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Abstract. We present a classification of 2-dimensional, taut, Stein manifolds
with a proper R-action. For such manifolds the globalization with respect to
the induced local C-action turns out to be Stein. As an application we deter-
mine all 2-dimensional taut, non-complete, Hartogs domains over a Riemann
surface.

1. Introduction

Let the group (R,+) act on a complex manifold X by biholomorphism.
Then, by integrating the associated vector field one obtains a local action of
(C,+). For taut, Stein manifolds, the universal globalization with respect to such
a local action is Hausdorff ([Ian]). That is, there exists a complex C-manifold X∗

containing X as an R-invariant domain such that every R-equivariant holomor-
phic map from X onto a complex C-manifold extends C-equivariantly on X∗.
Recently C. Miebach and K. Oeljeklaus have shown that if X is 2-dimensional
and the R-action is proper, then the C-action on X∗ is also proper, implying
that the globalization X∗ can be regarded as a holomorphic principal C-bundle
over the Riemann surface S := X∗/C ([MiOe]).

Our main goal here is to present a classification of all such X, up to R-
equivariant biholomorphism. We first exploit the above bundle structure in order
to give a more precise description of X∗. In the case when S is non compact,
X∗ is C-equivariantly biholomorphic to C×S, where C acts by translations on
the first factor. If the base S is compact, then it is hyperbolic and X∗ turns
out to be C-equivariantly biholomorphic to a certain twisted bundle (C×∆)/Γ,
where ∆ is the unit disk in C and Γ is the group of deck transformations of
the universal covering ∆ → S. Then, by using a result of T. Ueda ([Ued]) as the
main ingredient, we prove the following

Theorem. Let X be a 2-dimensional, taut, Stein manifold with a proper R-
action. Then its universal globalization X∗ is Stein.
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Note that in the more general context of Stein R-manifolds it is an open
problem to determine whether X∗ is always Stein or at least Hausdorff (cf. [HeIa],
[CIT], [IST]). Once X∗ is understood, we look at the realization of X as an R-
invariant domain of X∗ and the following question turns out to be crucial. Given
an upper semicontinuous function a : C → {−∞}∪R, consider the (R-invariant)
subdomain of C2 defined by

Ωa := { (z, w) ∈ C2 : a(w) < Im z} .

Under which conditions on a is Ωa taut ? Since taut domains in Cn are Stein,
the function a is necessarily subharmonic. Moreover Ωa cannot contain complex
lines, therefore a(w) > −∞ for all w ∈ C.

Partial answers to this problem can be found, e.g., in [Yu] and [Gau]. Here the
following necessary and sufficient condition is obtained by using tools of potential
theory (Thm. 3.4).

Theorem. The domain Ωa is taut if and only if a is real valued, subharmonic,
non-harmonic and continuous.

This result put us in the position of showing that the 2-dimensional manifolds
listed below are all taut and Stein.

Type CH If S is compact hyperbolic, say S = ∆/Γ, the models are certain
twisted bundles (H × ∆)/Γ, with H a proper, R-invariant, connected strip in
C.

Type NCH If S is non compact hyperbolic, the models are

{ (z, p) ∈ C× S : a(p) < Im z < −b(p) } ,

where a and b are subharmonic, continuous functions on S such that a+b < 0
and max{a(p), b(p)} > −∞ for all p ∈ S.

Type NCNH If S = C or S = C∗, the models are

{ (z, p) ∈ C× S : a(p) < Im z } or { (z, p) ∈ C× S : Im z < −b(p) } ,

with a, b subharmonic, non-harmonic, real valued, continuous functions on S.

On each such manifold let R act by translations on the first factor. Then
the classification follows by proving that a 2-dimensional, taut, Stein manifold X
with a proper R-action is R-equivariantly biholomorphic to a model as above and
its type depends on compactness and hyperbolicity of the base S (cf. Thm. 6.1).
We recall that in the non compact, simply connected case, a partial result is
obtained in [MiOe], Theorem6.3.

It is worth noting that X turns out to be homotopically equivalent to its base
S. As a consequence, the corresponding type is strongly related to the topology
of X. For instance, X is of type CH if and only if H2(X,Z) 6= 0 (cf. Sect. 6).
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We also wish to recall that every taut manifold is Kobayashi hyperbolic,
therefore its automorphism group is a Lie group acting properly on X (see
[Kob], Thm. 5.4.2). It follows that there exists a proper R-action on X if and
only if the connected component of the identity in Aut(X) is non compact
(cf. [Hoc] p. 180, [MiOe] Lemma 6.3).

As an application of the above classification we determine all 2-dimensional,
taut, non-complete Hartogs domains over a Riemann surface (Prop. 7.1). For a
characterization of complete Hartogs domains see [ThDu], [Par].

The paper is organized as follows. In Section 2 we point out a characterization
of taut manifolds and collect those results which are used in the sequel.
In Section 3 we characterize those domains of the form Ωa which are taut (Thm.
3.4).
In Section 4 we study models of type CH and show that their globalization is
Stein. We also prove that if the base S is compact, then X is R-equivariantly
biholomorphic to one of these models.
In Section 5 the analogous results are proved for models of type NCH and NCNH.
In Section 6 we point out that in most cases the type of X is determined by the
topology of X (Cor. 6.3 and Rem. 6.4)
In Section 7 we classify 2-dimensional, taut, non-complete Hartogs domains over
a Riemann surface.

Acknowledgments. We are grateful to Christian Miebach for valuable remarks
and for pointing out to us a gap in the proof of a previous version of Proposition
4.1. We also wish to thank Professor Takeo Ohsawa for kindly indicating to us
the result of T. Ueda as a suitable tool for a complete proof of such a proposition
and Simone Diverio for his worthy comments.

2. Preliminaries

By definition a complex manifold is taut if and only if every sequence of
holomorphic maps fn : ∆ → X admits a subsequence which is either converging
uniformly on compact subsets or compactly divergent. If X is taut, then it is
hyperbolic and a complete hyperbolic manifold is taut ([Kob], Thm. 5.1.3). We
first recall a result of M. Abate and give a characterization of taut manifolds.

Theorem 2.1. ([Aba], Thm. 1.3) Let X be a complex manifold and X∪{∞} its
Alexandroff compactification. Then X is hyperbolic if and only if Hol(∆, X) is
relatively compact in C(∆, X ∪ {∞}) with respect to the compact-open topology.
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Note that since X ∪ {∞} is metrizable, the compact open topology of
C(∆, X ∪ {∞}) coincides with the topology of uniform convergence on compact
subsets.

Proposition 2.2. For a complex manifold X the following conditions are equiv-
alent.

(i) X is taut,

(ii) for every sequence of holomorphic maps fn : ∆ → X such that fn(ζ0) → x0

for some ζ0 ∈ ∆ and x0 ∈ X, there exists a subsequence converging uniformly
on compact sets of ∆ to a map in Hol(∆,C).

Proof. Condition (ii) is clearly satisfied if X is taut. Assume that (ii) holds
true. We first show that X is hyperbolic. Recall that the the pseudo distance
generated by the Kobayashi infinitesimal pseudo metric KX on X coincides with
the Kobayashi distance (see [Roy]). Then it is enough to show that for every
compact subset C of X there exists a constant c > 0 such that KX(v) ≥ c
for every p ∈ C and tangent vector v ∈ TpX such that ‖v‖g = 1, where g is a
fixed hermitian metric on X.

Assume by contradiction that there exist a sequence xn in C and unitary
vectors vn ∈ TxnX such that KX(vn) < 1/n. Then, by definition of KX , there
exist holomorphic maps fn : ∆ → X such that fn(0) = xn and f ′n(0) = λnvn,
with λn > n − 1. Moreover, by compactness of C, up to subsequence fn(0)
converges to an element x in C while ‖f ′n(0)‖g → +∞. On the other hand,
condition (ii) implies that up to subsequence fn converges uniformly on compact
subsets to a holomorphic map from ∆ to X, giving a contradiction. Thus X is
Kobayashi hyperbolic.

Finally, let X ∪{∞} be the Alexandroff compactification of X. As a conse-
quence of Theorem 2.1, up to subsequence every sequence of holomorphic maps
fn : ∆ → X converges uniformly on compact subsets either to the constant map
of value ∞ or there exists ζ0 ∈ ∆ and x0 ∈ X such that fn(ζ0) → x0 . In the
latter case (ii) implies that there exists a subsequence converging uniformly on
compact subsets of ∆ to a map in Hol(∆,C). Hence X is taut. �

A different argument showing that condition (ii) implies hyperbolicity of X
also in the context of complex spaces can be found in the proof of Thm. 5.1.6 in
[Kob], p. 243. As a corollary to Proposition 2.2, one has

Corollary 2.3. Let α be a plurisubharmonic, continuous function on a taut
manifold X. Then the sublevel sets of α are taut.

Proof. For C ∈ R consider the sublevel set OC = {x ∈ X : α(x) < C } and
let fn : ∆ → OC be a sequence of holomorphic maps such that fn(ζ0) → x0 ,
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for some ζ0 ∈ ∆ and x0 ∈ OC . Since X is taut, Proposition 2.2 applies to
show that up to subsequence fn converges uniformly on compact subsets to a
holomorphic map f : ∆ → X. Note that α ◦ f(ζ0) < C and by continuity
α ◦ f ≤ C on ∆. Then the maximum principle for plurisubharmonic functions
implies that α ◦ f < C on ∆, i.e. f(∆) ⊂ OC . Finally the statement follows
from Proposition 2.2. �

Next we recall two results due to D.D. Thai and N. L. Huong. ([ThHu],
Lemma3 and Cor. 4). For analogous statements where tautness is replaced by
hyperbolicity or complete hyperbolicity, see [Kob], Thm 3.2.8.

Proposition 2.4. Let X and Y be complex manifolds and F : X → Y a
holomorphic map. If Y is taut and admits an open covering {Uj} such that
F−1(Uj) is taut for all j, then X is taut.

Proposition 2.5. Let X and Y be complex manifolds and F : X → Y be a
holomorphic covering. Then Y is taut if and only if so is X.

For later use we also collect the following well-known facts.

Lemma 2.6. Let θ be a real, positive and closed (1, 1)-current on a complex
manifold X.

(i) If H1(X,O) = H2(X,R) = 0, then there exists a plurisubharmonic function
τ on X such that θ = i∂∂̄τ .

(ii) If X is compact Kähler and θ is exact then θ = 0.

(iii) If H1(X,R) = 0 and τ is a pluriharmonic function on X, then there exists
a holomorphic function f : X → C such that Im f = τ .

Proof. (i) follows from the proof of Prop. III 1.19 in [Dem]. For (ii) note that (i)
implies that there exist a locally finite open covering {Uj} of X and plurisub-
harmonic functions τj on Uj such that θ|Uj

= i∂∂̄τj. Let ψj be a partition of

unity associated to {Uj}, define T :=
∑

j ψjτj and Θ := θ − i∂∂̄T. Then for

j0 fixed one has Θ|Uj0
= (θ − i∂∂̄T )|Uj0

= i∂∂̄
∑

j ψj(τj0 − τj). Since τj0 − τj is

pluriharmonic on Uj0 ∩Uj, it follows that Θ is a smooth, exact, real (1, 1)-form
on X. Then, the classical ∂∂̄-Lemma for compact Kähler manifolds (see e.g.
[GrHa], Lemma 1.2, p. 148) implies that there exists a smooth function Q on X
such that Θ = i∂∂̄Q. Hence θ = i∂∂̄(Q + T ) and Thm. I 3.31 in [Dem] implies
that Q+ T is plurisubharmonic on X. Since X is compact, Q+ T is constant
and consequently θ is zero. For (iii) see [Dem] Theorem I 5.16. �
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Let us briefly recall the notion of globalization in the context of R-manifolds.
For further details and generalizations we refer to [Pal], [HeIa], [CIT] and [MiOe].
An R-action by biholomorphisms on a complex manifold X induces a local
holomorphic C-action by integration of the associated holomorphic vector field.
This is given by an open neighborhood Σ of the neutral section {0} × X in
C×X and a holomorphic map Φ : Σ → X, (λ, x) → λ · x, such that

(i) the set {λ ∈ C : (λ, x) ∈ Σ} is connected for all x ∈ X,

(ii) for all x ∈ X one has 0 · x = x,

(iii) if (µ+λ, x) ∈ Σ, (λ, x) ∈ Σ and (µ, λ ·x) ∈ Σ, then (µ+λ) ·x = µ · (λ ·x).
A possibly non-Hausdorff complex manifold with a global C-action contain-

ing X as an R-invariant domain is called a globalization of the local C-action.
By [HeIa], if X is holomorphically separable there exists a (unique) universal
globalization X∗. That is, a globalization with the following universal property:
for any R-equivariant holomorphic map f : X → Y into a C-manifold there
exists a C-equivariant holomorphic extension f ∗ : X∗ → Y .

For x in X∗ let Σx = {λ ∈ C : λ · x ∈ X }. Then Σx is R-invariant,
connected and there exist upper semicontinuous functions α, β : X∗ → R∪{−∞}
defined by

Σx = {λ ∈ C : α(x) < Imλ < −β(x) } .
Note that α and β are R-invariant and α+ β < 0. Moreover, an element x of
X∗ belongs to X if and only if α(x) < 0 < −β(x) (cf. [Ian]). Thus

X = {x ∈ X∗ : α(x) < 0 and β(x) < 0}.
We recall the basic properties of α and β in the case when X is a taut, Stein
manifold.

Lemma 2.7. Let X be a taut, Stein R-manifold. Then

(i) the functions α and β are continuous and plurisubharmonic,

(ii) for λ ∈ C and x ∈ X∗ one has

α(λ · x) = −Im (λ) + α(x) β(λ · x) = Im (λ) + β(x) .

(iii) the sum α + β is a negative, C-invariant, plurisubharmonic, continuous
function,

(iv) if the R-action is proper, then max(α(x), β(x)) > −∞ for all x in X∗.

Proof. (i) Plurisubharmonicity of α and β in the case where X is a Stein R-
manifold is proved in [For]. Since X is also taut, such functions are continuous
([Ian], [MiOe], Prop. 3.2). (ii) is a direct consequence of the definition and (iii)
follows from (i) and (ii). For (iv) note that properness of the R-action implies
that there are no fixed points. Therefore if α(x) = β(x) = −∞ for some x in
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X, the (local) C-orbit through x is biholomorphic either to C or to C∗. Since
X is taut, this gives a contradiction. Recalling that X∗ = C · X, the result
follows from (ii). �

Finally we recall the following result of C. Miebach and K. Oeljeklaus (see
[MiOe], Thm. 4.4) which is often used in the sequel.

Theorem 2.8. Let X be a 2-dimensional, taut, Stein manifold with a proper
R-action. Then the C-action on X∗ is proper, i.e. X∗ can be regarded as
a holomorphic principal C-bundle over the Riemann surface S := X∗/C. In
particular if S is non compact, then X∗ is C-equivariantly biholomorphic to
C× S.

Note that last part of the statement follows directly from the fact that on a
non compact Riemann surface S the cohomology group H1(S,O) vanishes.

3. distinguished R-invariant domains in C2

Consider the domains of C2 of the form Ωa = { (z, w) ∈ C2 : a(w) < Im z },
with a : C → {−∞} ∪ R an upper semicontinuous function. Note that R acts
properly on Ωa by translations on the first factor. The main result of this section
is Theorem 3.4, where we determine necessary and sufficient conditions for Ωa

to be taut.
We already noted in the introduction that if Ωa is taut, then a is real valued

and subharmonic. Moreover C2 is the universal globalization of Ωa, therefore by
(i) of Lemma 2.7 the function α : C2 → {−∞}∪R, given by (z, w) → a(w)−Im z,
is continuous. As a consequence a necessarily belongs to

C := { subharmonic, real valued, continuous functions on C }.
Also note that if Ωa is taut, then for all positive τ ∈ R the domain Ωτa

is also taut, since the biholomorphism C2 → C2, defined by (z, w) → (τz, w),
maps Ωa onto Ωτa. Thus the set of interest F := { a ∈ C : Ωa is taut } is a
cone. Here we show that F coincides with { a ∈ C : a is not harmonic }. We
need some preliminary lemmata.

Lemma 3.1. Let a ∈ C and (fn, gn) : ∆ → Ωa be a sequence of holomorphic
maps such that

(i) fn(ζ0) → z0, for some ζ0 ∈ ∆ and z0 ∈ C,



8 IANNUZZI AND TRAPANI

(ii) gn converges uniformly on compact subsets of ∆ to a holomorphic map
g : ∆ → C such that (z0, g(ζ0)) ∈ Ωa.

Then there exists a subsequence of fn converging uniformly on compact subsets
of ∆ to a holomorphic map f : ∆ → C such that (f, g)(∆) ⊂ Ωa.

Proof. Let U1 be a relatively compact disk of ∆ containing ζ0. By condition
(ii) the sequence gn converges uniformly to g on the closure U1 of U1. Then,
for n large enough fn(U1) is contained in the set

S1 := { z ∈ C : Im z > min
w∈U1

{a(g(w))} − 1 } ,

which is biholomorphic to the unit disc of C. In particular S1 is taut, therefore
there exists a subsequence fn,1 of fn converging uniformly on compact subsets
of U1 to a holomorphic map f1 : U1 → S1.

Complete U1 to an increasing sequence of simply connected domains {Uk}k∈N
which exhaust ∆. By iterating the above argument, for each k ∈ N one obtains
subsequences {fn,k}n∈N converging uniformly on compact subsets of Uk to holo-
morphic maps fk : Uk → Sk. Then the diagonal sequence {fj,j}j∈N converges
uniformly on compact subsets of ∆.

Finally note that a◦g(ζ0)−Im f(ζ0) < 0 and by continuity a◦g−Im f ≤ 0 on
∆. Then, by the maximum principle for subharmonic functions, a◦g− Im f < 0
on ∆, i.e. (f, g)(∆) ⊂ Ωa.

�

Given a subharmonic function a on C, denote by Mζ0,r(a) its mean value
1
2π

∫ 2π

0
a(ζ0 + reiθ)dθ.

Lemma 3.2. For a in C the following conditions are equivalent.

(i) a ∈ F ,

(ii) for any sequence of holomorphic functions gn : ∆ → C satisfying

(a) gn(ζ0) → w0 for some ζ0 ∈ ∆ and w0 ∈ C ,

(b) for every 0 < r < 1− |ζ0| there exists Mr ∈ R such that
Mζ0,r(a ◦ gn) < Mr for all n ∈ N,

there exists a subsequence converging uniformly on compact subsets of ∆1−|ζ0|(ζ0).

Proof. Assume that Ωa is taut and let gn be a sequence as in (ii). For n ∈ N
and 0 < r < 1 − |ζ0|, denote by hn the harmonic function on ∆r(ζ0) which
coincides with a ◦ gn on the boundary of ∆r(ζ0). Then hn(ζ0) = Mζ0,r(a ◦ gn)
and consequently, for n large enough, one has

a(w0)− 1 < a(gn(ζ0)) ≤ hn(ζ0) < Mr.
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As a consequence, up to subsequence hn(ζ0) converges to a real number y. Let
fn : ∆r(ζ0) → C be the sequence of holomorphic functions defined by Im fn =
hn + 1 and Re fn(ζ0) = 0. Since Im fn = hn + 1 ≥ a ◦ gn + 1 > a ◦ gn, it follows
that (fn, gn) defines a sequence of holomorphic maps from ∆r(ζ0) to Ωa.

Moreover (fn, gn)(ζ0) → (i(y+1), w0) ∈ Ωa and Ωa is taut. Then by Lemma
2.2 there exists a subsequence (fn, gn) converging uniformly on compact subsets
of ∆r(ζ0).

Let rk be an increasing sequence of positive numbers converging to 1− |ζ0|
such that r1 = r. The analogous argument as above shows that there exist sub-
sequences (fn,k, gn,k) converging uniformly on compact subsets of ∆rk

(ζ0). Then
the diagonal subsequence (fn,n, gn,n) converges uniformly on compact subsets of
∆1−|ζ0|(ζ0) and so does gn,n. This implies (ii).

Conversely assume (ii) and let (fn, gn) : ∆ → Ωa be a sequence of holomor-
phic maps such that (fn, gn)(ζ0) → (z0, w0), for some ζ0 in ∆ and (z0, w0) in
Ωa. By Lemma 2.2 it is enough to show that, up to subsequence, (fn, gn) con-
verges uniformly on compact subsets of ∆ to some (f, g) with (f, g)(∆) ⊂ Ωa.
Note that for 0 < r < 1− |ζ0| and n large enough one has

Im z0 + 1 > Im fn(ζ0) = Mζ0,r(Im fn) > Mζ0,r(a ◦ gn) .

Thus, by assumption, up to subsequence gn converges uniformly on compact
sets of the disk ∆1−|ζ0|(ζ0) and, by Lemma 3.1 so does fn. Therefore for every
point ζ ∈ ∆1−|ζ0|(ζ0) there exists a subsequence of (fn, gn) converging at ζ to
an element of Ωa. Then by constructing a finite chain of disks one shows that,
up to subsequence, (fn, gn) converges at 0 to an element of Ωa. Finally the
analogous argument as above implies that, up to subsequence (fn, gn), converges
uniformly on compact subsets of ∆ to some (f, g) with (f, g)(∆) ⊂ Ωa. �

Lemma 3.3. The cone F has the following properties.

(i) Harmonic functions do not belong to F .

(ii) If a ∈ C is non constant and bounded from below, then a ∈ F .

(iii) If b ∈ C and c ∈ F then b+ c ∈ F .

Proof. (i) If a is harmonic, then a = Im f for some holomorphic f : C → C.
Then the biholomorphism of C2 defined by (z, w) → (z − f(w), w) maps Ωa

onto { (z, w) ∈ C2 : Im z > 0 }, which is not taut. Thus Ωa is not taut.
For (ii) consider the restriction to Ωa of the projection from C2 onto the

first factor given by

p|Ωa : Ωa → p(Ωa) , (z, w) → z .

Since a is bounded from below, the image p(Ωa) is contained in the half plane
{ Im z > infC a }, which is taut. Then, by Lemma 2.4, in order to prove that Ωa
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is taut it is enough to show that (p|Ωa)
−1(U) is taut for every relatively compact

open subset U in p(Ωa).
For this, let M be the maximum of Im z on the closure of U and note

that (p|Ωa)
−1(U) is contained in U × { a < M }. Since a is not constant, it

is not bounded. As a consequence { a < M } is a hyperbolic domain of C.
Thus it is taut and so is U × { a < M }. Finally, the image (p|Ωa)

−1(U) is
the zero sublevel set in U × { a < M } of the subharmonic, continuous function
(z, w) → a(w)− Im z. Thus it is taut by Corollary 2.3, concluding (ii).

For (iii) let gn : ∆ → C be a sequence of holomorphic maps such that
gn(ζ0) → w0 for some ζ0 ∈ ∆, w0 ∈ C and for every 0 < r < 1 − |ζ0| there
exists a real number Mr such that Mζ0,r((b + c) ◦ gn) < Mr for all n ∈ N.
Then by Lemma 3.2 in order to show that b + c belongs to F , it is enough to
find a subsequence of gn converging uniformly on compact subsets of ∆. For
0 < r < 1− |ζ0| and n large enough one has

Mr > Mζ0,r((b+ c) ◦ gn) ≥ b(gn(ζ0)) +Mζ0,r(c ◦ gn) > b(w0)− 1 +Mζ0,r(c ◦ gn) .

Hence
Mζ0,r(c ◦ gn) < Mr − b(w0) + 1 .

Since c ∈ F , Lemma 3.2 implies that there exists a subsequence of gn converging
uniformly on compact subsets of ∆, as wished. �

Theorem 3.4. Let a : C → {−∞} ∪ R be an upper semicontinuous function.
Then Ωa := { (z, w) ∈ C2 : a(w) < Im z} is taut if and only if a is real valued,
subharmonic, non-harmonic and continuous.

Proof. We already noted at the beginning of the section that if Ωa is taut, then
a belongs to C. Moreover, by (i) of the above lemma a is not harmonic, giving
one implication.

Conversely, given a ∈ C non-harmonic we want to show that a ∈ F . By (ii)
and (iii) of the above lemma, it is enough to show that a = b+ c, with b, c ∈ C
and c non constant and bounded from below.

For this consider the positive measure µ = L(a), where L(a) denotes the
laplacian of a, and choose r big enough such that µ is non zero on ∆r(0). Let
χ∆r(0) be the characteristic function of ∆r(0) and define µ1 = (1 − χ∆r(0))µ
and µ2 = χ∆r(0)µ, so that µ = µ1 + µ2 gives a decomposition of µ as a sum
of positive measures on C. Note that µ2 is non zero with compact support and
consider the potential c : C → R ∪ {−∞} associated to µ2 defined by

c(w) :=
1

2π

∫
C

log(|w − ξ|)dµ2(ξ) =
1

2π

∫
∆r(0)

log(|w − ξ|)dµ2(ξ) .

Then the laplacian L(c) of c coincides with µ2 (see e.g. [Kli], Prop. 4.1.2), there-
fore c is non constant and subharmonic.
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Furthermore, the real (1, 1)-current µ1dξdξ is closed and positive on C,

hence by (i) of Lemma 2.6 there exists a subharmonic function b̃ : C → R∪{−∞}
such that L(b̃) = µ2. It follows that L(b̃ + c) = L(a) and consequently a =

b̃ + c + h, with h harmonic on C. This implies that b̃ + c is continuous and
real valued. Since b̃ and c are everywhere smaller than +∞, they are also real
valued. Moreover c is upper semicontinuous, −b̃ is lower semicontinuous and
c = −b̃+a−h, with a−h continuous. Thus b̃ and c are continuous subharmonic
functions, i.e. they belong to C, and b := b̃+ h ∈ C.

Finally note that the non constant function c is bounded from below. Indeed
by definition of c, if w is not in ∆r+1(0) then c(w) ≥ 0. Since c is continuous,
this implies that c ≥ min{0,m}, with m := minw∈∆r+1(0){c(w)}. Then a = b+ c
gives the desired decomposition. �

4. models with compact base

Let S be a compact hyperbolic Riemann surface, say S = ∆/Γ, with Γ the
subgroup in Aut(∆) of deck transformations of the universal covering ∆ → S.
Choose a non trivial group homomorphism Ψ : Γ → R and let Γ act on C×∆
by γ · (z, w) := (z + Ψ(γ), γ · w). Endow the quotient (C × ∆)/Γ with the
R-action defined by t · (z, w) := (z+ t, w). We introduce the first class of models
as R-invariant subdomains of (C×∆)/Γ.

Type CH A model of type CH with compact hyperbolic base S = ∆/Γ is given
by

(H ×∆)/Γ ,

where H is a proper, R-invariant, connected strip of C. Up to R-equivariant
biholomorphism, we may assume that H is one of the strips {0 < Im z}, {Im z <
0} or {0 < Im z < C}, for some real positive C.

Proposition 4.1. Let X be a model of type CH with base S = ∆/Γ. Then

(i) the universal globalization of X is (C×∆)/Γ, which is Stein.

(ii) X is a taut, Stein manifold with a proper R-action.

Before proving the above proposition we need a preparatory lemma. Given
a rank two holomorphic vector bundle E over a compact Riemann surface S,
denote by P its (fiberwise) projectification and let p : E\S → P be the canonical
projection. Here S is identified with the zero section in E. Let σ : S → P be
a holomorphic section of P and consider its image C := σ(S). Recall that the
normal bundle N of the curve C is given by TP |C/TC and it can be identified
with the line bundle σ∗(N) over S.
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Regard the tautological line bundle O(−1) as a subbundle in π∗(E), where
π : P → S is the bundle projection. Then the holomorphic line bundle associated
to σ is L := σ∗(O(−1)) and can be identified with the subbundle of E given
by p−1(C) ∪ S.

Lemma 4.2. The normal bundle σ∗(N) is isomorphic to (E/L)⊗ L∗.

Proof. Consider the relative tangent bundle TP/S := Ker dπ. We first note that
N is isomorphic to the restriction TP/S|C of such a bundle to C, since one has
the short exact sequence of vector bundles over C

0 → TC → TP |C → TP/S|C → 0 ,

where the third map is defined by v 7→ v − dσ ◦ dπ(v).
We first assume that L is trivial, i.e. it admits a non zero holomorphic

section τ. Then one has the commutative diagram

E \ S p // P

S

τ

bbDDDDDDDD σ

@@��������

and an exact sequence of vector bundles over τ(S)

0 → TL/S|τ(S) → TE/S|τ(S) → p∗(TP/S|C) → 0 ,

where the third map is given by v 7→ dp(v). Since p ◦ τ = σ, by applying τ ∗ one
obtains the following exact sequence of vector bundles over S

0 → L→ E → σ∗(TP/S|C) → 0 ,

where we use the natural identification τ ∗(TF/S|τ(S)) ∼= F for any vector sub-
bundle F of E. Moreover, by recalling that N is isomorphic to TP/S|C , one
obtains that σ∗(N) is isomorphic to E/L, as wished.

Finally, if L is non trivial note that P can be regarded as the projectification
P(E⊗L∗) of E⊗L∗. For this, let p̂ : (E⊗L∗)\S → P(E⊗L∗) be the canonical
projection and let ρ : U → L∗ be a local, never vanishing, holomorphic section
of L∗ defined on a domain U of S . Then the identification P → P(E ⊗ L∗)
is locally defined by p(w) → p̂(w ⊕ ρ(π(p(w))) ), for all w ∈ E \ S such that
π(p(w)) ∈ U . Since σ(S) = P(L), such an identification maps σ(S) onto the
projectification of the trivial line bundle L ⊗ L∗. Then an analogous argument
as above implies that σ∗(N) is isomorphic to (E ⊗ L∗)/(L ⊗ L∗) and by the
exactness of the sequence of vector bundles over S

0 → L⊗ L∗ → E ⊗ L∗ → (E/L)⊗ L∗ → 0 .

one has (E ⊗ L∗)/(L⊗ L∗) ∼= (E/L)⊗ L∗. �

Proof of Proposition 4.1 (i) Note that X is orbit-connected in (C×∆)/Γ. Then
Lemma 1.5 in [CIT] implies that X∗ := (C×∆)/Γ is the universal globalization
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of X. Consider the P1-bundle P := (P1 × ∆)/Γ, where Γ act on P1 × ∆ by
γ · ([z1 : z2], w) := ([z1 + Ψ(γ)z2 : z2], γ ·w). Then X∗ is embedded in P via the
map

[z, w] → [[z : 1], w] .

and the union of points at infinity defines the complex curve C := { [[1 : 0], w] ∈
P : w ∈ ∆ } which is biholomorphic to S. Indeed it can be regarded as the
holomorphic section σ : S → P , defined by [w] → [[1 : 0], w].

We wish to apply Theorem 1, p. 590 in [Ued] in order to obtain a suitable
strictly plurisubharmonic function on V0 \C, for some open neighborhood V0 of
C in P . For this we first check that the normal bundle of C is trivial. Consider
the rank two vector bundle over S defined by E := (C2×∆)/Γ, where Γ acts on
C2×∆ by γ ·((z1, z2), w) := ((z1+Ψ(γ)z2, z2), γ ·w). Note that the line subbundle
L := { [(z1, z2), w] ∈ E : z2 = 0 } associated to the section σ is trivial. Indeed it
admits the global section [w] → [(1, 0), w]. Since P is the projectification of E,
by Lemma 4.2 this implies that the normal bundle of C := σ(S) is isomorphic
to E/L. Moreover one has the short exact sequence of vector bundles over S

0 → L→ E → C× S → 0 ,

where the third map is defined by [(z1, z2), w] → (z2, [w]). Therefore E/L is
trivial and so is the normal bundle of C.

Next we check that the curve C is of type 1, in the sense of Definition p.
589 in [Ued]. For this choose an open covering {Uj} of S such that there exist
injective, local sections sj : Uj → ∆ of the universal covering ∆ → S. Define
local trivializations of P by

P1 × Uj → P , ([z1 : z2], p) → [[z1 : z2], sj(p)] .

Note that the curve C is locally defined by {z2 = 0} and in a neighborhood of
C the intersection of two trivializations associated to the sections sj and sk is
given by

[[1 : z2], sk(p)] = [[1 : z′2], sj(p)].

This implies that there exists γ ∈ Γ such that sj(p) = γ ·sk(p) and consequently

[[1 : z2], sk(p)] = [[1 : z′2], γ · sk(p)] = [[1−Ψ(γ)z′2 : z′2], sk(p)] .

Since Γ acts freely on ∆, it follows that z2 = z′2/(1−Ψ(γ)z′2) and

z2 − z′2 = z′2(
1

1−Ψ(γ)z′2
− 1) = (z′2)

2 Ψ(γ)

1−Ψ(γ)z′2
= (z′2)

2(Ψ(γ) +O(z′2)) .

In our setting the normal bundle of C is holomorphically trivial, therefore the
locally constant maps fjk : Uj ∩Uk → C, given by p→ Ψ(γ), define a cocycle in
H1(S,O) (cf. [Ued], p. 588).

Claim. The cocycle fjk is cohomologous to zero if and only if Ψ is trivial.
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Proof of Claim. By using the above defined sections sj : Uj → ∆ one has local
trivializations of X∗ given by

C× Uj → X∗ , (z, p) → [z, sj(p)] .

It follows that fjk is the cocycle defining X∗ as a holomorphic principal C-
bundle over S. Assume that there exists a holomorphic ( C-equivariant) triv-
ialization F : X∗ → C × S. We can choose a ( C-equivariant) lifting F̃ :

C ×∆ → C ×∆ to the universal coverings such that F̃ (z, w) = (z + f̃(w), w),

with f̃ : ∆ → C holomorphic. Moreover for every γ ∈ Γ one has

F̃ (γ · (z, w)) = γ · F̃ (z, w) = (z + f̃(w), γ · w) ,

implying that f̃(γ · w) + Ψ(γ) = f̃(w). In particular

f̃(w)− f̃(γ · w) = Ψ(γ) ∈ R.

Hence Im f̃ is Γ-invariant, therefore it pushes down to a harmonic function
on S := ∆/Γ. Then the compactness of S implies that Im f̃ is constant and

consequently f̃ is constant. Hence Ψ(γ) = 0 for all γ ∈ Γ, proving the claim.

Since Ψ is non-trivial by assumption, the cocycle fjk is not cohomologous
to zero, i.e. the curve C is of type 1. Then, by Theorem 1, p. 590 in [Ued] there
exists an open neighborhood V0 of C in P and a smooth, strictly plurisubhar-
monic function ρ defined on V0 \ C such that lim ρ(p) = ∞ for p approaching
C. In particular we may assume that ρ is positive.

Fix N large enough such that the domain XN := { [z, w] ∈ (C × ∆)/Γ :
Im z > N} is contained in V0. Note that XN is Stein, since it admits the smooth,
strictly plurisubharmonic exhaustion ρ + 1

Im z−N
. Moreover for all n ∈ N the

domains XN−n are also Stein, being biholomorphic to XN via a translation
in the first factor. Furthermore XN−n can be regarded as a sublevel set of
the plurisubharmonic function Im z, therefore it is Runge in XN−(n+1). Then
(C×∆)/Γ = ∪nXN−n is Stein by a classical result of K. Stein [Ste].

(ii) Note that X is an R-invariant, locally Stein domain in the Stein, princi-
pal C-bundle X∗ = (C×∆)/Γ over S. Thus the R-action on X is proper and
X is Stein by [DoGr]. Finally the universal covering of X is given by H ×∆,
which is taut. Thus X is taut by Proposition 2.5. �

Remark 4.3. It was pointed out to us by Christian Miebach that a similar
strategy as above applies to show that every non trivial principal C-bundle over
a compact Riemann surface is Stein.

Remark 4.4. Let F : (H × ∆)/Γ → (H ′ × ∆)/Γ′ be an R-equivariant bi-
holomorphism between two models of type CH and consider a holomorphic lift-
ing F̃ : H × ∆ → H ′ × ∆ to the universal covering spaces. We claim that
F̃ (z, w) = (z + r, ϕ̃(w)), where r ∈ R and ϕ̃ ∈ Aut(∆). In particular H = H ′.
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In order to prove this, note that F̃ = (F̃1, F̃2) is also R-equivariant. Then,
from the analytic continuation principle it follows that F̃1 extends holomor-
phically on C2 and F̃1(z, w) = F̃1(0, w) + z for all (z, w) ∈ H × ∆. Simi-
larly, F̃2(z, w) = F̃2(0, w) for all (z, w) ∈ H × ∆. As a consequence F̃ (z, w) =
(z + f(w), ϕ̃(w)), with f : ∆ → C holomorphic and ϕ̃ ∈ Aut(∆).

Now recall that the actions of Γ and Γ′ on C×∆ are given respectively by
γ · (z, w) = (z + Ψ(γ), γ(w)) and γ′ · (z, w) = (z + Ψ′(γ′), γ′(w)). Moreover, for
every γ ∈ Γ there exists γ′ ∈ Γ′ such that F̃ (γ · (z, w)) = γ′ · F̃ (z, w). That is

( z + Ψ(γ) + f(γ(z)), ϕ̃(γ(w)) ) = ( z + f(w) + Ψ′(γ′), γ′(ϕ̃(w)) )

and consequently

ϕ̃γϕ̃−1 = γ′ and f ◦ γ − f = Ψ′(ϕ̃γϕ̃−1)−Ψ(γ) ∈ R .

In particular Γ′ = ϕ̃Γϕ̃−1, therefore ϕ̃ induces a biholomorphism ϕ : ∆/Γ →
∆/Γ′. Moreover Im f is Γ-invariant. Then the analogous argument as in the
claim in the proof of Proposition 4.1 implies that f ≡ r, with r ∈ C. In particular
Ψ′(ϕ̃γϕ̃−1) = Ψ(γ) and H, H ′ are either both of finite width or of infinite
width. Assume that, e.g. H = {0 < Im z < C} and H ′ = {0 < Im z < C ′}.
By applying F̃ to any (z, w) ∈ H × ∆ one sees that 0 < Im z if and only if
0 < Im z + Im r. This implies that Im r = 0, i.e. that r is a real number and
consequently C = C ′. An analogous argument applies to the case when H has
infinite width. �

Let X be a 2-dimensional, taut, Stein manifold with a proper R -action. By
Theorem 2.8, the C-action on X∗ is proper and one can consider the associated
holomorphic principal C-bundle

Π : X∗ −→ S := X∗/C .

If S is compact, we show that X is R-equivariantly biholomorphic to a model
of type CH. Then Proposition 4.1 implies that the globalization X∗ is Stein. We
need a preliminary result. Let the functions α, β be defined as in Lemma 2.7.

Lemma 4.5. If S is compact then α, respectively β, is either pluriharmonic or
constantly equal to −∞.

Proof. Assume that α is not constantly equal to −∞. Since by (ii) of Lemma 2.7
one has α(λ · x) = −Im (λ) + α(x) for all x ∈ X∗ and λ ∈ C, the real, positive
(1, 1)-current i∂∂̄α is C-invariant. Therefore it pushes down to a (1, 1)-current
θ on S such that Π∗(θ) = i∂∂̄α. Note that θ is also positive.

Recall that all cohomology groups with values in the sheaf of smooth functions
on S vanish. Thus X∗ is trivial as a differentiable principal C-bundle and the
maps induced by Π in cohomology are isomorphisms. Since i∂∂̄α is an exact
current, this implies that θ is also an exact current. Then, from (ii) of Lemma
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2.6 it follows that θ = 0 and consequently i∂∂̄α = Π∗(θ) = 0. Hence α is
pluriharmonic. An analogous argument applies to show that if the function β is
not constantly equal to −∞, then it is is pluriharmonic. �

Proposition 4.6. Let X be a 2-dimensional, taut, Stein manifold with a proper
R -action and assume that S := X∗/C is compact. Then S is hyperbolic and
X is R-equivariantly biholomorphic to a model of type CH. In particular X∗ is
Stein.

Proof. First note that S can not be biholomorphic to the Riemann sphere. In-
deed H1(P1(C),O) = 0, thus if S = P1(C) then X∗ = C × P1(C). Moreover
the functions P1(C) → R ∪ {∞}, defined by p → α(0, p) and p → β(0, p), are
constant, being subharmonic on P1(C). Since (ii) of Lemma 2.7 implies that
X = { (z, p) ∈ C × P1(C) : α(0, p) < Im z < −β(0, p)}, it follows that X is
the product of a strip in C and P1(C). However X is Stein, therefore this is
impossible.

Now let us show that S is hyperbolic. Consider the universal covering space
π : X̃∗ → X∗ of X∗ with deck transformation group Γ. The proper C-action
on X∗ lifts to a proper C-action on X̃∗, therefore X̃∗ is a principal C-bundle
over S̃ ∼= X̃∗/C. Note that X∗ and X̃∗ are trivial as differentiable principal
C-bundles over S and S̃, respectively. This implies that the Riemann surface
S̃ is simply connected, therefore it is non compact and consequently X̃∗ is C-
equivariantly biholomorphic to C × S̃ (cf. Thm. 2.8). One has a commutative
diagram of holomorphic maps

X̃∗ = C× S̃
π→ X∗ = (C× S̃)/Γ

↓ ↓
S̃

π̂→ S = S̃/Γ ,

where π̂ is the universal covering of S with deck transformation group Γ.
By (iii) of Lemma 2.7, the sum α+β is C-invariant, thus it can be regarded as

a subharmonic function on S. Since S is compact, α+β is constant. Moreover
polar sets have zero measure, therefore if α+ β ≡ −∞ then either α ≡ −∞ or
β ≡ −∞. As a consequence X = {x ∈ X∗ : α(x) < 0 } or X = {x ∈ X∗ :
β(x) < 0 }. On the other hand, if α+ β = −C for some positive real number C,
one has X = {x ∈ X∗ : α(x) < 0 < −β(x)} = {x ∈ X∗ : −C < α(x) < 0}.

First consider the case when X = {x ∈ X∗ : α(x) < 0 }. Set α̃ = α ◦ π
and let X̃ := π−1(X) = {(z, p) ∈ C × S̃ : α̃(z, p) < 0}. Recall that α is
pluriharmonic by Lemma 4.5, therefore so is α̃. Since X̃∗ is simply connected,
(iii) of Lemma 2.6 implies that there exists a holomorphic function f : X̃∗ → C
such that Im (f) = α̃. Moreover, for all (z, p) ∈ X̃∗ one has

α̃(z, p) = α ◦ π(z · (0, p)) = α(z · π(0, p)) = α̃(0, p)− Im z ,
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therefore f(z, p) = f(0, p)− z. Then the map defined by

(z, p) → (−f(z, p), p) = (z − f(0, p), p)

gives a C-equivariant biholomorphism of C× S̃ and its restriction to X̃ defines
an R-equivariant biholomorphism onto {(z, p) ∈ C × S̃ : 0 < Im z}, which is
simply connected. Thus X̃ can be regarded as the universal covering of X and
since X̃ is taut by Proposition 2.5, this implies that S̃ ∼= ∆, i.e. that S is
hyperbolic.

An analogous argument applies to the cases when X = {x ∈ X∗ : β(x) <
0 } and X = {x ∈ X∗ : −C < α(x) < 0 }, showing that S is hyperbolic
and that X̃ is R-equivariantly biholomorphic to H ×∆, where H is given by
{0 < Im z}, {Im z < 0} or {0 < Im z < C}, for some positive real C.

Identify the universal covering X̃ with H×∆ and note that it is Γ-invariant
in X̃∗ ∼= C×∆. In order to describe the Γ-action, observe that every γ in Γ is
C-equivariant, therefore there exists a holomorphic map Fγ : ∆ → C such that

γ · (z, w) = (z + Fγ(w), γ · w) ,

for all (z, w) ∈ C×∆. Since γ(H ×∆) = H ×∆, it follows that ImFγ ≡ 0 and
consequently the holomorphic function Fγ is a real constant. Thus the Γ-action
on C×∆ is given by γ ·(z, w) = (z+Ψ(γ), γ ·w), where the group homomorphism
Ψ : Γ → R is defined by γ → Fγ.

Finally note that Ker Ψ 6= Γ. Otherwise one has X = (H × ∆)/Γ = H ×
(∆/Γ) = H × S. Since X is Stein and S is compact, this gives a contradiction.
Thus X is R-equivariantly biholomorphic to a model of type CH and X∗ is
Stein by (i) of Proposition 4.1. �

Remark 4.7. Note that two models of type CH, one of the form (H×∆)/Γ, with
H of finite width, and one of the form (H ′ ×∆)/Γ′, with H ′ of infinite width,
cannot be biholomorphic. Let Γ act on H ×∆ by γ · (z, w) = (z + Ψ(γ), γ(w))
and let Γ′ act on H ′ ×∆ by γ′ · (z, w) = (z + Ψ′(γ′), γ′(w)), where Ψ : Γ → R
and Ψ′ : Γ′ → R are non trivial homomorphisms. Recall that, since the Riemann
surfaces ∆/Γ and ∆/Γ′ are compact hyperbolic, it follows that the elements of
Γ and Γ′ are all hyperbolic, i.e. they have two fixed point on the boundary of
∆ (see [FaKr], Cor. 2, p. 216).

In particular every element of Γ which does not belong to Ker Ψ has 4 fixed
points on the boundary of the universal covering ∆2 of X, while an element of
Γ′ has either infinite or 2 fixed points. Here we are identifying H×∆ and H ′×∆
with ∆2 and using the fact that every element of Aut(∆2) ∼= Z2 n (PSL(2,R))2

extends bijectively on the closure of ∆2 in C2.
Assume that there exists a biholomorphism F : (H ×∆)/Γ → (H ′ ×∆)/Γ′.

Then F lifts to a biholomorphism of the universal coverings F̃ : ∆2 → ∆2 which
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extends bijectively on the closure of ∆2. Since F̃ ◦ γ ◦ F̃−1 ∈ Γ′ for all γ ∈ Γ,
this gives a contradiction. �

5. models with non compact base

Here we consider the models with base a non compact Riemann surface. Let
us start with the hyperbolic case.

Type NCH Let S be a non compact hyperbolic Riemann surface. A model of
type NCH with base S is given by

{ (z, p) ∈ C× S : a(p) < Im z < −b(p) } ,
where a and b are subharmonic, continuous functions on S such that a+ b < 0
and max{a(p), b(p)} > −∞ for all p ∈ S.

Type NCNH A model of type NCNH with base S = C or S = C∗ is given by

{ (z, p) ∈ C× S : a(p) < Im z } or { (z, p) ∈ C× S : Im z < −b(p) } ,
with a, b subharmonic, non-harmonic, real valued, continuous functions on S.

On each manifold as above let R act by translations on the first factor.

Proposition 5.1. Let X be a model of type NCH or NCNH with base S. Then

(i) the universal globalization of X is C× S, which is Stein,

(ii) X is a taut, Stein manifold with a proper R-action.

Proof. (i) Note that X is orbit-connected in C × S. Then Lemma 1.5 in [CIT]
implies that C× S is the (Stein) universal globalization of X.

(ii) Since X is an R-invariant submanifold in C× S, the R-action on X is
proper. Moreover, X is given as the sublevel set of plurisubharmonic functions
defined on the product C× S, which is Stein. Thus X is Stein.

Finally we show that X is taut. For X a model of type NCH consider the
projection Π|X : X → S , (z, p) → p, onto the second factor. By Lemma 2.4
it is sufficient to prove that for every p in S there exists a neighborhood U
of p in S such that (Π|X)−1(U) is taut. Since max{a(p), b(p)} > −∞ we may
assume that, e.g. a(p) > −∞. By continuity a > M on a neighbourhood U
of p , for some real constant M . Then (Π|X)−1(U) is contained in H × S, with
H = {z ∈ C : M < Im z}. Moreover the inverse image (Π|X)−1(U) it is defined
as a sublevel set of continuous plurisubharmonic functions, therefore it is taut by
Corollary 2.3.

Assume now that X is a model of type NCNH. Note that if S = C∗ , then
the universal covering X̃ of X is contained in C2 and it is also of type NCNH.
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Moreover, by Proposition 2.5 the manifold X is taut if and only if so is X̃.
Thus we may assume that S = C. Since a domain of the form { (z, w) ∈ C2 :
Im z < −b(w) } is biholomorphic to Ωb via the biholomorphism of C2 defined
by (z, w) → (−z, w), all such models are taut by Theorem 3.4. �

Remark 5.2. Let F be a R-equivariant biholomorphism between two models
of type NCH defined by { (z, p) ∈ C×S : a(p) < Im z < −b(p) } and { (z, p′) ∈
C × S ′ : a′(p′) < Im z < −b′(p′) } . Then F (z, p) = (z + f(p), ϕ(p)) where
f : S → C is holomorphic and ϕ : S → S ′ is a biholomorphism such that
a = (a′ ◦ ϕ − Im f) and b = (b′ ◦ ϕ + Im f). An analogous statement holds for
models of type NCNH. �

Proposition 5.3. Let X be a 2-dimensional, taut, Stein manifold with a proper
R-action and assume that the Riemann surface S := X∗/C is non compact.
Then X∗ is C-equivariantly biholomorphic to C× S, which is Stein. Moreover,
depending on hyperbolicity of S the manifold X is R-equivariantly biholomor-
phic to a model of type either NCH or NCNH.

Proof. Since S is non compact by assumption, the principal C-bundle X∗ is
trivial (cf. Thm. 2.8), implying the first statement. Regard X as { (z, p) ∈ C×
S : α(z, p) < 0 < −β(z, p) } and define a(p) := α(0, p) and b(p) := β(0, p).
Since from (ii) of Lemma 2.7 it follows that α(z, p) = −Im z + α(0, p) and
β(z, p) = Im z + β(0, p), one has

X = { (z, p) ∈ C× S : a(p) < Im z < −b(p) } .
Moreover the same lemma implies that a and b are subharmonic, continuous
functions, a + b < 0 and max{a(p), b(p)} > −∞ for all p ∈ S. This concludes
the case when S is hyperbolic.

For S = C or S = C∗ we first note that a + b is constant, being a sub-
harmonic, negative function on S. We claim that a + b ≡ −∞. Assume by
contradiction that a + b = −C for some positive C . Then a = −b − C is har-
monic and X = { (z, p) ∈ C × S : a(p) < Im z < a(p) + C }. In the case when
S = C, there exists a holomorphic function f : C → C such that Im f = a. Then
the map ζ → (f(ζ) + iC/2, ζ) is a non constant holomorphic map from C into
X. Since X is taut, this gives a contradiction. If S = C∗, one can show that
a+ b ≡ −∞ by applying the analogous argument to the universal covering of X,
which is taut by Proposition 2.5.

Thus a+ b ≡ −∞ and since the sets {a = −∞} and {b = −∞} have zero
measure, either a or b are constantly equal to −∞. Assume, e.g. that b ≡ −∞.
Since X is taut, a is necessarily real valued and the above argument also proves
that a can not be harmonic. Thus X is R-equivariantly biholomorphic to a
model of type NCNH. �
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Corollary 5.4. Let S be a non compact Riemann surface and consider the sub-
domain of C× S defined by

Ω := { (z, p) ∈ C× S : a(p) < Im z < −b(p) } ,
where a, b : S → {−∞} ∪ R are upper semicontinuous functions. Then Ω is
taut if and only if it is a model of type NCH or NCNH.

Proof. First note that if Ω is taut, then it is Stein. For this consider the universal
covering Id × π : C × S̃ → C × S, where S̃ = C or S̃ = ∆ . Then Proposition
2.5 applies to show that the inverse image (Id × π)−1(Ω) is a taut domain of
C2. Thus it is Stein by Thm. 5.4.1 in [Kob] and consequently it is locally Stein
in C× S̃. It follows that Ω is locally Stein in C× S, which is Stein. Thus Ω is
Stein by [DoGr].

Then an analogous argument as in the above proof applies to prove that Ω
is a model of type NCH or NCNH. �

6. Homotopy of the models

Let us summarize the main results of the previous sections as follows (see
Prop. 4.1, 4.6, 5.1 and 5.3).

Theorem 6.1. Every model of type CH, NCH or NCNH is taut and Stein.
Moreover a 2-dimensional, taut, Stein manifold with a proper R-action is R-
equivariantly biholomorphic to one of them. In particular its universal globaliza-
tion is Stein.

Here we show that in most cases, but not all of them, the type of a 2-
dimensional, taut, Stein manifold with a proper R-action is uniquely determined
by its topology.

Proposition 6.2. Let X be a 2-dimensional, taut, Stein manifold with a proper
R-action Then X is homotopically equivalent to S.

Proof. We first find a smooth global section of the restriction Π|X : X → S of
Π to X. In a given smooth, trivialization C× S of X∗ one has X = {(z, p) ∈
C×S : a(p) < Im z < −b(p)}, with a and b continuous functions on S (maybe
no longer subharmonic) with values in {−∞} ∪ R. Moreover, by continuity of
a and b one can choose a locally finite covering {Uj} of S and real constants
Mj such that a < Mj < −b on each Uj. Thus the constant functions iMj

can be regarded as smooth local sections of Π|X . Choose a smooth partition of
unity {ψj} subordinated to {Uj}. Then θ =

∑
j iMjψj defines a smooth global

section of Π|X , since a(p) < Im θ < −b(p) on S.
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Finally note that the map X×[0, 1] → X defined by ((z, p), t) → (z+t(θ(p)−
z), p) is a homotopy equivalence, showing that S is a strong deformation retract
of X. �

Corollary 6.3. Let X be a 2-dimensional, taut Stein manifold with a proper
R-action. Then

(i) X is R-equivariantly biholomorphic to a model of type CH if and only if
H2(X,Z) 6= 0 ,

(ii) if H2(X,Z) = 0 and π1(X) is neither trivial, nor isomorphic to Z, then X
is R-equivariantly biholomorphic to a model of type NCH,

(iii) if π1(X) = 0 or π1(X) = Z, then X is R-equivariantly biholomorphic to
a model of type NCH (type NCNH) if and only if it (does not) admits a non
constant, bounded holomorphic R-invariant function.

Proof. (i) and (ii) are direct consequences of the above proposition. For (iii) note
that an R-invariant holomorphic function on X pushes down to a holomorphic
function on S. Moreover, the assumption on the fundamental group implies that
S is biholomorphic to one of the following domains C, C∗, ∆, ∆∗ or an annulus.
This implies the statement. �

Remark 6.4. Let X be a taut, Stein surface such that either π1(X) = 0 or
π1(X) = Z. Then, for different proper R-actions, the manifold X may be R-
equivariantly biholomorphic to models of different types.

As an example consider the unbounded realization of the unit ball of C2

given by X = { (u, v) ∈ C2 : |v|2 < Imu} and the two different R-actions on
X defined by

t � (u, v) := (u+ t, v), t ∗ (u, v) := (u− 2tv + it2, v − it) .

Such actions appear in [FaIa] as normal forms of parabolic elements in the auto-
morphism group of X. It is clear that the globalization with respect to the first
action is C2 and its C-quotient is C.

Note that the second R-action extends to a C-action on C2 and a simple
computation shows that C ∗ X = { (u, v) ∈ C2 : Imu > (Im v)2 − (Re v)2 }.
Moreover, one checks that X is orbit-connected in C ∗X. Then Lemma 1.5 in
[CIT] implies that C ∗X is the universal globalization with respect to the local
C-action on X induced by the second R-action. Let H = { z ∈ C : 0 < Imz}.
One has a C-equivariant biholomorphism

Ψ : C×H → C ∗X , (λ, u) → λ ∗ (u, 0) = (u+ iλ2,−iλ) .

Therefore the C-quotient of C ∗X is biholomorphic to H. This completes the
example in the case when the fundamental group is trivial.
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A similar example with fundamental group isomorphic to Z is as follows.
Since Ψ is a biholomorphism, X ′ := Ψ−1(X) = { (u, v) ∈ C2 : Im v > 2(Imu)2}
is also a model for the unit ball of C2. On this model the above actions look like

t � (u, v) := (u, v + t), t ∗ (u, v) := (u+ t, v) .

Then the Z-action on X ′ defined by n · (u, v) := (u+ n, v + n) commutes with
both the R-actions. Thus such R-actions push down to proper R-actions on the
quotient X ′/Z, whose fundamental group is Z. Observe that X ′/Z is taut by
Prop. 2.5 and it is Stein by [FaIa]

Finally note that the restrictions X ′ → C and X ′ → H to X ′ of the
projections of the associated holomorphic principal C-bundles are Z equivariant.
Thus they factorize to the restrictions X ′/Z → C∗ and X ′/Z → ∆∗ = H/Z
to X ′/Z of the projections of the holomorphic principal C-bundles associated
to the pushed down R-actions on X ′/Z. Since the bases of this bundles are C∗

and ∆∗, this shows that also in this case the type of X depends on the chosen
R-action. �

7. taut Hartogs domains

As an application of the given classification, we give necessary and sufficient
conditions for tautness of (non-complete) Hartogs domains over a non compact
Riemann surface S. A complete Hartogs domain over S is given by

{ (u, p) ∈ C× S : |u| < e−b(p) } ,
with b : S → R ∪ {−∞} an upper semicontinuous function. A non-complete
Hartogs domain over S is given by

{ (u, p) ∈ C× S : ea(p) < |u| < e−b(p) } ,
where a, b : S → R∪ {−∞} are upper semicontinuous functions with a+ b < 0.

We wish to determine under which conditions on a and b such domains are
taut. A result of Thai-Duc ([ThDu]), which applies in a more general context,
implies that a complete Hartogs domain is taut if and only if S is hyperbolic and
b is a real valued, subharmonic, continuous function. The following proposition
gives a characterization of non-complete Hartogs domains (cf. [Par] for related
results).

Proposition 7.1. Let Ω = {(u, p) ∈ C × S : ea(p) < |u| < e−b(p)} be a non-
complete Hartogs domain over a non compact Riemann surface. Then Ω is taut
if and only if either
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(i) the Riemann surface S is hyperbolic, the functions a, b are continuos sub-
harmonic and max(a(p), b(p)) > −∞ for every p ∈ S, or

(ii) the Riemann surface S is not hyperbolic, b ≡ −∞ (respectively a ≡ −∞ )
and a (respectively b) is a subharmonic, non-harmonic, real-valued, continuous
function.

Proof. Consider the covering map F : C×S → C∗×S given by (z, p) → (e−iz, p).
Since the restriction of F to F−1(Ω) is a covering, from proposition 2.5 it follows
that F−1(Ω) is taut if and only if so is Ω. Note that Ω is invariant under the
S1-action defined by eiθ · (u, p) := (eiθu, p). As a consequence R acts properly
on F−1(Ω) by t · (z, p) := (z + t, p). Then Corollary 5.4 applies to show that
F−1(Ω) is taut if and only if it is a model of type NCH or NCNH, depending on
hyperbolicity of S. This implies the statement. �
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