in X.

Let Ω be an irreducible bounded symmetric domain of dimension n. In this
section we show that Ω is characterized by its automorphism group among Stein
manifolds X of the same dimension, under the assumptions that a maximal compact
subgroup of Aut(X)0 has a fixed point in X. Write Ω ∼= G/K, where G = Aut(Ω)0

is a centerless, connected, simple Lie group and K is a maximal compact subgroup
of G (see [Wo2], p.293). Denote by GC the universal complexification of G and
by U the compact real form of GC. As G/K is a Hermitian symmetric space,
rank(G) = rank(K) = rank(U) and the center of K is one-dimensional. Write
K = Z · Ks, where Z ∼= S1 denotes the connected center of K and Ks = [K, K].
Fix t a compact Cartan subalgebra of k, g and u. Then t = z ⊕ ts, where z is the
Lie algebra of Z and ts is a Cartan subalgebra of ks. Set r = dimR t = rk(g). The
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adjoint action of tC decomposes the Lie algebra gC into root spaces

gC = tC ⊕
⊕
α∈∆

gα

where gα = {Z ∈ gC | [H,Z] = α(H)Z, ∀H ∈ tC} and α is a complex linear func-
tional on tC. The root system ∆ of gC consists of those α for which gα 6= {0}. For
α ∈ ∆, denote by hα ∈ it the associated coroot, defined by the condition α(hα) = 2.
For a fixed positive system ∆+, denote by {α1, . . . , αr}, the corresponding set of
simple roots. The set of fundamental weights {ω1, . . . , ωr} is by definition the dual
basis of the coroots {hα1 , . . . , hαr

}. All irreducible representations of U are finite
dimensional and stand in one-to-one correspondence with dominant, analytically in-
tegral linear functionals Λ =

∑
i Λiωi, where Λi = Λ(hαi

) are non-negative integer
coefficients. The correspondence is that Λ is the highest weight of the associated
irreducible representation ρΛ (see [BtD], p.253). By definition, the fundamental rep-
resentations φ1, . . . , φr are those corresponding to the highest weights ω1, . . . , ωr,
respectively. The dimension of the irreducible representation ρΛ with highest weight
Λ is given by Weyl’s dimension formula

dim(ρΛ) =
∏
α>0

〈Λ + δ, α〉
〈δ, α〉

=
∏
α>0

∑r
i=1 ki

α(Λi + 1)〈αi, αi〉∑r
i=1 ki

α〈αi, αi〉
,

where α =
∑

i ki
ααi and δ denotes the half-sum of all positive roots. Observe that

〈Λ, α〉 ≥ 0 and 〈δ, α〉 > 0, for every α ∈ ∆+ (see [Ka], (XII.6), p.101). Hence
each factor 〈Λ+δ,α〉

〈α,δ〉 in the above formula is greater or equal than 1. It follows that
given irreducible representations ρΛ and ρΛ′ with highest weights Λ =

∑
i Λiωi and

Λ′ =
∑

i Λ′
iωi, respectively, one has

dim(ρΛ) ≥ dim(ρΛ′),

provided that Λi ≥ Λ′
i for all i and Λj > Λ′

j , for at least one index j. In particular,
a fundamental representation of the lowest dimension has also the lowest dimension
among all irreducible representations.

Bounded symmetric domains fall into four infinite families and two exceptional
cases (see [Hl], p.518). For each bounded symmetric domain Ω = G/K, the following
table contains the type, the group G (up to finite center) , its maximal compact
subgroup K with the isotropy representation and the complex dimension of Ω.

AIII SU(p, q) S(U(p)× U(q)) Cp ⊗ Cq ⊗ C n = pq, 1 ≤ p ≤ q

BDI SO0(n, 2) SO(n)SO(2) Cn ⊗ C n ≥ 3

DIII SO(2p)∗ U(p) Λ2Cp ⊗ C n = p(p−1)
2 , p ≥ 3

CI Sp(p, R) U(p) S2Cp ⊗ C n = p(p+1)
2 , p ≥ 3

EIII E6(−14) Spin(10)SO(2) C16 ⊗ C n = 16
EVII E7(−25) E6S

1 C27 ⊗ C n = 27

The isotropy representation of the domain Ω is equivalent to the corresponding dual
representation (see [Wo2], p.287).

Proposition 3.1. Let X be a Stein manifold of dimension n. Assume that G acts
effectively on X and that K has a fixed point in X. Then X is biholomorphic to
Ω = G/K.

Proof. Let x0 ∈ X be a fixed point of K. We claim that x0 cannot be a fixed point
of G. Suppose by contradiction that G · x0 = x0 and denote by

ι0 : G → GL(n, C)
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the isotropy representation at x0. Since G is a centerless, simple Lie group (i.e.
it has no non-trivial normal subgroups) and the G-action on X is effective, ι0
is an injective homomorphism. The claim follows from the fact that G has no
effective representation of dimension n. Indeed a complex linear action of G on a
finite dimensional complex vector space extends to the universal complexification
GC of G and, by restriction, to its compact real form U . One can check that all
fundamental (and therefore all irreducible) representations of SO(n+2), E6 and E7

have dimension strictly larger than n (see [BtD], Ch.6, Sect.5, for the dimensions
of the fundamental representations of SO(n + 2), and [LiE], for the dimensions of
the fundamental representations of the exceptional Lie groups). This settles cases
BDI, EIII and EV II.

For the remaining cases AIII, CI and DIII, it is sufficient to check (see [BtD],
Ch.6, Sect.5) that the fundamental representations of the groups U = SU(p + q),
Sp(p) and SO(2p) satisfy the inequalities

dim(φ1) = dim(ρω1) < n < dim(ρ2ω1) and n < dim(φj), for 2 ≤ j ≤ rk(U) .

This concludes the proof of the claim.

Denote by G0 the isotropy subgroup of x0 in G. By the above claim, G0 is a
proper subgroup of G containing K. Since K is maximal in G, one has G0 = K. It
follows that G·x0 is an open orbit in X, diffeomorphic to Ω. Recall that the complex
structures of Ω and of Ω (opposite to each other) are the only possible complex
structures on the quotient G/K (see [Wo1]). Likewise, the isotropy representation
of K at x0 is an irreducible n-dimensional representation equivalent either to a
representation in the above table, or to its dual representation. Observe that in
each case the center Z ∼= S1 of K acts on Tx0X

∼= Cn by scalar multiplication
z 7→ eimθz, with m = ±1.

Since the group K is compact, there exist an open K-invariant neighbourhood
W of x0 and a K-equivariant holomorphic open embedding φ : W → Cn such that
φ(x0) = 0 and K acts linearly on Cn via the isotropy representation. It follows that
O(U)S1

= O(U)K = C and, by the analytic continuation principle,

O(X)K = C.

By a result of P. Heinzner (cf. [He], Appl.(a), p.660) the manifold X admits a
global linearly K-equivariant holomorphic open embedding in Cn. In this way it
can be identified with a Stein K-invariant circular domain in Cn which, by S1-
orbit-convexity, is in fact complete circular (cf. [He], Sect. 3).

Observe that G · 0 itself is a Stein K-invariant complete circular domain in Cn

containing the origin. Then by a theorem of Cartan ([Ca]), there exists a linear
biholomorphism L : Cn → Cn mapping G · 0 into the bounded symmetric domain
Ω in its Harrish-Chandra realization and X into a domain L(X) containing Ω.
Consider now the Harish-Chandra embedding ξ : Cn → GC/Q, mapping Cn into
an open dense subset of the compact dual hermitian symmetric space GC/Q. The
image of Ω under ξ is the open orbit of [Q] under left translations by G. By the
analytic continuation principle G acts by left-translations on the whole ξ(L(X)).
In this way ξ(L(X)) is a Stein G-invariant domain in GC/Q properly containing
ξ(Ω). From the analysis of the G-invariant complex structure of GC/Q (see [FHW],
Sect.3.2, or [Wo1]) it follows that ξ(L(X)) = ξ(Ω) and X is biholomorphic to Ω, as
desired.

�

The next proposition shows that an arbitrary bounded symmetric domain is
characterized by its automorphism group in the class of hyperbolic manifolds.
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Proposition 3.2. Let X be a hyperbolic manifold of dimension n. Assume that
Aut(X) contains the automorphism group G of an n-dimensional, bounded sym-
metric domain Ω as a closed subgroup. Then X is biholomorphic to Ω.

Proof. Since X is hyperbolic the G-action on X is proper. In particular all
isotropy subgroups in G are compact. Moreover, by dimensional reasons, such
subgroups are maximal compact in G and all G-orbits are open. Since X is con-
nected, it consists of a single G-orbit and therefore it is biholomorphic to Ω ∼= G/K,
as whished. �

Note that under the assumptions of the above proposition it turns out that X
is necessarily Stein and K has a fixed point in X.

4. The case when K has no fixed points in X

In the remaining part of the paper we will restrict our attention to bounded
symmetric domains of type IV. Let Ω = G/K denote the n-dimensional bounded
symmetric domain of type IV. Then the real Lie group

G = SO0(n, 2), n odd, G = SO0(n, 2)/{±In+2}, n even,

acts transitively on Ω and coincides with the connected group of holomorphic au-
tomorphisms of Ω. A maximal compact subgroup K of G is given by

SO(n)× SO(2), n odd, SO(n)× SO(2)/{±(In, I2)}, n even.

Observe that the maps s 7→ (s, I2) and t 7→ (In, t) define embeddings of SO(n) and
SO(2) into K, respectively.

Here we assume that the maximal subgroup K of G acts on X without fixed
points. Since X is Stein, it can be realized as a K-invariant domain in its universal
globalization X∗ ([He], Thm.6.6). By classifiying all possible minimal K-orbits in
X∗ we explicitly determine the universal globalization. In Section 5 we will actually
show that for n > 4 no K-invariant Stein domain in X∗ has automorphism group
isomorphic to G.

Remark 4.1. (i) Since K is a real form of KC, by the analytic continuation
principle a K-fixed point in X∗ is also a KC-fixed point. Moreover X∗ = KC ·X,
therefore all K-fixed points in X∗ lie in X. In particular, if K has no fixed points
in X then it has no fixed points in X∗.
(ii) If K acts effectively on X, then it acts effectively on X∗.

Since K is compact, it acts on X∗ by isometries with respect to a suitable
K-invariant metric. We fix one such metric.

Lemma 4.2. If K has no fixed points in X, then SO(n) has no fixed points in X∗.

Proof. By Remark 4.1(i) there are no K-fixed points in X∗. Assume by contradic-
tion that there exists an SO(n)-fixed point x ∈ X∗. Since SO(2) is central in K,
one has

stx = tsx = tx, for all t ∈ SO(2), s ∈ SO(n).
So SO(n) fixes the entire SO(2)-orbit of x. On the other hand, the restriction of
the isotropy representation at x to SO(n) is the standard action on Cn, since the
only complex n-dimensional representation of SO(n) is the standard representation
(see [BtD], Ch.6, Sect.5). As a consequence x is an isolated SO(n)-fixed point.
This implies that x is fixed by all elements of SO(2) and therefore of K, giving a
contradiction. �

Definition 4.3. Given a K-invariant, strictly plurisubharmonic exhaustion func-
tion ρ of X∗, a minimal orbit is any K-orbit in the minimum set of ρ.



8 GEATTI, IANNUZZI, AND LOEB

A minimal K-orbit is totally real (see [HaWe]) and, as a consequence of [AzLo2],
Sect. 3, one has

Lemma 4.4. Let x ∈ X∗ be an element on a minimal K-orbit. Then the KC-orbit
through x is closed.

Proposition 4.5. Assume that K has no fixed points in X∗. If n 6= 4, then there
exists a minimal K-orbit in X∗ of dimension either equal to n or to n−1. If n = 4,
then there exists a minimal K-orbit in X∗ of dimension greater than 1.

Proof. Let ρ : X∗ → R be a K-invariant strictly plurisubharmonic exhaustion func-
tion of X∗. Then the minimum set min(ρ) is not empty and consists of minimal
K-orbits. Since such orbits are totally real, their dimension is at most n. Let M
be one such orbit. Observe that SO(n) acts on M almost effectively. This follows
from the fact that for n 6= 4 the group SO(n) is simple (hence all normal subgroups
are discrete) and by Lemma 4.2 it has no fixed points in X∗. Hence its ineffectivity
on M is necessarily discrete. Since dim SO(n) = n(n−1)

2 , by the bound on the di-
mension of an almost effective group of isometries of a compact manifold (see [Ko1],
Thm.3.1, p.46), it follows that dim M ≥ n− 1, as claimed.

If n = 4, then the group SO(4) is semisimple (covered by SU(2) × SU(2)).
Note that a K-orbit M in X∗ cannot be one-dimensional. Indeed SO(4) acts
non-trivially on M by Lemma 4.2. If M were one-dimensional, its isometry group
would be one-dimensional and SO(4) would contain a five-dimensional ineffective
normal subgroup. But this is impossible by Lemma 2.2. �

4.1. The case of a minimal orbit of dimension n. In this subsection we obtain
an explicit classification of X∗ under the assumption that it contains a minimal K-
orbit M of dimension n. Since M is a totally real submanifold of maximal dimension
in X∗, one has O(X∗)K = C. The KC-orbit through an element x ∈ M is closed by
Lemma 4.4. It is also open since it is n-dimensional. Therefore one has

X∗ = KC · x.

In other words, X∗ is completely determined by M : if M = K/L, then X∗ =
KC/LC.

Lemma 4.6. (i) The subgroup SO(n) acts effectively on each of its orbits in M .
(ii) The subgroup SO(2) acts freely on M .

Proof. (i) Assume that there exists an element s ∈ SO(n) acting trivially on some
SO(n)-orbit S in M . Since SO(2) is central in K, one has stx = tsx = tx, for all
x ∈ S and t ∈ SO(2). Then the element s acts trivially on M = SO(2) · S and
therefore on X∗, contradicting the effectivity of K.
(ii) Assume that there exist t ∈ SO(2) and x ∈ M such that tx = x. Since SO(2)
is central in K, one has tkx = ktx = kx, for all k ∈ K. Hence t acts trivially on M
and on X∗, contradicting again the effectivity of K. �

Proposition 4.7. If M is SO(n)-homogeneous, then n = 3 and M = SO(3)/F ,
for some finite subgroup F of SO(3). In particular X∗ = SO(3, C)/F .

Proof. By Lemma 4.6(ii), the SO(2)-action on M defines an SO(2)-principal bundle

(1) M → M/SO(2).

Since M is SO(n)-homogeneous and the above projection is SO(n)-equivariant the
base N := M/SO(2) is an SO(n)-homogeneous manifold of dimension n− 1.
Claim. SO(n) acts on N almost effectively, with isotropy subgroup SO(n − 1)
or O(n− 1).
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Proof of Claim. Since N is positive dimensional and SO(n)-homogeneous, the
SO(n)-action on N is non-trivial. If n 6= 4, then the claim follows directly from
the simplicity of SO(n). If n = 4, assume by contradiction that SO(4) does not
act almost effectively on N and denote by T the 3-dimensional ineffectivity normal
subgroup. Then the T -action on the 1-dimensional fibers of the fibration (1) is
necessarily trivial, otherwise the points on those fibers would have a 2-dimensional
stabilizer in T . But this is impossible by Lemma 2.2. Hence the T -action is trivial
on M and therefore on X∗, contradicting the effectivity of K. Finally by [Ko1],
Thm.3.1, p.46, one has N = Sn−1 or N = Pn−1(R), and the claim follows.

Since M is SO(n)-homogeneous and the projection (1) is SO(n)-equivariant,
the isotropy subgroup in SO(n) of a point in N acts transitively on its fiber. Let
χ : SO(n − 1) → Diff(S1) (respectively χ : O(n − 1) → Diff(S1)) be such an
action. We claim that χ is a character, i.e. such an action is given by linear
transformations. Fix t0 ∈ S1 and write

χ(s)t0 = b(s)t0,

where b(s) denotes an element in SO(2) depending on s ∈ SO(n− 1) (respectively
O(n− 1)). Recall that the central subgroup SO(2) acts freely on S1, and therefore
it may be identified with S1. In particular, an element t ∈ S1 can be written as
t = ut0, for some u ∈ SO(2). Moreover for t = ut0 ∈ S1 one has

χ(s)t = χ(s)ut0 = uχ(s)t0 = ub(s)t0 = b(s)ut0 = b(s)t ,

showing that χ is a character, as claimed.
Observe that for n > 3 the connected semisimple group SO(n− 1) has no non-

trivial characters, and anyway the character χ : O(n−1) → C∗ defined by g 7→ det(g)
does not act transitively on the fibers of (1). It follows that n = 3. In this case
M ∼= SO(3)/F , for some finite subgroup F of SO(3) and X∗ = SO(3, C)/F . This
concludes the proof of the lemma. �

Proposition 4.8. Assume that X∗ contains a minimal orbit M = K/L of dimen-
sion n. If M is not SO(n)-homogeneous, then M and X∗ are given by the following
table:

n ≥ 3 M L X∗

odd Sn−1 × S1 SO(n− 1)× {I2} Qn−1 × C∗

odd Pn−1(R)× S1 O(n− 1)× {I2} Qn−1/Z2 × C∗

odd Sn−1 ×Z2 S1 Γ · SO(n− 1)× {I2} Qn−1 ×Z2 C∗

even Sn−1 ×Z2 S1 SO(n− 1)× {I2} Qn−1 ×Z2 C∗

where Γ is the subgroup of K given by Γ = {(In, I2), (
(−I2 0

0 In−2

)
, I2)} and Qn−1 ∼=

SO(n, C)/SO(n− 1, C) is the affine complex quadric of dimension n− 1.

Proof. Consider the quotient map M → M/SO(n) . Since M is K-homogenous, the
SO(2)-action is free on M by Lemma 4.6(ii), and the orbit map is SO(2)-equivariant,
one has that the orbit space M/SO(n) is a 1-dimensional SO(2)-homogeneous space.
It follows that the SO(n)-orbits in M have dimension n− 1 and are all of the same
type. More precisely by Lemma 4.6(i) and [Ko1], Thm.3.1, p.46, they are diffeomor-
phic either to the sphere Sn−1 or, for n odd, to the real projective space Pn−1(R).

In order to obtain the above table, we explicitly determine the isotropy sub-
group L in K of an element x ∈ M . If L1 := SO(n) ∩ L denotes the isotropy
subgroup of x in SO(n), then there are two possibilities:

L1 = O(n− 1), L1 = SO(n− 1) .

Claim. Assume that n is odd. Then there are the following possibilities for L
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O(n− 1)× {I2}, SO(n− 1)× {I2}, Γ · SO(n− 1)× {I2},

where Γ is the subgroup of K consisting of the elements {(In, I2), (
(−I2 0

0 In−2

)
, I2)}.

Proof of the claim. When n is odd, K = SO(n)×SO(2). Denote by p1 : K → SO(n)
the projection onto the first factor. Then the following inclusions hold

SO(n− 1) ⊂ L1 ⊂ p1(L).

We need to distinguish some cases.

(1.a) If L1 = O(n − 1), then by the maximality of O(n − 1) in SO(n), one has
p1(L) = L1 = O(n − 1). In this case L = O(n − 1) × {I2}: indeed, if L contains
an element (s, t) with s ∈ p1(L) and t 6= I2, then by multiplying on the left by an
element in L1 it is easy to see that it also contains the central element (In−1, t).
But this contradicts the effectivity of K, since an element of this form acts trivially
on M and therefore on X∗.

(1.b) If L1 = SO(n− 1), then either p1(L) = L1 = SO(n− 1) or p1(L) = O(n− 1).
In the first case, the same argument as the one used in (1.a) shows that L =
SO(n− 1)× {e}.
(1.c) If L1 = SO(n − 1) and p1(L) = O(n − 1), let (s, t) be an element in L,
with s ∈ p1(L). If p1(s) ∈ SO(n − 1), then the same argument as the one used
in (1.a) shows that t = I2. If p1(s) ∈ O(n − 1) \ SO(n − 1), then L contains the

element (γ, t) with γ =
(
−1 0
0 In−1

)
. In particular L also contains the element

(γ2, t2) = (In−1, t
2). Effectivity on the action forces t2 = I2 and t = ±I2. More

precisely t = −I2, otherwise it would be L1 6= SO(n − 1). In this case L =
SO(n− 1)× {I2} ∪ (γ,−I2)SO(n− 1)× {I2}. This concludes the discussion for n
odd. Finally one has

Claim. Assume that n is even. Then L = SO(n− 1)× {e}.
Proof of the claim. In this case K = SO(n)×SO(2)/{±(In, I2)} and L1 = SO(n−
1), since n is even and by Lemma 4.6(ii) the action of SO(n) is effective on each of
its orbits. Consider the projection p : SO(n) → PSO(n). Observe that O(n− 1) is
a maximal p-saturated subgroup of SO(n). Moreover, p(O(n− 1)) = p(SO(n− 1))
is a maximal subgroup of PSO(n). Consider now the projection

p1 : K → PSO(n), [g, t] 7→ [g] .

One has p1(L) = p(SO(n − 1)). Let [s, t] be an element in L, with s ∈ p1(L) and
t ∈ SO(2). If s ∈ SO(n−1), then by multiplying on the left by an element in L1, we
see that the element [In, t] lies in L as well. Effectivity of the action, then implies
that t = I2. If s ∈ O(n−1)\SO(n−1), then by multiplying on the left by an element
in L1, we see that the element [γ, t], with γ = −In−1, lies in L. In particular, the
element [γ, t]2 = [γ2, t2] = [In−1, t

2], lies in L as well. Effectivity of the action
implies t = ±I2. More precisely t = −I2, otherwise it would be L1 6= SO(n − 1).
Since [γ,−I2] = [−In−1,−I2] = [In−1, I2], one has L = SO(n−1)×{I2} as claimed.

�

4.2. The case of a minimal orbit of dimension n − 1. In this subsection we
obtain an explicit classification of X∗ under the assumption that it contains a
minimal K-orbit M of dimension n− 1.

Lemma 4.9. (i) The subgroup SO(n) acts almost effectively on M . As a conse-
quence M is SO(n)-homogeneous and is either diffeomorphic to the sphere Sn−1

or to the real projective space Pn−1(R).

(ii) The subgroup SO(2) acts trivially on M .
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Proof. (i) If n 6= 4, then the group SO(n) is simple, therefore it has no non-trivial
characters. Note that SO(n) acts non-trivially on M . Otherwise, by the effectivity
of the action of SO(n) on X∗, the slice representation at a point in M would define
a non-trivial character of SO(n). It follows that SO(n) acts almost effectively on
M . If n = 4, then SO(4) is semisimple and all of its normal subgroups contain a
copy of SU(2). If SO(4) does not act almost effectively on M , then its ineffectivity
is given by a 3-dimensional normal subgroup T (see Lemma 2.2). Observe that
by the effectivity of the action on X∗, the group T necessarily acts effectively on
every 1-dimensional local complex slice. But this is impossible, since T contains a
subgroup isomorphic to SU(2) (see Lemma 2.2) which has no non-trivial characters.
(ii) By [Ko1], Thm.3.1, p.46, there exists a 1-dimensional normal subgroup H of K
acting trivially on M . Denote by p1(H) the projection of H into SO(n) for n odd,
or into PSO(n) for n even. Since p1(H) is a normal subgroup of SO(n) (resp. of
PSO(n)), it is discrete. This implies (ii).

�

Proposition 4.10. Assume that X∗ contains a minimal orbit M = K/L of di-
mension n− 1. Then X∗ is given by a twisted product KC ×LC C, determined by a
character ν : LC → C∗. All possible M and X∗ are listed in the following tables:

n > 3 M L ν : LC → C∗ X∗

odd Sn−1 SO(n− 1)× SO(2) ν(s, t) = t±1 Qn−1 × C
odd Pn−1(R) O(n− 1)× SO(2) ν(s, t) = t±1 Qn−1/Z2 × C
odd Sn−1 O(n− 1)× SO(2) ν(s, t) = det(s)t±1 Qn−1 ×Z2 C
even Sn−1 O(n− 1)× SO(2)/{±(In−1, I2)} ν(s, t) = det(s)t±1 Qn−1 ×Z2 C

and, for n = 3 and K = SO(3)× SO(2),

M L ν : LC → C∗ X∗

S2 SO(2)× SO(2) ν(s, t) = smt±1, m ∈ Z KC ×ν C
P2(R) O(2)× SO(2) ν(s, t) = smt±1, m ∈ Z KC ×ν C
P2(R) O(2)× SO(2) ν(s, t) = det(s)smt±1, m ∈ Z KC ×ν C

Proof. Let M = K/L be a minimal (n-1)-dimensional orbit in X∗. Note that from
Lemma 4.9, the subgroup L contains SO(2) and L ∩ SO(n) is either SO(n− 1) or
O(n−1). Let x ∈ M . By Lemma 4.4 the KC-orbit through x is closed in X∗ and by
Luna’s slice theorem (cf. [Lu]), there exists a KC-invariant open neighbourhood of
M in X∗ biholomorphic to the twisted product KC ×LC C. Here the group LC acts
on the complex slice C via the slice representation ν : LC → C∗. Since SO(2) ⊂ L
acts trivially on M , it necessarily acts effectively on the 1-dimensional complex
slice at x. Otherwise an element t ∈ SO(2) acting trivially on the slice would act
trivially on M × S1 and therefore on X∗, contradicting the effectivity of K on X∗.
Effectivity of the action also implies

ν|SO(2)(t) = t±1

and O(X∗)K = C. Then by [He], Appl.(a), p.660, one has X∗ = KC ×LC C, as
claimed.

Now we determine the pairs (LC, ν) and the corresponding twisted products.
(a) Assume that n is odd and L = SO(n− 1)× SO(2).
If n > 3, since SO(n − 1, C) is semisimple, effectivity of the action implies that
a character ν : LC → C∗ is necessarily of the form ν(s, t) = t±1. In this case
KC ×LC C ∼= Qn−1 × C.
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If n = 3, one has ν(s, t) = smt±1, for m ∈ Z, yielding the corresponding twisted
products KC ×ν C.

(b) Assume that n is odd and L = O(n− 1)× SO(2).
If n > 3, there are two possibilities. If the character ν : LC → C∗ is of the form
ν(s, t) = t±1, then

KC ×LC C ∼= Qn−1/Z2 × C .

If the character ν : LC → C∗ is of the form ν(s, t) = det(s)t±1, then

KC ×LC C ∼= Qn−1 ×Z2 C.

Similarly, if n = 3 a character ν : LC → C∗ is either of the form ν(s, t) = smt±1

or ν(s, t) = det(s)smt±1, for m ∈ Z and one obtains the corresponding twisted
products KC ×ν C.

(c) Assume that n is even. In this case K = SO(n)×SO(2)/{±(In, I2)} and L is a
quotient L̂/{±(In, I2)} of a subgroup L̂ of SO(n) × SO(2) containing {±(In, I2)}.
As a consequence L = O(n− 1)× SO(2)/{±(In−1, I2)}.
A character ν : LC → C∗ is necessarily of the form ν(s, t) = det(s)t±1, since it has
to satisfy ν(In−1, I2) = ν(−In−1,−I2). The corresponding twisted product is given
by

KC ×LC C ∼= Qn−1 ×Z2 C.

�

4.3. The four dimensional case with a minimal orbit of dimension 2. In
this subsection we consider the missing four-dimensional case (cf. Prop. 4.5, 4.8
and 4.10) and we determine X∗ under the assumption that it contains a minimal
K-orbit M of dimension 2.

Lemma 4.11. (i) The subgroup SO(4) acts transitively on M with 3-dimensional
ineffectivity. As a consequence M = SO(4)/H, for some 4-dimensional subgroup H
of SO(4).
(ii) The subgroup SO(2) acts trivially on M .

Proof. (i) Recall that SO(4) has no 5-dimensional subgroups (cf. Lemma 2.2),
therefore it cannot act on M with one-dimensional orbits. Moreover, since it acts
on X∗ without fixed points (cf. Lemma 4.2), it acts transitively on M with 3-
dimensional ineffectivity (cf. [Ko1], Thm.3.1, p.46). In particular M = SO(4)/H,
for some 4-dimensional subgroup H of SO(4).
(ii) Consider the universal covering p : SU(2) × SU(2) → SO(4) and set Ĥ =
p−1(H). Up to coniugation, the connected component of Ĥ is either SO(2)×SU(2)
or SU(2)×SO(2) (see Lemma 2.2) and consequently SO(4)/H = SU(2)×SU(2)/Ĥ
is a finite quotient of the 2-dimensional sphere S2. Since every smooth vector field
on S2 vanishes at some point, SO(2) necessarily has a fixed point x in M . The fact
that SO(2) is central in K implies tsx = stx = sx, for all t ∈ SO(2), s ∈ SO(4),
i.e. SO(2) acts trivially on M as claimed. �

Write M = K/L. By Luna’s slice theorem (cf. [Lu]) there exists a KC-
invariant open neighbourhood of M in X∗ which is KC-equivariantly biholomorphic
to a twisted product KC ×LC C2, where LC acts on C2 by the complexification
ν : LC → GL(2, C) of the slice representation at eL ∈ M . In fact we will show that
X∗ ∼= KC ×LC C2.

In order to determine such twisted products it is convenient to consider the
universal covering p : SU(2) × SU(2) → SO(4) of SO(4) whose kernel is {±I4}.
Set K̂ to be SU(2) × SU(2) × SO(2) and consider the four to one covering Π :
K̂ → K = (SO(4)×SO(2))/{±I6} given by (v, u, t) → [p(v, u), t]. For L̂ = Π−1(L)
one has

L = L̂/Γ,
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where Γ is the kernel of Π given by

Γ = {I6, (−I2,−I2, I2), (I2,−I2,−I2), (−I2, I2,−I2)}.

Then the representation ν : LC → GL(2, C) is uniquely determined by a represen-
tation ν̂ : L̂C → GL(2, C), which is trivial on Γ and

KC ×ν C2 ∼= K̂C ×ν̂ C2 .

Proposition 4.12. Assume that X has dimension 4 and that X∗ contains a min-
imal orbit M = K/L of dimension 2. Then X∗ is given by a twisted product
K̂C ×bLC C determined by a representation ν̂ : L̂C → GL(2, C) containing the group
Γ in its kernel. All possible M and X∗ are listed in the following table.

M L̂ ν̂ : L̂C → GL(2, C) X∗

S2 SO(2)× SU(2)× SO(2) ν̂(v, u, t) = vmut±1, m odd K̂C ×ν̂ C2

P2(R) O(2)× SU(2)× SO(2) ν̂(v, u, t) = vmut±1, m odd K̂C ×ν̂ C2

P2(R) O(2)× SU(2)× SO(2) ν̂(v, u, t) = det(v)vmut±1, m odd K̂C ×ν̂ C2

Proof. We already observed that there exists a KC-invariant open neighborhood of
M in X∗ which is biholomorphic to KC ×ν C2 ∼= K̂C ×ν̂ C2.

Without loss generality we may assume that the connected component of e in
L̂ is given by SO(2)×SU(2)×SO(2) (cf. Lemma 2.2). Recall that such component
is normal in L̂. Then the only other possibility for L̂ is to be its normalizer in K̂,
which is given by O(2) × SU(2) × SO(2). This implies that M ∼= K̂/L̂ is given
either by S2 or P2(R).

First assume that L̂ = SO(2)×SU(2)×SO(2). Note that I2×SU(2)×SO(2)
acts trivially on M (cf. Lemma 4.11) and by assumption the K-action is effective
on X∗. As a consequence the restriction of ν̂ to I2 × SU(2) × I2 is faithful and
therefore it coincides with the standard representation. Further, the restriction of
ν̂ to I2×I2×SO(2) is given by a faithful character, since such subgroup is central.
The subgroup SO(2)× I2× I2 is also central, implying that ν̂(v, u, t) = vmut±1 for
some integer m. Finally recall that that group Γ is forced to be in the kernel of ν̂.
As a consequence the integer m is necessarily odd.

The other possibility is that L̂ = O(2)×SU(2)×SO(2). Analogous arguments
show that in this case either ν̂(v, u, t) = vmut±1 or ν̂(v, u, t) = det(v)vmut±1,
where in both cases m is an odd integer.

Finally note that in all cases one has O(KC ×LC C2)K ∼= C, implying by the
analytic continuation principle that O(X)K = C. Then [He], Appl.(a), p.660 applies
to show that the manifold X∗ is biholomorphic to KC ×LC C2. �

5. The main theorem

In this section we conclude the proof of our main result. We need some pre-
liminary results.

Lemma 5.1. Let L be a complex Lie group and let Y be a complex L-manifold.
If O(Y )L is infinite-dimensional, then Aut(Y ) is infinite dimensional.

Proof. For v in the Lie algebra of L and f in O(Y )L define A : Y → L by
A(y) := exp(f(y)v). Note that A is holomorphic and L-invariant. Then the map
Y → Y defined by y → A(y) · y is an automorphism of Y whose inverse is given
by y → A(y)−1 · y. Since O(Y )L is infinite dimensional, this shows that Aut(Y ) is
infinite dimensional. �
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In the sequel we apply the above lemma in the following situation. Let Y be a
Stein C∗-manifold such that the categorical quotient Y//C∗ is positive dimensional.
Since Y//C∗ is Stein by [He], the algebra O(Y )L ∼= O(Y//C∗) is infinite dimensional.
Thus by the above lemma Aut(Y ) is infinite dimensional.

By definition a holomorphic map p : X → Y between complex spaces is lo-
cally hyperbolic if Y admits a covering of open subsets whose preimages in X are
hyperbolic. Recall the following classical result.

Lemma 5.2. ([Ko2], Thm.3.2.15, p.64) Let p : X → Y be a locally hyperbolic map
between complex spaces. If Y is hyperbolic, then X is hyperbolic.

Remark 5.3. Let K/L be a compact symmetric space of rank one and let k = l⊕p
be the corresponding Lie algebra decomposition. Let a be a maximal abelian
subalgebra in p. The Weyl group W ∼= Z2 acts on a by reflections and every
K-orbit in the complexified space KC/LC intersects the slice exp ia LC in an orbit
of the corresponding W -action on exp ia LC. So there is a homeomorphism of orbit
spaces (cf. [La])

K \KC/LC ∼= a/W ∼= R≥0 .

Fix a generator H of a. By a result of Azad-Loeb [AzLo1], a K-invariant
function f on KC/LC is plurisubharmonic if and only if the corresponding W -
invariant function f̃ : a → R, defined by tH → f(exp itHLC), is convex on a ∼= R.
Since f̃ is an even convex function, it is continuos on a and it has a minimum at 0.

We use this result when the symmetric space is the sphere

K/L = SO(n)/SO(n− 1) ∼= Sn−1

and its complexification is the affine quadric Qn−1 ∼= SO(n, C)/SO(n − 1, C) of
dimension n− 1. For every positive real number r we denote by Qn−1

r the Stein,
hyperbolic, SO(n)-invariant tube around the sphere Sn−1 in Qn−1 defined by

Qn−1
r := SO(n) exp(i[0, r)H)SO(n− 1, C) .

Recall that all Stein, SO(n)-invariant subdomains of Qn−1 are of this form.
Consider now the product manifold X∗ = Qn−1 × C and let SO(n)× SO(2)

act factorwise on X∗. Denote by ∆s := { z ∈ C : |z| < s }.

Lemma 5.4. Let X∗ = Qn−1×C and let X be a Stein, SO(n)×SO(2)-invariant
domain in X∗. Then X is a disk bundle, i.e. if (q, z) lies in X then the disk
{q} ×∆|z| is contained in X.

Proof. Since X∗ = KC · X and the zero section Qn−1 × {0} consists of a single
KC-orbit, the intersection Qn−1 × {0} ∩ X is not empty. Such an intersection is
Stein and K-invariant, thus it is of the form Qn−1

r × {0}, for some r ∈ (0,∞].
Let p1 : Qn−1 × C → Qn−1 denote the projection onto the first factor and assume
p1(X) = Qn−1

s , for some s ≥ r. In order to prove the statement it is sufficient to
show that s = r. Indeed this implies that if (q, z) ∈ X, then (q, 0) ∈ X and by
SO(2)-orbit convexity of X in X∗ (cf. [He], Sect.3) it follows that {q} ×∆|z| is
contained in X.

So assume by contradiction that s > r and let (q, z) ∈ X with z 6= 0 and
q = exp(irH) SO(n− 1, C). Then there exists an invariant neighborhood of (q, z)
in X of the form U × A, with U = SO(n) exp(i(r − ε, r + ε)H)SO(n − 1, C)
and A a small annulus in C∗ of radii |z| − ε and |z| + ε. Since the product
SO(n) exp(i(r−ε, r)H)SO(n−1, C)×{0} is contained in X, by the orbit convexity
of X the product SO(n) exp(i(r−ε, r)H)SO(n−1, C)×∆|z|+ε is also contained in
X. This determines a Hartogs figure in X around (q, 0), implying that (q, 0) ∈ X.
This contradicts the definition of r, since q = exp irH SO(n− 1, C). �
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Theorem 5.5. Let Ω ∼= G/K be the bounded symmetric domain of type IV of
dimension n > 4. Let X be a Stein manifold of dimension n > 4 such that
Aut(X)0 is isomorphic to G. Then X is biholomorphically equivalent to Ω.

Proof. If K has a fixed point in X then the statement is proved in Proposition 3.1.
If K has no fixed points in X, then X is a Stein K-invariant domain in one of
the manifolds X∗ listed in Proposition 4.8 and Proposition 4.10. We complete
the proof of the theorem by showing that no such X has automorphism group
isomorphic to G. Indeed from the discussion below it turns out that either Aut(X)
is infinite dimensional or X is hyperbolic or an Aut(X)-invariant open subset of
X is hyperbolic. In the last two cases if Aut(X) were isomorphic to G, then X
would have a K-fixed point (cf. Proposition 3.2), contradicting the assumptions.

Assume first that X∗ = Qn−1 × C∗ and let p1 : Qn−1 × C∗ → Qn−1 be the
projection onto the first factor. Since X is Stein and K-invariant in X∗, it is of
the form

X = {(q, z) : q ∈ p1(X) and α(q) < |z| < β(q)}

where log ◦α and − log ◦β are SO(n)-invariant, plurisubharmonic functions on
p1(X) (cf. [Vl]). We distinguish several cases.

(A) Assume p1(X) = Qn−1
r , for some 0 < r < ∞, and α, β constant. Then

X = Qn−1
r × A, with A an annulus in C∗. If A = C∗, consider the C∗-

action by multiplication on the second factor. Then Lemma 5.1 implies that
X has an infinite dimensional automorphism group. If A 6= C∗, then X is
the product of two hyperbolic manifolds. Hence it is hyperbolic.

(B) Assume p1(X) = Qn−1
r , for some 0 < r < ∞, and one of the two defining

functions, e.g. β, non-constant. In this case β takes a maximum m on
the sphere Sn−1 (cf. Remark 5.3) and X is contained in Qn−1

r × ∆m. In
particular it is hyperbolic.

(C) Assume p1(X) = Qn−1 and α, β constant. Then X = Qn−1 × A, with A
an annulus in C∗. By choosing a complex subgroup of SO(n, C) isomorphic
to C∗ one obtains a C∗-action on the first factor of X. The correspond-
ing categorical quotient X//C∗ is Stein and positive dimensional. Then by
Lemma 5.1 the automorphism group Aut(X) is infinite dimensional.

(D) Assume p1(X) = Qn−1 and one of the two defining functions, e.g. β, non-
constant. In this case X is contained in Qn−1 × ∆∗

m, where m is the
maximum of β on Qn−1 (cf. case (B)). Let p2 : X → ∆∗

m be the restriction
to X of the projection onto the second factor. Let U be any relatively
compact open subset of ∆∗

m. Recall that the SO(n)-invariant function β

determines a continuous function β̃ on Qn−1/SO(n) ∼= {tH, t ≥ 0} ∼= R≥0

such that − log ◦β̃ is convex and non-constant (cf. Remark 5.3). Note that
the preimage p−1

2 (U) of U is contained in Qn−1
s × U , where

s := max{ β̃−1(|w|) : w lies in the closure of U }.

In particular it is hyperbolic, showing that p2 is locally hyperbolic. Then
X is hyperbolic by Lemma 5.2.

Assume now that X∗ = Qn−1 × C. By Lemma 5.4, in this case X is of the form

X = {(q, z) : q ∈ p1(X) and |z| < β(q)}

where − log ◦β is an SO(n)-invariant, plurisubharmonic function on p1(X). In the
cases
(A1) p1(X) = Qn−1

r , for some 0 < r < ∞, and β constant,
(B1) p1(X) = Qn−1

r , for some 0 < r < ∞, and β non-constant,
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(C1) p1(X) = Qn−1 and β constant,

analogous results as in cases (A), (B) and (C) follow from the same arguments.

(D1) Assume p1(X) = Qn−1 and β non-constant. As in case (D) one sees that
X is contained in Qn−1 × ∆m, where m is the maximum of β on Qn−1.
Here X is not hyperbolic, since it contains the zero section Qn−1 × {0}.

We claim that every automorphism of X leaves such a section invariant.
First note that every non-constant holomorphic curve f : C → X is con-
tained in Qn−1 ×{0}. Indeed p2 ◦ f is a bounded, holomorphic function on
C. Hence it is constant, i.e. p2 ◦ f ≡ c. If c 6= 0, let s := β̃−1(|c|). Then
p−1
2 (c) = Qn−1

s ×{c} is hyperbolic and therefore it contains no non-constant
holomorphic curves. As a result c = 0. Since SO(n, C) acts transitively
on Qn−1×{0}, there exists a non-constant holomorphic curve through every
point of Qn−1×{0}. Note that this property characterizes the set Qn−1×{0}
in X. Then the claim follows.

As a consequence, by removing the zero section from X one obtains a
Stein, G-invariant domain Y contained in Qn−1 × C∗. Then an analogous
argument as in case (D) implies that such a domain is hyperbolic and by
Lemma 3.2, there exists a K-fixed point in Y ⊂ X.

Finally consider the remaining cases, i.e. when X∗ is one of the spaces

Qn−1/Z2 × C∗, Qn−1 ×Z2 C∗ , Qn−1/Z2 × C∗ , Qn−1 ×Z2 C∗ .

Note that each of the above spaces is a quotient of Qn−1×C∗ with respect to a free
Z2-action. Therefore there is a two-to-one covering map Π from Qn−1 × C∗ (or
Qn−1 × C ) onto X∗. This yields a one-to-one correspondence between the set of
Stein, K-invariant domains in X∗ and the set of Stein, SO(n)× SO(2)-invariant,
Z2-invariant domains in Qn−1 ×C∗ (or Qn−1 ×C). Also recall that hyperbolicity
is preserved by finite coverings or finite quotients by holomorphic transformations.
Then, by considering the preimage of X by Π, it is straightforward to check that
arguments analogous to those used in the product cases apply to all the above cases.
This concludes the proof of the theorem. �
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