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Abstract. We carry out a detailed study of Ξ+, a distinguished G-invariant
Stein domain in the complexification of an irreducible Hermitian symmetric

space G/K. The domain Ξ+ contains the crown domain Ξ and is naturally

diffeomorphic to the anti-holomorphic tangent bundle of G/K. The unipotent
parametrization of Ξ+ introduced in [KrOp08] and [Kro08] suggests that Ξ+

also admits the structure of a twisted bundle G×K N+, with fiber a nilpotent

cone N+. Here we give a complete proof of this fact and use it to describe the
G-orbit structure of Ξ+ via the K-orbit structure of N+. In the tube case, we

also single out a Stein, G-invariant domain contained in Ξ+\Ξ which is relevant

in the classification of envelopes of holomorphy of invariant subdomains of Ξ+.

1. Introduction

Let G/K be a non-compact, irreducible, Riemannian symmetric space. Its
Lie group complexification GC/KC is a Stein manifold and left translations by ele-
ments of G are holomorphic transformations of GC/KC. In [AkGi90], Akhiezer and
Gindikin introduced the crown domain Ξ in GC/KC, with the aim of determining
a complex G-manifold whose analytic properties would reflect the harmonic anal-
ysis of G/K and the representation theory of G. Since then its complex analytic
properties have been extensively studied by several authors.

In the Hermitian case, Krötz and Opdam recently introduced two Stein G-
invariant domains Ξ+ and Ξ− in GC/KC, with Ξ+ ∩ Ξ− = Ξ, which are maximal
with respect to properness of the G-action on GC/KC. The relevance of Ξ and of the
domains Ξ+ and Ξ− for the representation theory of G was underlined in Theorem
1.1 in [Kro08]. Here we carry out a detailed analysis of the G-orbit structure of
the domain Ξ+. Since Ξ+ and Ξ− are G-equivariantly anti-biholomorphic, such
analysis applies to Ξ− as well.

Let G/K be an irreducible Hermitian symmetric space and let GC/Q be its
compact dual symmetric space, which is denoted by GC/Q when endowed with the
opposite complex structure. The complexification GC/KC admits an equivariant
holomorphic embedding as the open dense GC-orbit

GC/KC ∼= GC · x0 ⊂ GC/Q×GC/Q

through x0 := (eQ, eQ) ∈ GC/Q×GC/Q, with the GC-action defined by

g · (x, y) := (g · x, σ(g) · y).

Here σ denotes the conjugation of GC with respect to G. Let π1 : GC/Q×GC/Q→
GC/Q be the projection onto the first factor. The G-invariant domain Ξ+ is defined
by

Ξ+ := (π1)−1(D) ∩GC · x0,
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where D := G · eQ is the Borel embedding of G/K in GC/Q. It contains the crown
domain as the subset D ×D and the G-action on Ξ+ is proper.

The above definition leads to a natural G-equivariant diffeomorphism between
the anti-holomorphic tangent bundle of G/K and Ξ+, via the map

G×K p0,1 → Ξ+, [g, Z] 7→ g expZ · x0.

Also note that Ξ+ and Ξ− := π−1
2 (D)∩GC·x0. areG-equivariantly anti-biholomorphic,

since the G-equivariant anti-biholomorphism

GC/Q×GC/Q→ GC/Q×GC/Q , (x, y)→ (y, x) ,

maps Ξ+ onto Ξ−.
An alternative construction of the domain Ξ+ was given in [Kro08] and [KrOp08],

via its unipotent parametrization. In the notation of Section 2, let λ1, . . . , λr be long
strongly orthogonal real restricted roots, and let Ej ∈ gλj , for j = 1, . . . , r, be root
vectors normalized as in (5) and Definition 2.2. Consider the closed hyperoctant

Λx
r := spanR≥0{E1, . . . , Er}

and the subcone N+ := AdKΛx
r of the nilpotent cone of g. Then

Ξ+ = G exp i
⊕
j

(−1,∞)Ej · x0 = G exp iΛx
r · x0.

It was also suggested that the map

ψ : G×K N+ → Ξ+, [g,X] 7→ g exp iX · x0

is a G-equivariant homeomorphism.

The first goal in this paper is to give a complete and selfcontained proof of this
fact. The main difficulty is to show that the map ψ is open. This is not a priori
obvious because at every point in the slice exp iΛx

r · x0 ⊂ Ξ+, lying on a singular
G-orbit, the tangent spaces to the orbit and to the slice itself do not span the whole
tangent space to Ξ+.

Consider the K-invariant fiber P := exp p0,1 ·x0 in the domain Ξ+ ∼= G×K p0,1.
We first use a topological argument (Lemma 5.2) to show that our goal is equivalent
to show that the projection

Λx
r → P/K, X 7→ G exp iX · x0 ∩ P ,

is proper. Next, we check that such a projection is proper by using a novel decom-
position inside GC relating a unipotent element exp iX, with X ∈ Λx

r , to an element
in expZ KC, with Z ∈ p0,1, lying on the same G-orbit (see Lemma 5.5 and Thm.
5.7). Possibly, a similar argument leads to a characterization of smooth twisted
bundles in the context of proper G-actions on differentiable manifolds considered
by R. S. Palais and C.-L. Terng in [PaTe87].

In view of the bundle structure defined by ψ, the G-orbit structure of Ξ+ is
completely determined by the AdK-orbit structure of the nilpotent cone N+. In
Section 6 we show that a fundamental domain for the action of the Weyl group
WK(Λx

r) on the hyperoctant Λx
r is a perfect slice for the K-action on the cone N+

and hence it determines a perfect slice for the G-action on Ξ+. Moreover, one has
a one-to-one correspondence between the orbit strata of the WK(Λx

r)-action on the
closed hyperoctant Λx

r and the orbit strata of the G-action on Ξ+.
The second goal of the paper is to describe some G-invariant subdomains of

Ξ+ which are relevant for a classification of envelopes of holomorphy of G-invariant
subdomains of Ξ+. It was observed in [GeIa08] that in the rank-one case, beside
the crown Ξ, the domain Ξ+ contains another distinguished G-invariant subdomain
with the peculiarity that its boundary contains no principal G-orbits of GC/KC (i.e.
closed orbits of maximal dimension).
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In the tube case SL(2,R)/SO(2,R), such a subdomain S+ arises from the
compactly causal structure of a symmetric G-orbit in the semisimple boundary of
Ξ and it is Stein. It turns out that every Stein, invariant, proper subdomain of Ξ+

is either contained in Ξ or in S+. In the non-tube case SU(n, 1)/U(n), such a
subdomain Ω+ is not Stein and contains no invariant Stein subdomains. It follows
that every Stein, invariant, proper subdomain of Ξ+ is contained in Ξ.

Here we prove that the domains S+ and Ω+ have higher rank analogues in-
side Ξ+. In a forthcoming paper we will show that, like in the rank-one case, every
Stein invariant proper subdomain of Ξ+ is contained either in Ξ or in S+, in the
tube case, while it is contained in Ξ in the non-tube case. We will also characterize
the envelopes of holomorphy of G-invariant domains in Ξ+.

The paper is organized as follows. In Section 2 we set up the notation and
collect some basic facts about Hermitian symmetric spaces. In Section 3 we recall
the definition of the domain Ξ+ and of its unipotent model. In Section 4 we define
the Weyl group WK(Λx

r) of the cone Λx
r and relate it to the Weyl group WK(a). In

Section 5 we prove that the map

ψ : G×K N+ → Ξ+, [g,X] 7→ g exp iX · x0

is a G-equivariant homeomorphism. In Section 6 we give an alternative proof of
the above fact for the symmetric spaces SL(2,R)/SO(2,R) and Sp(2,R)/U(2), by
using global G-invariant functions on GC/KC. In Section 7 we study the G-orbit
structure of Ξ+ by means of the AdK-orbit structure of Λx

r . Finally, in Section 8
we determine some distinguished G-invariant domains in Ξ+.

2. Preliminaries

Let G/K be an irreducible Hermitian symmetric space of the non-compact
type. We may assume G to be a connected, non-compact, real simple Lie group
contained in its simple, simply connected universal complexification GC, and K to
be a maximal compact subgroup of G. Denote by g and k the Lie algebras of G
and K respectively. Denote by θ both the Cartan involution of G with respect to
K and the derived involution of g. Let g = k ⊕ p be the corresponding Cartan
decomposition. Let a be a maximal abelian subspace in p. The rank of G/K is by
definition r = dim a. The adjoint action of a decomposes g as

g = a⊕ Zk(a)⊕
⊕

α∈∆(g,a)

gα,

where Zk(a) is the centralizer of a in k, the joint eigenspace gα = {X ∈ g | [H,X] =
α(H)X, H ∈ a} is the α-restricted root space and ∆(g, a) consists of those α ∈ a∗

for which gα 6= {0}. A set of simple roots Πa in ∆(g, a) uniquely determines a set
of positive restricted roots ∆+(g, a) and an Iwasawa decomposition of g

g = k⊕ a⊕ n, where n =
⊕

α∈∆+(g,a)

gα.

The restricted root system of a Lie algebra g of Hermitian type is either of type Cr
(if G/K is of tube type) or of type BCr (if G/K is not of tube type) (cf. [Moo64]),
i.e. there exists a basis {e1, . . . , er} of a∗ for which

∆(g, a) = {±2ej , 1 ≤ j ≤ r, ±ej ± ek, 1 ≤ j 6= k ≤ r}, for type Cr,

∆(g, a) = {±ej , ±2ej , 1 ≤ j ≤ r, ±ej ± ek, 1 ≤ j 6= k ≤ r}, for type BCr.
Since g admits a compact Cartan subalgebra t ⊂ k ⊂ g, there exists a set of r long
strongly orthogonal restricted roots {λ1, . . . , λr} (such that λj ± λk 6∈ ∆(g, a), for
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j 6= k), which are restrictions of real roots with respect to a maximally split θ-stable
Cartan subalgebra l of g extending a. Choosing as simple roots

Πa = {e1 − e2, . . . , er−1 − er, 2er}, for type Cr, (1)

Πa = {e1 − e2, . . . , er−1 − er, er}, for type BCr. (2)
one has

λ1 = 2e2, . . . , λr = 2er. (3)
In both cases, the Weyl group WK(a) = NK(a)/ZK(a) is isomorphic to the group
of signed permutations of {e1, . . . , er}, and therefore of {λ1, . . . , λr}. Denote by
WK(a)+ the subgroup of WK(a) isomorphic to the the group of ordinary permuta-
tions of {e1, . . . , er} (it is the subgroup generated by the reflections in the first r−1
simple restricted roots). Let {A1, . . . , Ar} be the dual basis of {e1, . . . , er}. The
action of WK(a) and of WK(a)+ on a is by signed permutations and by ordinary
permutations of {A1, . . . , Ar}, respectively.

For j = 1, . . . , r, choose Ej ∈ gλj such that the sl(2)-triple

{Ej , θEj , Aj := [θEj , Ej ]} (4)

is normalized as follows

[Aj , Ej ] = 2Ej , [Aj , θEj ] = −2θEj . (5)

Since the roots {λ1, . . . , λr} are strongly orthogonal and g admits a compact Cartan
subalgebra, the vectors {A1, . . . , Ar} form an orthogonal basis of a (with respect to
the restriction of the Killing form) and

[Ej , Ek] = [Ej , θEk] = 0, [Aj , Ek] = λk(Aj)Ek = 0, for j 6= k. (6)

In other words, the above sl(2)-triples commute with each other.

Observe that relations (5) and (4) determine the vectors Ej only up to sign, while
on the other hand the vectors Aj are independent of those signs. Next, we are going
to show that, once a complex structure J0 of G/K is fixed, there is a unique choice
of the vectors Ej, which is compatible with J0 (see Definition 2.2 below).

Identify p with the tangent space to G/K at the base point eK. An invariant
complex structure on G/K is uniquely determined by its restriction to p, and it
is given by J0 := adZ0 |p, where Z0 is an element in the one-dimensional center of
k. Once a complex structure is fixed, one can show that J0 and −J0 are the only
invariant complex structures on G/K.

Let t ⊂ k be a compact Cartan subalgebra of g and let ∆(gC, tC) denote the
root system of gC under the adjoint action by tC. A root α ∈ ∆(gC, tC) is said to
be compact if the root space gα lies in kC and non-compact if it lies in pC. There
is a choice of positive roots in ∆(gC, tC) for which the positive non-compact roots
satisfy α(−iZ0) = 1 (see [KoWo65]).
Under the above choice, the holomorphic tangent space

p1,0 = {W ∈ pC | J0(W ) = iW}
is spanned by the root spaces of the non-compact positive roots.

Now, to the vectors {E1, . . . , Er} one can associate a compact Cartan subalgebra
of g

t = s⊕ c,

where c := spanR{T1, . . . , Tr}, with Tj := Ej + θEj , and s is a Cartan subalgebra
of Zk(a), and vectors in pC

Wj :=
1
2

((Ej − θEj)− iAj) , W−j = W j . (7)
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Lemma 2.1.
(i) For j = 1, . . . , r the triples {Wj ,W−j , Tj} generate r commuting complex Lie
subalgebras of gC, isomorphic to sl(2,C).
(ii) For j = 1, . . . , r, the vectors Wj span the root spaces g

eλj , where λ̃1, . . . , λ̃r are
the strongly orthogonal, non-compact, imaginary roots in ∆(gC, tC), defined by

λ̃j(Tj) = 2i
λ̃j(Tk) = 0 if j 6= k

λ̃j |s = 0 .

Proof. (i) One can easily verify that for j = 1, . . . , r

[Tj ,Wj ] = 2iWj , [Tj ,W−j ] = −2iW−j , [Wj ,W−j ] = −iTj , (8)

and for j 6= k

[Wj ,Wk] = [Wj ,W−k] = 0, [Tj ,Wk] = [Tj ,W−k] = 0 . (9)

(ii) Since Zk(a) acts trivially on the one-dimensional restricted root spaces g±λj ,
for every S ∈ s one has

[S,Wj ] = [S,W−j ] = 0, j = 1, . . . , r.

This, together with relations (8) and (9), shows that the W±j span the root spaces
g±

eλj for the adjoint action of tC on gC. Moreover, the roots λ̃1, . . . , λ̃r are strongly
orthogonal in ∆(gC, tC), and they are imaginary (i.e. they assume purely imaginary
values on t). Finally, they are non-compact roots, since the root vectors W±j lie
in pC. �

Definition 2.2. We say that the choice of the vectors Ej is compatible with the
complex structure J0 if one of the following equivalent sets of conditions is fulfilled
(i) λ̃j(−iZ0) = 1,
(ii) [−iZ0,Wj ] = Wj,
(iii) Wj ∈ p1,0,
for all j = 1, . . . , r.

Remark 2.3. Observe that changing the sign of a vector Ej corresponds to chang-
ing the sign of Tj = Ej + θEj and likewise of the root λ̃j . As a result, the vector

1
2

((−Ej − (−θEj))− iAj) ∈ g−
eλj

no longer lies in p1,0.

We conclude this discussion by expressing the “compatibility condition” of
Definition 2.2 entirely in terms of the sl(2)-triples {Ej , θEj , Aj}. Observe that
the central element Z0 ∈ Z(k) lies in every compact Cartan subalgebra of g. In
particular it lies in t = s⊕ c and can be written as

Z0 = S +
r∑
j=1

ajTj , for S ∈ s, aj ∈ R. (10)

Lemma 2.4. The choice of the vectors Ej is compatible with the complex structure
J0 if one of the following equivalent conditions is fulfilled:
(i) Z0 = S + 1

2

∑
Tj,
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(ii) the action of adZ0 on p satisfies

[Z0, Ej − θEj ] = Aj , [Z0, Aj ] = −(Ej − θEj), for j = 1, . . . , r.

In particular, it defines a complex structure on each pj := spanR{Aj , Ej − θEj}.

Proof. Let Wj , for j = 1, . . . , r, be the vectors defined in (7) and Z0 the vector in
(10). One easily verifies that

[Z0,Wj ] = aj(Aj + i(Ej − θEj)).

Hence conditions (i) of Definition 2.2 hold, i.e.

[Z0,Wj ] = iWj , j = 1, . . . , r,

if and only if aj = 1
2 , for all j, as wished.

For the equivalence of (i) and (ii), observe that the algebra Zk(a) acts trivially
on the one-dimensional restricted root spaces gλj and g−λj , and therefore on the
sl(2)-triples defined in (4). Then relations (5) and (6) yield

[Z0, Ej − θEj ] = 2ajAj and [Z0, 2ajAj ] = −4a2
j (Ej − θEj),

showing that adZ0 stabilizes the subspaces pj . Finally, one has that

[Z0, Ej − θEj ] = Aj , [Z0, Aj ] = −(Ej − θEj)

if and only if aj = 1
2 , for all j = 1, . . . , r. �

Remark 2.5. A geometric interpretation of Definition 2.2 and Lemma 2.4 is the
following: the compatibility conditions on the vectors Ej guarantee that the r-
dimensional polydisk associated to the r commuting sl(2) triples in g is holomor-
phically embedded in the Hermitian symmetric space G/K.

More precisely, consider the lie algebra homomorphism sl(2,R) → g mapping(
0 1
0 0

)
to Ej and

(
1 0
0 −1

)
to Aj . This induces an embedding of symmetric

spaces SL(2,R)/SO(2,R) → G/K. Endow SL(2,R)/SO(2,R) with the unique

invariant complex structure defined by 1
2

(
0 1
−1 0

)
. Then such an embedding is

holomorphic if and only if the sign of the vector Ej is compatible. Otherwise it is
anti-holomorphic.

By the above discussion and Koranyi-Wolf’s Theorem (see Thm. A.3.5 in [HiOl97],
p.256), one has the following characterization of Z0.

Proposition 2.6. Fix the vectors Ej as in Definition 2.2. Then the following
conditions are equivalent
(i) G/K is of tube type, i.e. ∆(a, g) si reduced of type Cr,
(ii) Z0 = 1

2

∑
j Tj.
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3. The domain Ξ+.

LetG/K be an irreducible Hermitian symmetric space of the non-compact type.
Let J0 be the complex structure of p, and let p1,0 and p0,1 be the ±i-eigenspaces
of J0 in pC. Set P := exp p0,1 and Q := KCP . Then Q is a maximal parabolic
subgroup of GC, the quotient GC/Q is the compact dual symmetric space of G/K
and the G-equivariant map

G/K → GC/Q, g → g · eQ

defines an open holomorphic embedding of G/K as the G-orbit D := G · eQ.
Denote by σ the antiholomorpic involution of GC defining G. Then σ(P ) =

exp p1,0 and σ(Q) = KCσ(P ) is the opposite parabolic subgroup, which satisfies
Q ∩ σ(Q) = KC. Denote by GC/Q the compact dual symmetric space endowed
with the opposite complex structure, i.e. the complex structure which makes the
G-equivariant map

GC/Q→ GC/σ(Q), gQ→ σ(gQ) = σ(g)σ(Q)

a biholomorphism. Let GC act on GC/Q×GC/Q by

g · (x, y) := (g · x, σ(g) · y),

and set x0 := (eQ, eQ). Then the map

GC/KC → GC/Q×GC/Q, g 7→ g · x0

defines an open dense GC-equivariant holomorphic embedding of GC/KC into the
product GC/Q×GC/Q , as the orbit through x0. Let π1 : GC/Q×GC/Q→ GC/Q
denote the projection onto the first factor. The domain Ξ+ is defined as follows

Ξ+ := π−1
1 (D) ∩GC · x0.

As Ξ+ is a subdomain of GC ·x0, it can be regarded as an open G-invariant domain
in GC/KC.

Recall that the anti-holomorphic tangent bundle of G/K is G-equivariantly
diffeomorphic to the twisted bundle G×K p0,1. The following fact holds true.

Lemma 3.1. The domain Ξ+ is diffeomorphic to the anti-holomorphic tangent
bundle of G/K via the map

φ : G×K p0,1 → Ξ+, (g, Z)→ g expZ · x0.

Proof. Let L be Lie group, let H be closed subgroup of L and let X be an L-
manifold. Assume there exists a differentiable L-equivariant map f : X → L/H.
Then the fiber F := f−1(eH) is an embedded H-manifold and it is a standard fact
that the map

L×H F → X, [g, x] 7→ g · x
is an L-equivariant diffeomorphism (see, e.g. [DuKo00], p. 102).

Since the isotropy subgroup of eQ in GC/Q is Q = KCP = PKC and the
isotropy subgroup of x0 in GC/Q × GC/Q is KC, the fiber F := π−1

1 (eQ) is given
by P · x0. As a consequence the map p0,1 → F , defined by Z → expZ · x0, is a
biholomorphism. Now the statement follows from the above remark. �

It should be pointed out that the above map is just a diffeomorphism and not a
biholomorphism, for the simple reason that the symmetric space G/K is a complex
submanifold of its antiholomorphic tangent bundle (embedded as the zero section),
while it is a totally real submanifold of Ξ+.
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Also note that Ξ+ and Ξ− := π−1
2 (D) ∩ GC · x0 are G-equivariantly anti-

biholomorphic, since the G-equivariant anti-biholomorphism

GC/Q×GC/Q→ GC/Q×GC/Q , (x, y)→ (y, x) ,

maps Ξ+ onto Ξ−. Also note that the restriction of such a map to GC ·x0
∼= GC/KC

coincides with the anti-holomorphic G-equivariant involution induced by σ.

An alternative construction of the domain Ξ+ was given in [Kro08], p.286, and
[KrOp08], Sect.8, via the unipotent parametrization. More precisely, in the notation
of Section 2, choose vectors Ej ∈ gλj , for j = 1, . . . , r, compatible with the complex
structure J0 of G/K (see Definition 2.2). Define

Λr := spanR{E1, . . . , Er} and Λx
r := spanR≥0{E1, . . . , Er}. (11)

Then

Ξ+ = G exp i
r⊕
j=1

(−1,∞)Ej · x0 = G exp iΛx
r · x0.

After defining the subconeN+ := AdKΛx
r of the nilpotent cone of g, it was suggested

that the map
ψ : G×K N+ → Ξ+, [g,X] 7→ g exp iX · x0

is a G-equivariant homeomorphism. We give a complete proof of this fact in Sec-
tion 5.

4. The Weyl group WK(Λr)

Resume the notation of Section 2. For j = 1, . . . , r, choose vectors Ej ∈ gλj

compatible with the complex structure J0 of G/K (see Definition 2.2), and define
Λr and Λx

r as in (11).

Consider the Adjoint action of K on g and define

ZK(Λr) := {k ∈ K : AdkX = X, X ∈ Λr}, NK(Λr) := {k ∈ K : AdkΛr = Λr},

WK(Λr) := NK(Λr)/ZK(Λr) .

Lemma 4.1.
(i) ZK(Λr) = ZK(a).
(ii) NK(Λr) is a subgroup of NK(a), implying that WK(Λr) is a subgroup of WK(a).
(iii) As a subgroup of WK(a), the group WK(Λr) coincides with WK(a)+, acting on
a by permutations of {A1, . . . , Ar}. Moreover, WK(Λr) acts on Λr by permutations
of {E1, . . . , Er}.

Proof. (i) Let k ∈ ZK(Λr) and X ∈ Λr be arbitrary elements. Then AdkX = X
implies AdkθX = θX and Adk[θX,X] = [θX,X]. Since a is generated by the
vectors Aj = [θEj , Ej ], the inclusion ZK(Λr) ⊂ ZK(a) holds true.
In order to show the opposite one, observe that every restricted root space is in-
variant under the Adjont action of ZK(a) on g. Since the Adjoint action of K is
isometric with respect to the inner product Bθ(X,Y ) := B(X, θY ), for X,Y ∈ g,
and the root spaces g±λj are one-dimensional, one has that Adk(Ej) = ±Ej , for
j = 1, . . . , r. We claim that AdkEj = Ej , for every k ∈ ZK(a) and j = 1, . . . , r. Let
Wj = 1

2

(
(Ej − θEj)− iAj

)
be the vector defined in (7). Recall that

[−iZ0,Wj ] = ±Wj ,
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depending on whether the choice of Ej is compatible with the complex structure
determined by Z0 (see Definition 2.2). If k is an arbitrary element in ZK(a), by
applying Adk to both terms in the above equation, we obtain

[−iZ0,AdkWj ] = ±AdkWj ,

where

AdkWj =
1
2
(
Adk(Ej − θEj)− iAdkAj

)
=

1
2
(
(AdkEj − θ(AdkEj))− iAj

)
.

Then Remark 2.3 now implies that indeed for j = 1, . . . , r

Adk(Ej) = Ej , for k ∈ ZK(a).

(ii) Let X ∈ Λr and k ∈ NK(Λr) be arbitrary elements. Then AdkX = Y , for some
Y ∈ Λr, and likewise AdkθX = θY and Adk[θX,X] = [θY, Y ]. Since a is generated
by the vectors Aj = [θEj , Ej ], there is an inclusion NK(Λr) ⊂ NK(a). Since
ZK(a) = ZK(Λr), there is an induced inclusion of finite groups WK(Λr) ↪→WK(a).

(iii) We already showed that WK(Λr) ⊂ WK(a). Next we show that WK(Λr)
contains the subgroup WK(a)+. Recall that the subgroup WK(a)+ acts on a by
permutations of A1, . . . , Ar and on a∗ by permutations of the basis vectors e1, . . . , er
defined in Section 2. As a result, the corresponding elements in K permute the root
spaces gλ1 , . . . , gλr and thus normalize Λr. This proves the inclusion

WK(a)+ ⊂WK(Λr).

In order to prove equality, assume by contradiction that there exists k ∈ NK(Λr)
lying in WK(a) \ WK(a)+. Since WK(a) acts on a by signed permutations of
A1, . . . , Ar, this means that there exist indices j, h ∈ {1, . . . , r} for which Adk(Aj) =
−Ah. By applying Adk to both terms of the relation [Aj , Ej ] = 2Ej , we obtain

[Ah,AdkEj ] = −2AdkEj .

We also have [Al,AdkEj ] = 0, for all l 6= h: indeed, we can write

[Al,AdkEj ] = Adk[Adk−1Al, Ek]

and, since k normalizes a, we have that Adk−1Al ∈ {±Am}, for some m 6= j. Thus

Adk[Adk−1Al, Ej ] = Adk[±Am, Ej ] = 0,

as claimed. It follows that AdkEj ∈ g−λh , contradicting the assumption that k
normalizes Λr. So WK(a)+ = WK(Λr), as claimed.

To prove that WK(Λr) acts on Λr by permutations of E1, . . . , Er, assume by
contradiction that there exists k ∈ NK(Λr) and indices h, j ∈ {1, . . . , r} such that

AdkEj = −Eh,
and consequently

AdkθEj = −θEh, AdkAj = Ah.

From the compatibility condition

[−iZ0,Wj ] = Wj

one obtains then
[−iZ0,AdkWj ] = AdkWj

where

AdkWj =
1
2

(Adk(Ej − θEj)− iAdkAj) =
1
2

(−(Eh − θEh)− iAh).

But this contradicts Remark 2.3. In conclusion,

AdkEj = Eh,

and WK(Λr) acts on Λx
r by permutations of E1, . . . , Er , as claimed. �
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Corollary 4.2. As a consequence of the previous lemma, the group WK(Λr) pre-
serves the subset Λx

r. Hence

WK(Λr) := NK(Λr)/ZK(Λr) = NK(Λx
r)/ZK(Λx

r) .

5. The domain Ξ+ as a nilpotent cone bundle

Consider the nilpotent cone in g given by N+ := {AdkX : k ∈ K and X ∈
Λx
r}. In [KrOp08] and [Kro08], Rem.4.12, it was suggested that the domain Ξ+ is

homeomorphic to the twisted product G×K N+. For the sake of completeness we
give a proof of this fact.

5.1. Some topological lemmas. We first need a number of lemmas, which are of
topological nature. Our setting is as follows. Let G be a connected Lie group acting
properly on a Hausdorff topological space Z, and let K be a compact subgroup of
G. Let N be a Hausdorff topological K-space. Assume that there exists a K-
equivariant continuous map j : N → Z such that the continuous map

ψ : G×K N → Z, [g, x]→ g · j(x)

is bijective. Denote by Σ a closed subset of N such that K · Σ = N . We are going
to discuss necessary and sufficient conditions for ψ to be a homeomorphism.

Lemma 5.1. The following three conditons are equivalent

(i) The map ψ̃ : G× Σ→ Z, (g, x)→ g · j(x) is proper,
(ii) The map ψ̂ : G×N → Z, (g, x)→ g · j(x) is proper,
(iii) The map ψ : G×K N → Z, [g, x]→ g · j(x) is proper.

If any of the above conditions is satisfied, then ψ is a homeomorphism, the map
j : N → j(N) is a homeomorphism, and j(N) is closed in Z.

Proof. We first show that (i) is equivalent to (ii). Consider the commutative dia-
gram

G× Σ

��

eψ
%%KKKKKKKK

G×N bψ // Z ,

where the vertical arrow is the inclusion map. Being Σ closed in N , such a map is
proper. Therefore, if ψ̂ is proper, so is ψ̃. Conversely, assume that ψ̃ is proper and
let C be a compact subset of Z. We claim that the closed subset ψ̂−1(C) coincides
with K · ψ̃−1(C), where the K-action on G×N is given by k · (g, x) := (gk−1, k ·x).
In order to see that ψ̂−1(C) ⊂ K · ψ̃−1(C), let (g, x) be an element in ψ̂−1(C) and
choose k ∈ K and x′ ∈ Σ such that x = k · x′. Then gk · j(x′) = g · j(x) ∈ C,
implying that (gk, x′) ∈ ψ̃−1(C). Thus (g, x) = k · (gk, x′) belongs to K · ψ̃−1(C).
Being the opposite inclusion straightforward, the claim follows.

Since ψ̃−1(C) is compact by assumption, it follows that ψ̂−1(C) = K · ψ̃−1(C)
is compact (cf. [Bou89], Cor. 1, p. 251). This concludes the proof of the first
equivalence.

In order to show that (ii) is equivalent to (iii), consider the commutative dia-
gram
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G×N
π

��

bψ
&&LLLLLLLL

G×K N
ψ

// Z ,

where π is the natural quotient with respect to the twisted K-action. Being K
compact, such a map is proper (cf. [Bou89], Prop. 2, p. 252). Therefore, if ψ
is proper, so is ψ̂. Conversely, assume that ψ̂ is proper and let C be a compact
subset of Z. Then the inverse image ψ−1(C) coincides with π(ψ̂−1(C)). Thus it is
compact, showing that ψ is proper and concluding the proof of the lemma. �

Note that assuming j : Σ→ Z proper does not imply G× Σ→ Z proper. For
instance, let G = R act on R2 by t · (x, y) = (t + x, y), set N = Σ := { s ∈ R :
s ≤ 0 or s > 1} and define j : Σ → R2 by j(s) := (0, s), for s ∈ (−∞, 0], and
j(s) := (ln(s − 1), s − 1), for s ∈ (1,+∞). Then ψ : R × Σ → R2 is continuous
and bijective but it is not a homeomorphism. In this example Σ ∼= j(Σ) is a
non-connected, closed submanifold (with boundary) of Z. In higher dimension,
e.g. dimR Z = 3 one can constuct a similar example with Σ a contractible, closed
submanifold (with boundary) of Z.

Now we also assume that Z has the structure of a G-equivariant fiber bundle,
i.e. that there exists a closed topological K-subspace P of Z such that the map

G×K P → Z, [g, p]→ g · p
is a homeomorphism. Let π : P → P/K be the canonical projection.

Lemma 5.2. If the map q : Σ → P/K, given by x → π
(
G · j(x) ∩ P

)
is proper,

then ψ : G×K N → Z, [g, x]→ g · j(x) is a homeomorphism.

Proof. By Lemma 5.1, it is sufficient to show that the map ψ̃ : G×Σ→ Z is proper.
Let {(gn, xn)}n be a sequence in G×Σ, with gn ·j(xn)→ z0. Choose {(hn, pn)}n in
G×P such that gn ·j(xn) = hn ·pn. Being the canonical projection G×P → G×KP
proper (cf. [Bou89], Prop. 2, p. 252), the map G× P → Z, given by (g, z)→ g · z,
is proper. Thus, by passing to a subsequence if necessary, we may assume that
(hn, pn) → (h0, p0). In particular, q(xn) := π(G · j(xn) ∩ P ) = π(pn) → π(p0).
Since the map q is proper by assumption, by passing to a subsequence if necessary,
one has that xn → x0, for some x0 ∈ Σ. Thus j(xn)→ j(x0). By the properness of
the G-action, the map G×Z → Z×Z, given by (g, z)→ (z, g · z), is proper as well.
Therefore, the sequence {(gn, xn)}n converges to (g0, x0), for some g0 in G. As a
result the map ψ̃ : G × Σ → Z is proper, and the statement follows from Lemma
5.1. �

As a matter of fact, the converse of the above lemma holds true as well. Indeed
if ψ : G×KN → Z, [g, x]→ g·j(x) is a homeomorphism, then Z/G is homeomorphic
to N/K, as well as to P/K, being Z homeomorphic to G×K P . Therefore one has
a commutative diagram

Σ −→ G×K N −→ Z

↘ ↓ ↓

N/K −→ P/K ,

where the map N/K → P/K is a homeomorphism. Being Σ closed in N , the
restriction Σ → N/K of the natural projection G ×k N → N/K is proper. Hence
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the map q : Σ → P/K, x → π(G · j(x) ∩ P ), given in the above diagram as the
composition of proper maps, is proper, as claimed.

Also note that, being Z connected by assumption, if ψ is a homeomorphism and
K is connected, then N is necessarily connected. Indeed, in this case the principal
bundle G × N → G ×K N has connected base and fibers. Thus the total space
G×N is connected, implying that N is connected.

For later use we also give the following corollary.

Corollary 5.3. Assume there exists a continuous, G-invariant function f : Z → R
such that f ◦ j|Σ : Σ→ R is proper. Then ψ is a homeomorphism.

Proof. By Lemma 5.1, it is sufficient to show that the map

ψ̃ : G× Σ→ Z, (g, x)→ g · j(x)

is proper. Let {(gn, xn)}n be a sequence in G×Σ such that {gn · j(xn)}n converges
to an element z0 in Z. We need to show that, by replacing it with a subsequence
if necessary, the sequence {(gn, xn)}n converges in G × Σ. Let U be a compact
neighborhood of f(z0) in R. By assumption, the set V := (f◦j|Σ)−1(U) is a compact
subset of Σ. By the continuity and the G-invariance of f one has f(j(xn)) =
f(gn · j(xn))→ f(z0). Therefore xn ∈ V for n large enough. Thus, by passing to a
subsequence if necessary, {xn}n converges to an element x0 of Σ and j(xn)→ j(x0).
Finally, by the properness of the G-action, the map G × Z → Z × Z, given by
(g, z) → (z, g · z), is proper. Hence, by passing to a subsequence if necessary,
{(gn, xn)}n converges to (g0, x0), for some g0 in G. This concludes the proof. �

Remark 5.4. The function f ◦ j|Σ is proper if and only if f ◦ j is proper. Being Σ
closed in N , one implication is clear. For the converse, let C be a compact subset
of R. Then

(f ◦ j)−1(C) = K · (f ◦ j|Σ)−1(C) ,
which is compact if (f ◦ j|Σ)−1(C) is compact (cf. [Bou89], Cor. I, p. 251).

5.2. A slice in the anti-holomorphic tangent bundle. Let G/K be an irre-
ducible Hermitian symmetric space. Resuming the notation of Section 2, denote by
a+ the open positive Weyl chamber in a and by a+ its topological closure, given by

a+ := {
r∑
j=1

xjAj : x1 > · · · > xr > 0}, a+ = {
r∑
j=1

xjAj : x1 ≥ · · · ≥ xr ≥ 0}.

Define

ax := {
r∑
j=1

xjAj : xj ≥ 0, j = 1, . . . , r}.

The set a+ is a perfect slice for the Adjoint action of K on p, and

ax = WK(a)+ · a+.

Similarly, denote by (Λx
r)

+ the open positive Weyl chamber in Λx
r , and by (Λx

r)+ its
topological closure, given by

(Λx
r)

+ := {
r∑
j=1

xjEj : x1 > · · · > xr > 0}, (Λx
r)+ = {

r∑
j=1

xjEj , : x1 ≥ · · · ≥ xr ≥ 0}.

By Lemma 4.1 and Corollary 4.2, one has

Λx
r = WK(Λr) · (Λx

r)+.
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Consider the K-equivariant map

Ψ : g→ p, X 7→ [Z0, X − θX] = J0(X − θX) , (12)

where Z0 ∈ Z(k) is the element defining the complex structure J0 = adZ0 . Note
that its restriction

Ψ|Λr : Λr → a

is a linear isomorphism.

Consider also the homeomorphism

Φ : Λx
r → ax,

∑
xjEj →

1
2

∑
log(1 + xj)Aj ,

and the K-equivariant isomorphism

τ : p→ p0,1, Y → −1
2

(Y + iJ0Y ) . (13)

The isomorphism τ maps a, a slice for the AdK-action on p, onto a slice for the AdK-
action on p0,1, and induces a homeomorphism between the respective fundamental
domains a+ ⊂ a and τ(a+) in p0,1.

The next lemma is crucial for the main result of this section. It states that
in Ξ+ the nilpotent slice exp iΛx

r · x0 can be mapped continuously onto a slice in
exp p0,1 · x0, by elements of the abelian group A = exp a.

Lemma 5.5. For every X in Λx
r one has

exp(iX) = exp Φ(X) exp
(
−1

2
(Ψ(X) + iJ0Ψ(X)

)
exp iχ(X),

where χ : Λx
r → k is defined by

∑
xjEj →

∑
sinh−1

(
xj

2
√

1+xj

)
(Ej + θEj). Thus

exp(iX) · x0 = exp Φ(X) exp
(
−1

2
(Ψ(X) + iJ0Ψ(X)

)
· x0 .

Proof. Write X =
∑
xjEj as a sum of nilpotent elements in the embedded sl(2)-

triples. By Lemma 2.4 (ii), the complex structure J0 of G/K induces the invariant

complex structure defined by 1
2

(
0 1
−1 0

)
on each of the rank-one symmetric spaces

associated to the sl(2)-triples. This fact, together with the commutativity of the
sl(2)-triples in g and of the corresponding groups in GC, reduces the proof to the
case of G = SL(2,R). In this case, the equality to be proved reads as

exp i
(

0 x
0 0

)
∈ exp Φ

(
0 x
0 0

)
exp−1

2

((
x 0
0 −x

)
+ i

(
0 −x
−x 0

))
SO(2,C) .

In other words, we are left to check the following matrix identity(
1 ix
0 1

)
=
(√

1 + x 0
0

√
1 + x

−1

)(
1− x

2 ix2
ix2 1 + x

2

)
M ,

where M ∈ exp iso(2,R) ⊂ SO(2,C) is the matrix given by

M = exp i sinh−1

(
x

2
√

1 + x

)(
0 1
−1 0

)
=

1√
1 + x

(
1 + x

2 ix2
−ix2 1 + x

2

)
.

�

Lemma 5.6.
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(i) Let X be an element in (Λx
r)+. Then

ZK(X) = ZK(Ψ(X)) = ZK(Φ(X)) .

(ii) Let X and X ′ be elements in (Λx
r)+ such that

Ψ(X ′) = AdkΨ(X), for some k ∈ K.

Then X ′ = X and k ∈ ZK(X).

Proof. (i) We begin by proving that ZK(X) = ZK(Ψ(X)). Since the map Ψ(X) =
[Z0, X − θX] defined in (12) is K-equivariant, there is an inclusion

ZK(X) ⊂ ZK(Ψ(X)).

We prove the opposite one by showing that an element k ∈ ZK(Ψ(X)) centralizes
both X − θX and X + θX. From

[Z0, X − θX] = Adk[Z0, X − θX] = [Z0,Adk(X − θX)]

and the fact that adZ0 is bijective on p (it is a complex structure), we obtain that
k ∈ ZK(X−θX). Before showing that k ∈ ZK(X+θX), we make a small digression.

Given a subset ∆ of ∆(g, a)+, the associated orbit stratum in the closure of
the Weyl chamber a+ is by definition

a+
∆ := {A ∈ a+ : β(A) = 0 if β ∈ ∆, β(A) > 0 if β ∈ ∆(g, a)+ \∆, } .

Let H be an element in a. Since GC is simply connected, the centralizer ZGC(H) of
H in GC is a connected group (see [Hum95], p.33) with Lie algebra

ZgC(H) = ZkC(a)⊕ aC ⊕
⊕

α∈∆(gC,aC)
α(H)=0

gα. (14)

Moreover, since σ(H) = H and θ(H) = −H, the group ZGC(H) is both σ and θ-
stable. As a result, if two elements H1 and H2 of a+ lie in the same orbit stratum,
then ZGC(H1) = ZGC(H2) and likewise ZK(H1) = ZK(H2).

Write X =
∑
xjEj and Ψ(X) =

∑
xjAj . Since the elements

∑
xjAj and∑√

xj
2 Aj lie in the same orbit stratum of a+, one has ZK(Ψ(X)) = ZK(

∑√
xj
2 Aj).

Moreover, since ∑√
xj
2

(Ej − θEj) = [−Z0,
∑√

xj
2
Aj ],

one also has ZK(Ψ(X)) ⊂ ZK
(∑√

xj
2 (Ej − θEj)

)
. Then the equality

ZK(Ψ(X)) = ZK(X + θX)

follows from
Adk(X + θX) =

Adk
(∑

xj(Ej + θEj)
)

= Adk[
∑√

xj
2
Aj ,

∑√
xj
2

(Ej − θEj)] =

[Adk(
∑√

xj
2
Aj),Adk(

∑√
xj
2

(Ej−θEj))] = [
∑√

xj
2
Aj ,

∑√
xj
2

(Ej−θEj)] =∑
xj(Ej + θEj) = X + θX .

Since X = 1
2 (X − θX) + 1

2 (X + θX), we conclude that

ZK(X) = ZK(Ψ(X)).

Next we show that
ZK(Ψ(X)) = ZK(Φ(X)).
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From the definition of the maps Ψ , Φ and of the roots defining a+ (cf. Sect.2) it
is clear that Ψ(X) and Φ(X) lie in the same orbit stratum of a+. Then the desired
equality follows from the above considerations.

(ii) By definition of (Λx
r)+, the elements Ψ(X) and Ψ(X ′) lie in a+, which is a perfect

slice for the AdK-action on p. Then Ψ(X ′) = Ψ(X) and k ∈ ZK(Ψ(X)) = ZK(X).
Since the map Ψ: Λr → a is injective, it follows that X ′ = X.

�

Proposition 5.7. Let G/K be an irreducible Hermitian symmetric space. Then
the map

ψ : G×K N+ → Ξ+, [g,X]→ g exp(iX) · x0

is a G-equivariant homeomorphism.

Proof. The map ψ is G-equivariant by construction. By Lemma 3.1 and Lemma
5.5, it is surjective. Recall that by Corollary 4.2, one has N+ = AdK(Λx

r)+. Hence,
in order to prove that ψ is injective it is sufficient to show that the identity

g exp iX · x0 = exp iX ′ · x0, (15)

for some g ∈ G and X,X ′ ∈ (Λx
r)+, implies

g ∈ K, and X ′ = AdgX.

By Lemma 5.5, equation (15) is equivalent to

g exp Φ(X) exp
(
−1

2
(Ψ(X) + iJ0Ψ(X))

)
· x0 =

exp Φ(X ′) exp
(
−1

2
(Ψ(X ′) + iJ0Ψ(X ′))

)
· x0 .

By Lemma 3.1 it follows that

[g exp Φ(X),−1
2

(Ψ(X) + iJ0Ψ(X))] = [exp Φ(X ′),−1
2

(Ψ(X ′) + iJ0Ψ(X ′))]

in G×k p0,1, i.e. there exists k ∈ K such that

exp Φ(X ′) = g exp Φ(X)k−1 and Ψ(X ′) = AdkΨ(X) . (16)

From the second equality in (16) and Lemma 5.6, one obtains the relations

X = X ′, and k ∈ ZK(Ψ(X)) = ZK(Φ(X)) = ZK(X),

which plugged in the first equality of (16) yield g = k. In conclusion, we have
obtained

g ∈ ZK(X), X ′ = X = AdgX,
as desired.

Next we are going to show that ψ is a homeomorphism. Since by Lemma 3.1 the
map G×KP → Ξ+, given by [g, z]→ g expZ ·z0, is a G-equivariant diffeomorphism,
Lemma 5.2 implies that it is sufficient to show that the following map is proper

q : Λx
r → (exp p0,1 · x0)/K, X → π(G exp iX · x0 ∩ exp p0,1 · x0),

where π : exp p0,1 · x0 → (exp p0,1 · x0)/K denotes the canonical projection.
So let {Xn}n be a sequence diverging in Λx

r . Then {− 1
2 (Ψ(Xn) + iJ0Ψ(Xn))}n

diverges in p0,1. Thus the sequence {exp− 1
2 (Ψ(Xn) + iJ0Ψ(Xn)) · x0}n diverges

in exp p0,1 · x0 and, by Lemma 5.5, every element exp− 1
2 (Ψ(Xn) + iJ0Ψ(Xn)) · x0

lies in G exp iXn · x0 ∩ exp p0,1 · x0. Since the projection π is proper, the sequence
{π(G exp iXn ·x0 ∩ exp p0,1 ·x0) = π(exp

(
− 1

2 (Ψ(X) + iJ0Ψ(X)) · x0

)
}n diverges in

exp p0,1 · x0/K. Thus the map q is proper, as wished. �
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From the above proposition we obtain the following consequences.

Corollary 5.8. The restriction of the map (12)

Ψ: N+ → p, Ψ(X) = [Z0, X − θX] = J0(X − θX)

is a K-equivariant homeomorphism. Likewise, the maps

N+ → p, X → X − θX
and

Ψ0,1 : N+ → p0,1, X → 1
2
(
Ψ(X) + iJ0Ψ(X)

)
are K-equivariant homeomorphisms.

Proof. The map Ψ is K-equivariant, since both adZ0 and the Cartan involution θ
commute with the Adjoint action of K. It is also surjective, since its image contains
the closure of the Weyl chamber a+. In order to show that Ψ is injective, it is enough
to consider pairs X,Adk(X ′), for some X, X ′ ∈ (Λx

r)+ and k ∈ K. Assume that
Ψ(X) = Ψ(Adk(X ′)). Then by Lemma 5.6, one obtains

X = X ′, k ∈ ZK(Ψ(X)) = ZK(X).

Hence X = Adk(X ′), as wished.
It remains to show that Ψ is proper. This follows from the fact that Ψ(X) 6= 0,

if X 6= 0, and Ψ(tX) = tΨ(X), for all real t. This implies that the image of any
divergent sequence in N+ under Ψ is a divergent sequence in p.

The second part of the statement follows directly from the fact that both
J0 : p→ p and the map p→ p0,1, given by Y → 1

2

(
Y + iJ0(Y )

)
, are K-equivariant

linear isomorphisms. �

We conclude this section with another corollary of Proposition 5.7, which will be
needed later on.

Corollary 5.9. Let U be an open subset of Λx
r. Then AdK(U) is open in the nilcone

N+.

Proof. As a consequence of Proposition 5.7, the map N+ → exp iN+ · x0 ⊂ Ξ+,
given by X → exp iX · x0, is a homeomorphism onto its (closed) image. Moreover,
it follows that

exp iAdKU · x0 = G exp iU · x0 ∩ exp iN+ · x0 .

Thus, in order to prove the statement, it is sufficient to show that G exp iU · x0 is
open in Ξ+.

For this note that Ψ(U) is an open subset in the union WK(a)+ · a+ of closures
of Weyl chambers of a. Thus AdKΨ(U) is open in p and consequently the set{

AdK
(
− 1

2
(Ψ(U) + iJ0Ψ(X))

)
: X ∈ U

}
is open in p0,1. Since the bundle map G×K p0,1 → Ξ+, given by [g, Z]→ g expZ ·x0,
a diffeomorphism, the set

V := {G exp
(
− 1

2
(Ψ(U) + iJ0Ψ(X))

)
· x0 : X ∈ U}

is open as well in Ξ+. Finally, by Lemma 5.5 the set G exp iU ·x0 coincides with V .
Hence it is open, as wished. �
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6. An example.

In this section, we give a different proof of Proposition 5.7 in the case of G =
Sp(2,R) and G = Sp(1,R) ∼= SL(2,R). This proof uses Corollary 5.3 and a global
G-invariant function f : Ξ+ → R, with the property that the map

Λx
2 → R, X → f(exp iX · x0)

is proper. As a matter of fact, the function f is the restriction of a G-invariant
function defined on all of GC/KC.

Consider the real symplectic group

G = Sp(r,R) =
{
Z =

(
A B
C D

)
∈M2r×2r(R) : tZJZ = J

}
, J :=

(
0 Ir
−Ir 0

)
and its complexification GC = Sp(r,C). By Witt’s theorem, GC acts transitively
on the Grasmannian of J-isotropic complex r-planes in C2r

Y = {x complex r-plane in C2r : J |x× x = 0 } .
By considering all possible bases of x, given as r-tuples of column vectors in C2r,
we view Y as the quotient of

Ŷ :=
{(

R1

R2

)
: R1, R2 ∈Mr×r(C), rank

(
R1

R2

)
= r,

(
tR1

tR2

)
J

(
R1

R2

)
= 0

}
by the right action of GL(r,C) defined by

M ·
(
R1

R2

)
:=
(
R1

R2

)
M−1, M ∈ GL(r,C).

Note that GC acts on Ŷ by left multiplication and that the canonical projection

Ŷ → Y,

(
R1

R2

)
→
[
R1

R2

]
is GC-equivariant.

Fix the base point x+ =
[
iIr
Ir

]
∈ Y . Then G · x+

∼= G/K, where

K =
{(

A B
−B A

)
: A+ iB ∈ U(n)

}
.

Let g = k + p be the associated Cartan decomposition of g, where

k =
{(

A B
−B A

)
: tA = −A, tB = B

}
, p =

{(
A B
B −A

)
: tA = A, tB = B

}
.

The complex structure of p is given by J0 := adZ0 , where Z0 = 1
2

(
0 In
−In 0

)
.

Under the action of J0, the complexification pC of p decomposes as the direct sum
of the ±i-eigenspaces p1,0 ⊕ p0,1, namely

p1,0 =
{(

Z iZ
iZ −Z

)
: tZ = Z,

}
, p0,1 =

{(
Z −iZ
−iZ −Z

)
: tZ = Z,

}
.

The flag manifold

Y = GC · x+
∼= GC/Q, where Q = KC exp p0,1,

is the compact dual symmetric space of G/K, and the complexification GC/KC of
G/K can be realized as a dense open orbit in the product Y × Y

GC/KC ∼= GC · x0 =
{([

R1

R2

]
,

[
S1

S2

])
∈ Y × Y :

∣∣∣∣R1 S̄1

R2 S̄2

∣∣∣∣ 6= 0
}
,
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where x0 = (x+,x+) (see [FHW05], p. 68).

Define two real G-invariant functions on GC/KC as follows

f1

([
R1

R2

]
,

[
S1

S2

])
=

∥∥∥∥∥∥∥∥
∣∣∣∣(tR1

tR2

)
J

(
S1

S2

)∣∣∣∣∣∣∣∣R1 S̄1

R2 S̄2

∣∣∣∣
∥∥∥∥∥∥∥∥

2

f2

([
R1

R2

]
,

[
S1

S2

])
=

∣∣∣∣(tR1
tR2

)
J

(
R̄1

R̄2

)∣∣∣∣ ∣∣∣∣(tS1
tS2

)
J

(
S̄1

S̄2

)∣∣∣∣∥∥∥∥∣∣∣∣R1 S̄1

R2 S̄2

∣∣∣∣∥∥∥∥2 .

A simple computation shows that for

X =



0 · · · 0 x1 · · · 0
...

...
...

. . .
...

0 · · · 0 0 · · · xr
0 · · · 0 0 · · · 0
...

...
...

...
0 · · · 0 0 · · · 0


∈ Λr,

one has

f1(exp iX · x0) = (1− x2
1) . . . (1− x2

r) and f2(exp iX · x0) = x2
1 . . . x

2
r.

For r = 2, define the G-invariant function f := 1 − f1 + f2 on GC/KC. Then, by
restricting it to exp iΛ2 · x0, one obtains a map

Λ2 → R, X = x1E1 + x2E2 → f(exp iX · x0) = x2
1 + x2

2.

which is an exhaustion function on Λx
r . This fact, together with Corollary 5.3, yields

a different proof of Proposition 5.7 for G = Sp(2,R).

A similar proof works for G = SL(2,R) = Sp(1,R), using the global G-invariant
function f2.

It would be interesting to obtain a similar global G-invariant function on
GC/KC in the higher rank case and in general for all Hermitian symmetric spaces.
In the case of Sp(r,R), for r ≥ 3, we know no global G-invariant functions whose
restrictions to exp(iΛr) · x0 define other linearly independent symmetric functions
in the ring R[x2

1, . . . , x
2
r]. Note that, as a consequence of Proposition 5.7, every sym-

metric function in R[x2
1, . . . , x

2
r] extends continuosly and G-equivariantly at least to

Ξ+ ∪ Ξ−.

7. Orbit structure of Ξ+.

By the results of the previous section, the map

ψ : G×K N+ → Ξ+, [g,X]→ g exp iX · x0

is a G-equivariant homeomorphism. Hence, every G-orbit in Ξ+ meets exp iN+ ·x0

in a K-orbit and the G-orbit structure of Ξ+ is completely determined by the K-
orbit structure of the nilpotent cone N+ = AdKΛx

r . In this section we give further
details.
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Corollary 7.1. Let X be an element in Λx
r, and let exp iX ·x0 be the corresponding

point in Ξ+. Then

Gexp iX·x0 = ZK(X) = ZK([θX,X]) .

Proof. Since exp iX · x0 = ψ([e,X]), by Proposition 5.7 one has

Gexp iX·x0 = G[e,X] = ZK(X) ,

which proves the first equality.
To prove the second equality, write X =

∑
xjEj , with xj ≥ 0, for all j. It is

clear that
Ψ(X) :=

∑
j

xjAj and [θX,X] =
∑
j

x2
jAj

belong to the same orbit stratum in ax. In particular, ZK(Ψ(X)) = ZK([θX,X]).
Since ZK(X) = ZK(Ψ(X)) (by (i) of Lemma 5.6), the rest of the statement follows.

�

The abelian subspace a is a slice for the Adjoint action of K on p. The generic
elements in a are those lying on maximal dimensional AdK-orbits, i.e.

agen = {H ∈ a : ZK(H) = ZK(a)}.
At Lie algebra level, one has

Zk(H) = a⊕ Zk(a)⊕
⊕

α(H)=0

g[α]k,

where g[α]k is the k-component of the θ-stable subspace g[α] = gα ⊕ g−α of g. The
fact that ∆(g, a) is either of type Cr or BCr, implies that

agen =
{∑

j

ajAj : aj 6= 0 and aj 6= ±al, for j, l = 1, . . . , r and j 6= l
}
. (17)

Since Λx
r is a slice for the AdK-action on N+, we define generic elements in Λx

r in
a similar way.

Definition 7.2. An element X ∈ Λx
r is generic if ZK(X) = ZK(Λx

r). The set of
generic elements in Λx

r is denoted by (Λx
r)gen.

Lemma 7.3. An element X in Λx
r is generic if and only if Ψ(X) = [Z0, X − θX]

(resp. [θX,X]) is generic in a. In particular the set (Λx
r)gen is given by

(Λx
r)gen = {

∑
j

xjEj : xj 6= 0 and xj 6= xl, for j = 1, . . . , r and j 6= l},

and is dense in Λx
r.

Proof. Write X =
∑
j xjEj , with xj ≥ 0, for all j. We already observed that Ψ(X)

and [θX,X] lie in the same orbit stratum in a. Moreover, ZK(X) = ZK(Ψ(X)), by
(i) of Lemma 5.6, and ZK(Λr) = ZK(Λx

r) = ZK(a), by Lemma 4.1. From (17) it
follows that X is generic if and only if xj 6= 0 and xj 6= xl, for j, l = 1, . . . , r and
j 6= l, as claimed �

Lemma 7.4. Let X ∈ Λx
r and k ∈ K be elements such that AdkX ∈ Λr. Then

(i) AdkX lies in Λx
r, implying that N+ ∩ Λr = Λx

r,



20 GEATTI AND IANNUZZI

(ii) there exists n ∈ NK(Λr) such that AdkX = AdnX.
In other words, the intersection AdKX ∩ Λr, of the AdK-orbit of X with Λr, is
given by the WK(Λr)-orbit of X in Λx

r.

Proof. (i) We first consider the case when k is an element of NK(a) and we set
n := k. Then Adn acts on a by signed permutations of the Aj .

Claim. If for some indices i, h ∈ {1, . . . , r} one has Adn(Ai) = Ah, then Adn(Ei) ∈
gλh ; if Adn(Ai) = −Ah, then Adn(Ei) ∈ g−λh .
Proof of the claim. From [Ai, Ei] = 2Ei, by applying Adn to both terms of the
equation we obtain

[AdnAi,AdnEi] = [Ah,AdnEi] = 2AdnEi.

Then, in order to show that AdnEi ∈ gλh , we need to show that [Al,AdnEi] = 0,
for all l 6= h. Write

[Al,AdnEi] = Adn[Adn−1Al, Ei]
and observe that Adn−1Al ∈ {±Am}, for some m 6= i. Then

Adn[Adn−1Al, Ei] = Adn[±Am, Ei] = 0,

as desired. A similar argument shows the second statement, and concludes the proof
of the claim.

Write X =
∑
xjEj , with xj ≥ 0, and AdnX =

∑
yjEj , with yj ∈ R. Then

Ψ(X) =
∑
xjAj and, since Ψ is AdK-equivariant, one has

Adn(Ψ(X)) =
∑

xjAdnAj = Ψ(AdnX) =
∑

yjAj .

Thus, given i ∈ {1, . . . , r}, one has yh = xi ≥ 0, if AdnAi = Ah, and yh = −xi ≤ 0,
if AdnAi = −Ah. In order to show that AdnX =

∑
yjEj lies in Λx

r , we prove that
xi = 0 whenever AdnAi = −Ah.

Assume by contradiction that this is not the case. By the above claim, each
AdnEj lies in one of the root spaces of the direct sum Λr ⊕ θΛr =

⊕
j gλj ⊕

g−λj . Moreover, AdnX =
∑
xjAdnEj has a non-zero component in g−λh . This

contradicts the fact that AdnX lies in Λr and concludes the case when k = n is an
element of NK(a).

Next, the general case. Both elements Ψ(X) and Ψ(AdkX) = Adk(Ψ(X))
belong to a and, by [Kna04], Lemma 7.38, p.459, there exists an element n ∈ NK(a)
such that

Adk(Ψ(X)) = Adn(Ψ(X)).
Thus n−1k lies in ZK(Ψ(X)) and also in ZK(X), by (i) of Lemma 5.6. Therefore

AdkX = AdnX.

Since we already showed that AdnX belongs to Λx
r , the proof of (i) is now complete.

(ii) We first consider the case of a generic element X in Λx
r . By Lemma 7.3, both

Ψ(X) =
∑
xjAj and Adk(Ψ(X)) are generic in a, implying that k ∈ NK(a). We

need to show that k ∈ NK(Λr).
Assume by contradiction that this is not the case. Then, by (iii) of Lemma

4.1, there exist i and h in { 1, . . . , r } such that AdkAi = −Ah. By the claim
contained in the proof if part (i), each AdkEj lies in one of the root spaces of
Λr ⊕ θΛr and AdkEi ∈ g−λh . Since Lemma 7.3 implies that all xj are strictly
positive, AdkX =

∑
xjAdkEj has a non-zero component in g−λh . This contradicts

the fact that AdkX lies in Λr. Therefore k ∈ NK(Λr), as wished.
Now let X be an arbitrary element in Λx

r . By (i) we know that AdkX ∈ Λx
r .

Choose fundamental systems of open neighborhoods {UmX }m∈N and {UmAdkX
}m∈N of

X and AdkX in Λx
r , respectively. By Corollary 5.9, the sets AdKUmX and AdKUmAdkX



ORBIT STRUCTURE 21

are open in N+. By considering intersections if necessary, we may assume that
AdKUmX = AdKUmAdkX

, for all m ∈ N.
For each m ∈ N choose an element Xm in (Λx

r)
gen∩UmX . Then there exists km ∈

K such that AdkmXm ∈ UmAdkX
. By construction Xm → X and AdkmXm → AdkX.

Moreover, by the first part of the proof of (ii), there exists elements nm ∈ NK(Λr)
such that AdkmXm = AdnmXm. Being NK(Λr) compact, we may assume that
nm → n ∈ NK(Λr). Thus

AdkX = lim
m

AdkmXm = lim
m

AdnmXm = AdnX ,

with n ∈ NK(Λr), as wished. �

By Lemma 4.1 the closure (Λx
r)

+
of the open chamber

(Λx
r)

+ := {x1E1 + · · ·+ xrEr : x1 > x2 > · · · > xr > 0}
is a perfect slice for the WK(Λr)-action on Λx

r .

Corollary 7.5.
(i) The closure (Λx

r)
+

of the open chamber (Λx
r)

+ is a perfect slice for the AdK-
action on N+.
(ii) For X ∈ Λx

r one has

G exp iX · x0

⋂
exp iΛx

r · x0 = exp i(WK(Λr) ·X) · x0

(iii) There are homeomorphisms of orbit spaces

Ξ+/G ∼= Λx
r/WK(Λr) ∼= (Λx

r)
+
.

Proof. Part (i) follows from (ii) of Lemma 7.4. For parts (ii) and (iii), Lemma 7.4
implies that every G-orbit in G ×K N+ intersects Λx

r
∼= {[e,X] ∈ G ×K N+ :

X ∈ Λx
r } in a WK(Λr) orbit. Since by Proposition 5.7, the map G×K N+ → Ξ+,

given by [g,X] → g exp iX, is a G-equivariant homeomorphism, the statements
follow. �

Remark. Observe that inside Ξ+ there is a proper inclusion

exp iΛx
r · x0 ⊂ Ξ+ ∩ exp iΛr · x0,

and that

{X ∈ Λr : exp iX · x0 ∈ Ξ+} =
r⊕
j=1

(−1,∞)Ej

(cf. [Kro08], p. 286). In fact, there exist elements X ∈ Λx
r , Y ∈ Λr \ Λx

r and
g ∈ G \K such that

g exp iX · x0 = exp iY · x0.

For example, for G/K = SL(2,R)/SO(2,R), take −1 < x < 1 and b :=
√

1− x2.

Then
(

0 b
−1/b 0

)
∈ G and

(
−ix/b 1/b
−1/b −ix/b

)
∈ SO(2,C); moreover the following

relation holds (
0 b
−1/b 0

)(
1 ix
0 1

)
=
(

1 −ix
0 1

)(
−ix/b 1/b
−1/b −ix/b

)
.

This shows that the elements

exp i
(

0 −x
0 0

)
· x0 and exp i

(
0 x
0 0

)
· x0

lie on the same G-orbit in Ξ+, even though not on the same K-orbit.
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On the subdomains

(−1,∞)E1 ⊕ · · · ⊕ (−1, 1)Ej̄ ⊕ · · · ⊕ (−1,∞)Er ,

which are defined for j̄ ∈ {1, . . . , r}, one has additional symmetries which identify
different elements on the same G-orbit in Ξ+. Namely, for −1 < xj̄ < 1, let gj̄ be
the image of the element  0

√
1− x2

j̄

−1/
√

1− x2
j̄

0


in the SL(2,R)-subgroup of G generated by the sl(2)-triple {Ej̄ , θEj̄ , Aj̄}. Then

gj̄ exp i(x1E1+· · ·+xj̄Ej̄+· · ·+xrEr)·x0 = exp i(x1E1+· · ·−xj̄Ej̄+· · ·+xrEr)·x0 .

Thus inside the j̄th subdomain of Λr defined as above, the elements X and rj̄(X),
with rj̄ the reflection with respect to the j̄th coordinate plane, are mapped into
each other by gj̄ . Therefore they lie on the same G-orbit, even though not on the
same K-orbit.

8. The domain Ξ+ and its distinguished Stein subdomains.

Let G/K be a rank-one Hermitian symmetric space. In [GeIa08] it was shown
that, beside the crown Ξ, the domain Ξ+ contains another distinguished G-invariant
subdomain with the peculiarity that its boundary contains no principal orbits of
GC/KC (i.e. closed G-orbits of maximal dimension).

In the tube case SL(2,R)/SO(2,R), such a subdomain S+ arises from the
compactly causal structure of a symmetric G-orbit in the semisimple boundary
∂sΞ of the crown and it is Stein. It also turns out that every Stein, invariant,
proper subdomain of Ξ+ is either contained in Ξ or in S+. In the non-tube case
SU(n, 1)/U(n), for n > 1, such a subdomain Ω+ arises from the compactly causal
structure of the orbit of a proper subgroup of G in ∂sΞ. The domain Ω+ is not Stein
and contains no invariant Stein subdomains. In this case, every Stein, invariant,
proper subdomain of Ξ+ is contained in Ξ.

The purpose of this section is to prove that the domains S+ and Ω+ have higher
rank analogues, which are contained in Ξ+. Since the proofs rely on the rank-one
reduction, we recall the rank-one case in detail.

8.1. The rank-one case. We begin with the tube-case G/K = SL(2,R)/SO(2,R).
Fix the sl(2,R)-triple

E =
(

0 1
0 0

)
, θE =

(
0 0
−1 0

)
, A =

(
1 0
0 −1

)
(18)

normalized as in (5), and the complex structure J0 = adZ0 determined by the

element Z0 = 1
2

(
0 1
−1 0

)
∈ Z(k). In [Kro08] and [KrOp08] the crown Ξ and the

domain Ξ+ were described as follows

Ξ = G exp i(−1, 1)E · x0 = G exp i[0, 1)E · x0,

Ξ+ = G exp i(−1,∞)E · x0 = G exp i[0,∞)E · x0,

where x0 = (eQ, eQ) (see Section 3). Set a = RA and define

g1 := exp(i
π

2
A

2
) =

1√
2

(
1 + i 0

0 1− i

)
∈ exp ia, (19)
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where 1
2A is the dual root of α in a. Since α(π2

A
2 ) = π

2 , the point x1 := g1 · x0

lies on the semisimple boundary of Ξ. The orbit G · x1 is diffeomorphic to the
symmetric space of Cayley type G/H = SL(2,R)/SO(1, 1) (both compactly and
non-compactly causal), with involution τ = Adg2

1
θ (see [GeIa08], Lemma 4.3). The

associated symmetric algebra is given by

g = h⊕ q, h = R
(

0 1
1 0

)
, q = R

(
1 0
0 −1

)
+ R

(
0 1
−1 0

)
.

The abelian subspace a lies in q ∩ p, and the triple {E, θE,A} satisfies the further
condition θE = −τE. Set T := E + θE. Then

Z0 =
1
2
T

and c = RT is a compact Cartan subspace in q ∩ k. Since G/H is a compactly
causal symmetric space of rank-one, there exist precisely two proper, open, convex,
AdH -invariant, elliptic cones W± in q, intersecting c in the open halflines ±(0,∞)T ,
and satisfying W±min = ±conv (AdH(R+Z0)). Define

S+ := G exp iW+ · x1 = G exp i(0,∞)T · x1.

Since the isotropy subgroup of x1 in GC is given by HC := g1K
Cg1
−1, the map

GC/HC → GC/KC , gHC → gg1K
C ,

is a GC-equivariant biholomorphism. Moreover G exp iW+HC/HC is a Stein domain
in GC/HC ([Nee99], Thm. 3.5, p. 205). Consequently S+ is a Stein, G-invariant
domain in GC/KC with the orbit G · x1 in its boundary.

In the next lemma we show that Ξ+ contains both the crown Ξ and the do-
main S+. An analogous computation was carried out in [KrOp08], Sect. 3.2, for the
crown domain using the hyperbolic model SO0(1, 2,C)/SO(2,C).

Lemma 8.1. Set k0 = exp π
4T .

(i) For t ∈ (−π/4, π/4) define a1(t) = exp 1√
cos 2t

A. One has

exp itA · x0 = k0a1(t) exp i sin 2tE · x0 . (20)

In particular exp itA · x0 ∈ G exp i sin 2tE · x0 and

Ξ = G exp i[0, 1)E · x0.

(ii) For t ∈ (0,∞) define a2(t) = exp 1√
sinh 2t

A. One has

exp itT g1 · x0 = k0a2(t) exp i cosh 2tE · x0 . (21)

In particular exp itT g1 · x0 ∈ G exp i cosh 2tE · x0 and

S+ = G exp i(1,∞)E · x0.

Proof. Part (i) follows by showing that

exp itA = k0a1(t) exp i sin 2tE k,

for some k ∈ SO(2,C). The proof is a simple matrix computation with

exp itA =
(
eit 0
0 e−it

)
, k0 =

(
1√
2

1√
2

− 1√
2

1√
2

)
, a1(t) =

( 1√
cos 2t

0
0

√
cos 2t

)

exp i sin 2tE =
(

1 i sin 2t
0 1

)
, k =

1√
2 cos 2t

(
e−it −eit
eit e−it

)
.

The second equality follows directly from equation (20) and the definition of Ξ.
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Similarly, part (ii) follows by showing that

k = g−1
1 (exp itT )−1 k0 a2(t) exp i cosh 2tE

is an element of SO(2,C). The proof is a simple matrix computation with

g−1
1 =

(
1−i√

2
0

0 1+i√
2

)
, (exp itT )−1 =

(
cosh t −i sinh t
i sinh t cosh t

)
, k0 =

(
1√
2

1√
2

− 1√
2

1√
2

)

a2(t) =

(
1√

sinh 2t
0

0
√

sinh 2t

)
, exp i cosh 2tE =

(
1 i cosh 2t
0 1

)
.

The final part of the statement follows from equation (21) and the definition of S+.
�

In Example 6.3 in [GeIa08] it is shown that the orbit G · w of the point w :=
exp iE · x0 is a real hypersurface in Ξ+, lying in the common boundary of Ξ and
S+ inside Ξ+ and having G · x1 in its closure. This fact together with Lemma 8.1
yields the following description of Ξ+.

Proposition 8.2. The domain Ξ+ in SL(2,C)/SO(2,C) is given by

Ξ+ = G exp i[0,∞)E · x0 = Ξ ∪G · w ∪ S+,

where G · w is a hypersurface orbit lying in the common boundary of Ξ and S+.

In the non-tube case SU(n, 1)/U(n), for n > 1, an analogue of Proposition
8.2 holds true. Define x1 = g1 · x0, where g1 = exp(iπ2

A
2 ) and α(A) = 1. Since

α(π2
A
2 ) = π

4 and 2α(π2
A
2 ) = π

2 , the point x1 lies on the semisimple boundary of the
crown. In Example 6.3 in [GeIa08], one can see that the orbitG·x1 is a homogeneous
space of dimension dimR G · x1 = 2(2n − 1) and that it is not a G-symmetric
space. The group Ĝ := ZG(g4

1) is a proper subgroup of G and the orbit Ĝ · x1 ⊂
G·x1 is a symmetric space diffeomorphic to SU(1, 1)/SO(1, 1) ∼= SL(2,R)/SO(1, 1),
embedded in GC/KC as a totally real submanifold. The isotropy subgroups of x1 in
G and in Ĝ coincide and the slice representation at x1 is equivalent to the isotropy
representation of Ĝ ·x1. This can be seen most clearly at Lie algebra level. Consider
the restricted root decomposition of g = su(n, 1)

g = Zk(a)⊕ a⊕ gα ⊕ g−α ⊕ g2α ⊕ g−2α,

and denote by su(1, 1)2α the 3-dimensional Lie subalgebra spanned by the vectors
A ∈ a, E ∈ g2α and θE ∈ g−2α, normalized as in (5). Then the Lie algebra of Ĝ
and the isotropy subalgebra at x1 are given by

ĝ = Zk(a)⊕ su(1, 1)2α and gx1 = ĝx1 = Zk(a)⊕ R(E − θE),

respectively. The tangent space to the orbit G · x1

Tx1(G · x1) ∼= gα ⊕ g−α ⊕ Ra⊕ R(E + θE)

contains the AdGx1
-invariant subspace

Tx1(Ĝ · x1) ∼= Ra⊕ R(E + θE),

which is isomorphic to the tangent space of the Cayley type symmetric space
SL(2,R)/SO(1, 1) endowed with the isotropy action. Moreover multiplication by i
defines an equivariant isomorphism onto the slice representation at x1. Recall that
by Lemma 2.4 the element Z0 ∈ Z(k) defining the complex structure of G/K can
be written as Z0 = S + T0, where S ∈ ZK(a) and T0 = 1

2 (E + θE). Denote by W+
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the maximal proper, open, convex, AdGx1
-invariant, elliptic cone in Tx1(Ĝ · x1),

satisfying W+ = conv
(
AdGx1

(R+T0)
)
. Then

Ω+ = G exp iW+ · x1 = G (exp i(0,∞)T0) g1 · x0

is an open G-invariant domain in GC/KC.
In Example 4.7 and Example 6.3 in [GeIa08] it was shown that the orbit G ·w

of the point w := exp iE · x0, is a real hypersurface in Ξ+, lying in the common
boundary of Ξ and Ω+ and having G · x1 in its closure.

Proposition 8.3. The domain Ξ+ in SL(n+ 1,C)/GL(n,C) is given by

Ξ+ = G exp i[0,∞)E · x0 = Ξ ∪G · w ∪ Ω+,

where G · w is a hypersurface orbit lying in the common boundary of Ξ and Ω+.

Like the domain S+ in the SL(2,R)-case, the domain Ω+ has the peculiarity
that its boundary ∂Ω+ consists of non-principal G-orbits in GC/KC. But unlike
S+, the domain Ω+ is not Stein and contains no G-invariant Stein subdomains (see
[GeIa08], Ex. 6.3).

8.2. The higher rank case. Let G/K be a Hermitian symmetric space of rank
r > 1. Denote by {ω1, . . . , ωr} the dual basis of the simple roots {α1, . . . , αr}.
Define

g1 := exp(i
π

2
ωr
kr

) ∈ exp ia , (22)

where kr is the coefficient of the r-th simple restricted root αr in the highest root
αh ∈ ∆(g, a)+. If G/K is of tube type, then ∆(g, a) is of type Cr and the highest
root is given by αh = 2α1 + . . . + 2αr−1 + αr. Hence kr = 1 and g1 = exp(iπ2ωr).
If G/K is not of tube type, then ∆(g, a) is of type BCr and αh = 2α1 + . . .+ 2αr.
Hence kr = 2 and g1 = exp(iπ2

ωr
2 ).

In both cases |α(π2
ωr
kr

)| ≤ π
2 , for all restricted roots α, and |λr(π2

ωr
kr

)| = π
2 ,

where λr is as in (3). This shows that x1 = g1 · x0 is a point on the semisimple
boundary of the crown domain. For j = 1, . . . , r, define

g1,j := exp(i
π

2
Aj
2

),

where Aj is as in (4). The element g1,j lies in the SL(2,C)-subgroup of GC corre-
sponding to the jth triple defined in (4).

Lemma 8.4. One has

ωr =
1
2

(A1 +A2 + . . .+Ar), in the tube case,

ωr = A1 +A2 + . . .+Ar, in the non-tube case.

As a consequence, the following identity holds

g1 =
r∏
j=1

g1,j .
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Proof. In the tube case, (1) and the relations λi( 1
2Aj) = δij , imply that αj( 1

2 (A1 +
A2 + . . .+Ar)) = δjr, for j = 1, . . . , r. Therefore ωr = 1

2 (A1 +A2 + . . .+Ar).
In the non-tube case, (2) and the relations λi( 1

2Aj) = δij imply that αj(A1 +A2 +
. . . + Ar) = δjr, for j = 1, . . . , r. Thus ωr = A1 + A2 + . . . + Ar, proving the first
part of the statement. Since the sl(2,R)-triples defined in (4) commute, one has

g1,1 · . . . · g1,r = exp(i
π

2
A1

2
) · . . . · exp(i

π

2
Ar
2

) =

= exp(i
π

2
(
1
2

(A1 +A2 + . . .+Ar))) = g1 ,

as claimed. �

8.2.1. The tube case. Let G/K be an irreducible Hermitian symmetric space of
tube type. We begin by showing that the semisimple boundary of the crown domain
Ξ contains a point x1 whose G-orbit is an irreducible symmetric space G/H of
Cayley type. As a consequence, x1 also lies on the boundary of two G-invariant
Stein domains S± ⊂ GC/KC, arising from the compactly causal structure of G/H.
Such domains appear in a larger class of Stein domains studied by Neeb in [Nee99].
The main purpose of this subsection is to show that the domain Ξ+ contains both
Ξ and the domain S+, as well as part of their boundaries.

Lemma 8.5. Let G/K be an irreducible Hermitian symmetric space of tube type.
Then the G-orbit of the point x1 = g1 · x0 in GC/KC is a totally real semisimple
symmetric space G/H of Cayley type, with involution τ = Adg2

1
θ and H = Gτ . The

space G/H has the same rank, real rank and dimension as G/K.

Proof. In the tube case ωr = 1
2 (A1 + A2 + . . . + Ar). It is easy to check that

|α(π2ωr)| ≤
π
2 , for every root α ∈ ∆(g, a) and that αr(π2ωr) = π

2 . This shows that
x1 lies on the semisimple boundary ∂sΞ of the crown domain Ξ. More precisely,
one has α(π2ωr) ∈ Zπ

2 , for every α ∈ ∆(g, a). Then the orbit G · x1, with the
involution τ = Adg1θAdg−1

1
= Adg2

1
θ, is a pseudo-Riemannian symmetric space, say

G/H, of the same rank, real rank and dimension as G/K (see [Gea12], Lemma 2.2).
Since x1 ∈ ∂sΞ, by [GiKr02], Thm. B, the space G/H is a non-compactly causal
symmetric space.

From the definition of τ and Lemma 8.4, one can check that the further con-
ditions θEj = −τEj , for j = 1, . . . , r, are satisfied. Consequently, all the vectors
Tj := Ej + θEj , and in particular the element Z0 = 1

2

∑
j Tj in the center of k (see

Prop. 2.6), are contained in q ∩ k. By Thm. 1.3.8 and Rem. 1.3.9 in [HiOl97], the
space G/H is also compactly causal, and therefore of Cayley type, as claimed. �

Let (g = h ⊕ q, τ) be the symmetric algebra associated to the Cayley type
symmetric space G/H and let W± denote the maximal proper, open, convex,
AdH -invariant, elliptic cones in q. Set HC = g1K

Cg−1
1 . Then the two domains

G exp iW±HC/HC in GC/HC are Stein (cf. [Nee99], Thm. 3.5, p. 205), and likewise

S± := G exp iW± · x1 = G exp iW± g1 · x0

are G-invariant, Stein domains in GC/KC.
It is important to observe that for the Cayley type symmetric space G/H, the

maximal and the minimal proper, open, convex, AdH -invariant, elliptic cones in
q coincide: under the Adjoint action of H, the space q decomposes as the direct
sum of irreducibles subspaces q+ ⊕ q−, with the property that q− = −θq+. Each
summand contains closed, convex, AdH -invariant cones ±C+ ⊂ q+ and ±C− ⊂
q−, with the property that the minimal elliptic and hyperbolic closed cones in q
are given by ±(C+ − C−) and ±(C+ + C−), respectively (cf. [HiOl97], p.53). In
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particular, for the minimal closed, AdH -invariant elliptic cone W+
min, there is an

isomorphism W+
min
∼= C+ + C+.

Denote by C0
+ the interior of C+. Since the symmetric space G/K is biholo-

morphic to the tube domain q+ + iC0
+ (see [HiOl97], Rem.2.6.9, p.55), the cone C+

is selfadjoint (i.e. it coincides with its dual cone). As a consequence, the minimal
proper, closed, convex, AdH -invariant, elliptic cone in q is selfadjoint and coincides
with the maximal one, which by definition is its dual cone

(
W+
min

)∗
. The same is

true for the respective interior parts.
Let (g = h⊕q, τ) be the symmetric algebra associated to the Cayley type sym-

metric space G/H. Since the involutions θ and τ commute, g has a joint eigenspace
decomposition g = (h ∩ k) ⊕ (h ∩ p) ⊕ (q ∩ k) ⊕ (q ∩ p). Let a be a maximal
abelian subspace in q ∩ p. Then a is maximal abelian in p and in q (see [HiOl97],
Prop. 3.1.11, p.77).

Fix a set of commuting sl(2,R)-triples {Ej , θEj , Aj} as in (4). As we remarked
in the proof of Lemma 8.5, each Tj := Ej + θEj is contained in q ∩ k and c :=
spanR{T1, . . . , Tr} is a compact Cartan subspace in q. In particular, c contains the
element Z0 = 1

2 (T1 + . . .+ Tr) ∈ Z(k) (see Prop. 2.6).

Lemma 8.6. Let G/K be an irreducible Hermitian symmetric space of tube type.
Then

S+ = G

exp i
r⊕
j=1

(0,∞)Tj

 g1 · x0.

Proof. A proper, closed, convex, AdH -invariant, elliptic cone in q intersects the
compact Cartan subspace c in a proper, closed, convex, WH(c)-invariant, elliptic
cone. Since the cone W+ is selfadjoint (i.e. maximal and minimal), we can identify
the intersection W+

c := W+ ∩ c with a minimal proper, closed, convex, WH(c)-
invariant, elliptic cone in c. We prove the lemma by showing that

W+
c =

r⊕
j=1

[0,∞)Tj .

In order to do this we first observe that

WH(c) ∼= WH∩K(c) ∼= WH0∩K(c),

where the second isomorphism follows from the fact that the space Gc/H is non-
compactly causal, with ic hyperbolic maximal abelian in iq. Then, by [HiOl97],
Thm. 3.1.18 and Thm. 3.1.20, the group H is essentially connected, i.e. H =
H0ZH∩K(ic) (see [HiOl97], Def. 3.1.16).

Next we need to recall the characterization of the minimal proper, closed,
convex, WH0(c)-invariant, elliptic cones in c (see [KrNe96]). Consider the restricted
root system ∆(gC, cC) of gC with respect to cC. Define the Lie subalgebra r =
q ∩ k ⊕ [q ∩ k, q ∩ k] ⊂ k. A root α ∈ ∆(gC, cC) is called compact if gα ∩ rC 6= {0},
and non-compact otherwise. Denote by ∆(gC, cC)c and ∆(gC, cC)n the compact and
non-compact roots in ∆(gC, cC), respectively. The root system ∆(gC, cC) is called
split if gα ⊂ kC, for all compact roots α. The Weyl group WH0∩K(c) is isomorphic to
the group Wc generated by the reflections in the compact roots ([KrNe96], Def.III.9
and Prop. V.2.i). If the positive non-compact roots ∆(gC, cC)n are stable under the
group Wc, the system ∆(gC, cC)+ is called r-adapted.

If the symmetric algebra (g, τ) is compactly causal then the restricted root
system ∆(gC, cC) is split and admits an r-adapted positive system. Moreover the
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minimal proper, closed, convex, WH0∩K(c)-invariant, elliptic cones in c have the
following characterization

iW±c := ±cone({hα}α∈∆(gC,cC)n),

where hα ∈ ic is defined by α(H) = B(H,hα).
Now we come to our situation: since c is the image of a under a Cayley trans-

form, the root system ∆(gC, cC) is isomorphic to the ordinary restricted root system
∆(g, a), and is of type Cr. For simplicity, identify cR = ic with c∗R using the Killing
form. Since the restrictions of the roots λ̃1, . . . , λ̃r defined in Lemma 2.1 are non-
compact in ∆(gC, cC), one has that

cone({2ej}j) ⊂ iW+
c .

The fact that the image of cone({2ej}j=1,...,r) under the reflections with respect to
roots of the form ±(ei + ej), for 1 ≤ i < j ≤ r, is not contained in any regular cone
in ic, implies that such roots are necessarily non-compact. It follows that

cone({2ej}j) = cone({2ej , (ei + ek)}j, i 6=k) ⊂ iW+
c .

We claim that all roots of the form ±(ei − ej), for 1 ≤ i < j ≤ r are compact.
In order to see this, first observe that the compact roots are a non-empty proper
subset of ∆(gC, cC). Then assume by contradiction that there is a non-compact root
of the form ei − ek, for some i < k. Without loss of generality, we may also assume
that either ei− ej , for some i < j, or ej − ek, for some j < k, is compact. From the
Wc-invariance of the cone iW+

c and

rei−ej (ei − ek) = ej − ek and rej−ek(ei − ek) = ei − ej ,

we deduce that either ej − ek or ei − ej is a non-compact roots and lies in iW+
c

as well. From (ei − ej) + (ej − ek) = (ei + ej)− 2ek, we obtain that R2ek ⊂ iW+
c ;

similarly, from (ei−ek)+(ei−ej) = 2ei−(ek+ej), we obtain that R(ek+ej) ⊂ iW+
c .

In both cases the assumption that iW+
c is a proper cone is contradicted. Hence

cone({2ej}j) = iW+
c ,

as desired. �

Now we can prove that the domain Ξ+ contains both the crown domain Ξ and
the domain S+.

Proposition 8.7. Let G/K be an irreducible Hermitian symmetric space of tube
type. Then the domain Ξ+ contains the crown

Ξ = G exp i
r⊕
j=1

[0, 1)Ej · x0 ,

and the domain

S+ = G exp i
r⊕
j=1

(1,∞)Ej · x0.

Proof. The first equality was proved in [KrOp08]. The second one follows from
G-invariance, and rank-1 reduction. Indeed by Lemma 8.6 and Lemma 8.1, we have

S+ = G

 r∏
j=1

exp i(0,∞)Tj

 g1 · x0 =
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= G

 r∏
j=1

exp i(0,∞)Tj

 r∏
j=1

g1,j · x0 = G

 r∏
j=1

exp i(0,∞)Tjg1,j

 · x0 =

= G

r∏
j=1

exp i(1,∞)Ej · x0,

as claimed. �

8.2.2. The non-tube case. Assume now that G/K is not of tube type. Consider
the point x1 = g1 · x0, where g1 = exp(iπ2

ωr
2 ) is as in (22). Since |α(π2

ωr
2 )| ≤ π

2 , for
all α ∈ ∆(g, a), and 2αr(π2

ωr
2 ) = π

2 , the point x1 lies on the boundary of the crown
domain. More precisely, α(π2

ωr
2 ) ∈ Zπ

4 , for all α ∈ ∆(g, a), and αr(π2
ωr
2 ) = π

4 .
Then, by [Gea12], Lemma 2.1, the following facts hold: the G-orbit of x1 is not

a G-symmetric space; the group Ĝ := ZG(g4
1) is a reductive proper subgroup of G;

the orbit Ĝ · x1 ⊂ G · x1 is a reductive symmetric space with involution τ = Adg2
1
θ,

of the same rank and real rank as G/K, but of strictly smaller dimension. The
isotropy subgroups of x1 in G and in Ĝ coincide, and the slice representation at x1

is equivalent to the isotropy representation of Ĝ · x1.

Lemma 8.8. The orbit Ĝ · x1 is diffeomorphic to the Cayley symmetric space
associated to the tube type Hermitian symmetric space contained in G/K.

Proof. One easily verifies that Adg4
1

is an involution of GC, commuting both with
the Cartan involution Θ of GC and with the conjugation σ relative to G. Since
GC is simply connected, ĜC = ZGC(g4

1) = Fix(GC,Adg4
1
) is a connected reductive

group. Moreover, it is the complexification of Û , the fixed point subgroup of Adg4
1

on the simply connected compact real form U of GC.
From the classification of simply connected, compact symmetric spaces one sees

that the following three cases occur:

G = SU(r, s), (r < s), GC = SL(r + s,C), ĜC = S(GL(s− r,C)×GL(2r,C)),
G = Spin∗(2r), GC = Spin∗(2r,C) ĜC = C∗Spin∗(2(r − 1),C),
G = E6(−14), (r = 2), GC = E6, ĜC = C∗Spin(10,C).

From the above table one sees that ĜC can be written as the commuting product

ĜC = MCGC
tube, (23)

where MC is a subgroup of ZKC(aC) and GC
tube denotes the simply connected com-

plexification of the connected, Hermitian, simple group acting on the tube-type
symmetric space contained in G/K. By [Gea12], Lemma 2.1(iv), the isotropy sub-
group of x1 in ĜC is given by (ĜC)τ := Fix(ĜC, τ). Since the involution τ preserves
the subgroups MC and GC

tube and τ |MC = Id|MC , there is an isomorphism of coset
spaces

ĜC/(ĜC)τ ∼= GC
tube/(G

C
tube)

τ .

Moreover, since the involutions σ and τ commute on ĜC, there is also an isomor-
phism

Ĝ/Ĝτ ∼= Gtube/(Gtube)τ .
This last fact can be seen most clearly at Lie algebra level:

g = su(r, s), (r < s), ĝ = u(s− r)⊕ su(r, r), ĝx1 = gx1 = u(s− r)⊕ sl(r,C)⊕R;

g = so∗(2r), (r odd), ĝ = R⊕ so∗(2(r − 1)), ĝx1 = gx1 = R⊕ sl(r − 1,H)⊕ R;
g = e6(−14), (r = 2), ĝ = R⊕ so(2, 8), ĝx1 = gx1 = R⊕ so(1, 1)⊕ so(1, 7).

�
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As a result of the above discussion, we have reduced ourselves to the case
of a Hermitian symmetric space of tube type Gtube/(Gtube)τ , with GC

tube simply-
connected. Recall that by Lemma 2.4, the element Z0 ∈ Z(k) determining the
complex structure of G/K can be written as

Z0 = S + T0,

where S ∈ ZK(a) and T0 = 1
2

∑
Tj , with Tj = Ej + θEj . Observe that Z0 lies

in ĝ and T0 lies in ĝtube. Denote then by W+ the maximal proper, open, con-
vex, Ad(Gtube)τ -invariant elliptic cone in Tx1(Ĝtube · x1), which satisfies W+ =
conv

(
Ad(Gtube)τ (R+T0)

)
. Then

Ω+ = G exp iW+ · x1 = G exp iW+g1 · x0

is an open G-invariant domain in GC/KC. By similar considerations as in the
previous section one obtains that

Ω+ = G exp i
r⊕
j=1

(0,∞)Tj g1 · x0.

and an analogue of Proposition 8.7 holds true.

Proposition 8.9. Let G/K be an irreducible Hermitian symmetric space which is
not of tube-type. The domain Ξ+ contains two distinguished invariant subdomains,
namely the crown domain

Ξ = G exp i
r⊕
j=1

[0, 1)Ej · x0 ,

and the domain

Ω+ = G exp i
r⊕
j=1

(1,∞)Ej · x0.

We will see in a forthcoming paper that like in the rank-one case of non-tube type,
the domain Ω+ is not Stein and contains no G-invariant Stein subdomains.

9. Final remarks.

Recall that the domain Ξ+ is G-equivariantly diffeomorphic to the anti-holo-
morphic tangent bundle of G/K. From Lemma 5.5 and Lemma 3.1, we obtain
another natural description of the crown Ξ and of the domains S+ (resp. Ω+)
inside Ξ+, by means of their intersections with the image of the slice a under the
map (13).

Corollary 9.1. One has

Ξ = G exp i
r⊕
j=1

[0, 1)
1
2

(Aj + iJ0Aj) · x0 = G exp i
r⊕
j=1

(−1, 1)
1
2

(Aj + iJ0Aj) · x0

and

S+ = G exp i
r⊕
j=1

(1,∞)
1
2

(Aj + iJ0Aj) · x0 =

G exp i
r⊕
j=1

(
(−∞,−1) ∪ (1,∞)

)1
2

(Aj + iJ0Aj) · x0 .

A similar description holds true for Ω+.
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Proof. Recall that by Lemma 8.7 and Lemma 8.9 one has

S+ = G exp i
r⊕
j=1

(1,∞)Ej · x0 and Ω+ = G exp i
r⊕
j=1

(1,∞)Ej · x0

inside Ξ+ = G exp i
⊕r

j=1[0,∞)Ej ·x0. Then the result follows from Lemma 5.5 and
the fact that the Weyl group WK(a) acts by signed permutations of A1, . . . , Ar on a
and by signed permutations of {A1 +iJ0A1, . . . , Ar+iJ0Ar} in {A+iJ0A : A ∈ a},
which is a slice for the K-action on p0,1.

�
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