ORBIT STRUCTURE OF A DISTINGUISHED INVARIANT,
STEIN DOMAIN IN THE COMPLEXIFICATION OF A
HERMITIAN SYMMETRIC SPACE
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ABSTRACT. We carry out a detailed study of 21, a distinguished G-invariant
Stein domain in the complexification of an irreducible Hermitian symmetric

space G/K. The domain =T contains the crown domain = and is naturally
diffeomorphic to the anti-holomorphic tangent bundle of G/K. The unipotent
parametrization of 2 introduced in [KrOp08] and [Kro08] suggests that =+
also admits the structure of a twisted bundle G x g N'T, with fiber a nilpotent
cone N'T. Here we give a complete proof of this fact and use it to describe the
G-orbit structure of =% via the K-orbit structure of AN't. In the tube case, we
also single out a Stein, G-invariant domain contained in =%\ = which is relevant
in the classification of envelopes of holomorphy of invariant subdomains of Z+.

1. INTRODUCTION

Let G/K be a non-compact, irreducible, Riemannian symmetric space. Its
Lie group complexification G/K€ is a Stein manifold and left translations by ele-
ments of G are holomorphic transformations of G¢/KC. In [AkGi90], Akhiezer and
Gindikin introduced the crown domain = in G¢/K®, with the aim of determining
a complex G-manifold whose analytic properties would reflect the harmonic anal-
ysis of G/K and the representation theory of G. Since then its complex analytic
properties have been extensively studied by several authors.

In the Hermitian case, Krétz and Opdam recently introduced two Stein G-
invariant domains =+ and =~ in G¢/K®, with =+ N Z~ = =, which are maximal
with respect to properness of the G-action on G®/K®. The relevance of = and of the
domains =T and =~ for the representation theory of G was underlined in Theorem
1.1 in [Kro08]. Here we carry out a detailed analysis of the G-orbit structure of
the domain =*. Since Z* and Z~ are G-equivariantly anti-biholomorphic, such
analysis applies to =~ as well.

Let G/K be an irreducible Hermitian symmetric space and let GC/ Q be its
compact dual symmetric space, which is denoted by G€/Q when endowed with the
opposite complex structure. The complexification G¢/K® admits an equivariant
holomorphic embedding as the open dense GC-orbit

GC/KC€~=GC . 20 c GY/Q x GT/Q
through zo := (eQ, eQ) € G*/Q x G€/Q, with the GC-action defined by
g (v,y):==(g9-2,0(9) y)

Here o denotes the conjugation of G® with respect to G. Let m; : G¢/Q x G€/Q —
G®/Q be the projection onto the first factor. The G-invariant domain =% is defined
by

=t = (m) YD) N GE -z,
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2 GEATTI AND IANNUZZI

where D := G - eQ is the Borel embedding of G/K in G¢/Q. It contains the crown
domain as the subset D x D and the G-action on Z* is proper.

The above definition leads to a natural G-equivariant diffeomorphism between
the anti-holomorphic tangent bundle of G/K and =7, via the map

GXKPOJ*)EJF? [gaZ]ngXpZ'xo-

Also note that 2 and 2~ := 7, ' (D)NGC x. are G-equivariantly anti-biholomorphic,
since the G-equivariant anti-biholomorphism

GC/QXGC/Q_’GC/QXGC/Qa (w,y)—>(y,x),
maps =1 onto =~.

An alternative construction of the domain Z* was given in [Kro08] and [KrOp08],
via its unipotent parametrization. In the notation of Section 2, let A, ..., A be long
strongly orthogonal real restricted roots, and let E; € gh, for j=1,...,r, be root
vectors normalized as in (5) and Definition 2.2. Consider the closed hyperoctant

AL = spang>o{E1,...,E}
and the subcone N := Adg AL of the nilpotent cone of g. Then
Et = Gexpi@(—l, 00)Ej - xg = GexpiA; - xo.

J

It was also suggested that the map
V: Gxg NT =21 [g,X]— gexpiX - xq

is a G-equivariant homeomorphism.

The first goal in this paper is to give a complete and selfcontained proof of this
fact. The main difficulty is to show that the map 1 is open. This is not a priori
obvious because at every point in the slice expiAs - zg C =T, lying on a singular
G-orbit, the tangent spaces to the orbit and to the slice itself do not span the whole
tangent space to ZV.

Consider the K-invariant fiber P := exp p®!-z¢ in the domain =+ = G x g p%*.
We first use a topological argument (Lemma 5.2) to show that our goal is equivalent
to show that the projection

A, - P/K, X—GexpiX -zogNP,

is proper. Next, we check that such a projection is proper by using a novel decom-
position inside G€ relating a unipotent element exp i X, with X € A%, to an element
in exp Z K€, with Z € p®!, lying on the same G-orbit (see Lemma 5.5 and Thm.
5.7). Possibly, a similar argument leads to a characterization of smooth twisted
bundles in the context of proper G-actions on differentiable manifolds considered
by R. S. Palais and C.-L. Terng in [PaTe87].

In view of the bundle structure defined by ), the G-orbit structure of =T is
completely determined by the Adx-orbit structure of the nilpotent cone N’ ". In
Section 6 we show that a fundamental domain for the action of the Weyl group
Wi (AL) on the hyperoctant A% is a perfect slice for the K-action on the cone N+
and hence it determines a perfect slice for the G-action on Z*. Moreover, one has
a one-to-one correspondence between the orbit strata of the Wi (AL )-action on the
closed hyperoctant AL and the orbit strata of the G-action on =7.

The second goal of the paper is to describe some G-invariant subdomains of
=" which are relevant for a classification of envelopes of holomorphy of G-invariant
subdomains of E*. It was observed in [Gela08] that in the rank-one case, beside
the crown Z, the domain =T contains another distinguished G-invariant subdomain
with the peculiarity that its boundary contains no principal G-orbits of GE/K€ (i.e.
closed orbits of maximal dimension).
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In the tube case SL(2,R)/SO(2,R), such a subdomain ST arises from the
compactly causal structure of a symmetric G-orbit in the semisimple boundary of
= and it is Stein. It turns out that every Stein, invariant, proper subdomain of =%
is either contained in = or in S*. In the non-tube case SU(n,1)/U(n), such a
subdomain 27 is not Stein and contains no invariant Stein subdomains. It follows
that every Stein, invariant, proper subdomain of Z* is contained in Z.

Here we prove that the domains S™ and Q7 have higher rank analogues in-
side 2. In a forthcoming paper we will show that, like in the rank-one case, every
Stein invariant proper subdomain of =t is contained either in = or in ST, in the
tube case, while it is contained in Z in the non-tube case. We will also characterize
the envelopes of holomorphy of G-invariant domains in =T,

The paper is organized as follows. In Section 2 we set up the notation and
collect some basic facts about Hermitian symmetric spaces. In Section 3 we recall
the definition of the domain =+ and of its unipotent model. In Section 4 we define
the Weyl group Wi (A%) of the cone AL and relate it to the Weyl group Wi (a). In
Section 5 we prove that the map

V: G xg Nt —ZET [g,X]— gexpiX -z

is a G-equivariant homeomorphism. In Section 6 we give an alternative proof of
the above fact for the symmetric spaces SL(2,R)/SO(2,R) and Sp(2,R)/U(2), by
using global G-invariant functions on G¢/KC. In Section 7 we study the G-orbit
structure of =t by means of the Adg-orbit structure of AL. Finally, in Section 8
we determine some distinguished G-invariant domains in Z+.

2. PRELIMINARIES

Let G/K be an irreducible Hermitian symmetric space of the non-compact
type. We may assume G to be a connected, non-compact, real simple Lie group
contained in its simple, simply connected universal complexification G€, and K to
be a maximal compact subgroup of G. Denote by g and ¢ the Lie algebras of G
and K respectively. Denote by 6 both the Cartan involution of G with respect to
K and the derived involution of g. Let g = € & p be the corresponding Cartan
decomposition. Let a be a maximal abelian subspace in p. The rank of G/K is by
definition r = dim a. The adjoint action of a decomposes g as

g=a0Z(a)o P ¢
a€A(g,a)

where Z;(a) is the centralizer of a in £, the joint eigenspace g* = {X € g | [H, X] =
a(H)X, H € a} is the a-restricted root space and A(g, a) consists of those « € a*
for which g* # {0}. A set of simple roots II, in A(g,a) uniquely determines a set
of positive restricted roots A*(g,a) and an Iwasawa decomposition of g

g=tdadn, where n = @ g“.
aEAt(g,a)
The restricted root system of a Lie algebra g of Hermitian type is either of type C,
(if G/K is of tube type) or of type BC, (if G/K is not of tube type) (cf. [Moo64]),
i.e. there exists a basis {ej,...,e,} of a* for which
Ag,a) ={x2¢;, 1 <j<r xejter, 1<j#k<r}, fortype C,,
A(g,a) ={xej, £2¢j, 1 <j<r *ejtex, 1<j#k<r}, fortype BC,.
Since g admits a compact Cartan subalgebra t C £ C g, there exists a set of r long
strongly orthogonal restricted roots {A1,..., A} (such that A; = \i & A(g, a), for
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j # k), which are restrictions of real roots with respect to a maximally split 6-stable
Cartan subalgebra [ of g extending a. Choosing as simple roots

Ha = {61 —€2,...,€6r1 — €Ep, 267‘}7 for type C’H (1)
M, ={e;1 —eq,...,e,_1 —e,e.}, for type BC,. (2)

one has
)\1:2627~-~,)\7‘:26r- (3)

In both cases, the Weyl group Wi (a) = Nk (a)/Zk(a) is isomorphic to the group
of signed permutations of {ej,...,e,}, and therefore of {\1,...,A.}. Denote by
Wi (a)™ the subgroup of Wi (a) isomorphic to the the group of ordinary permuta-
tions of {ey,...,e,} (it is the subgroup generated by the reflections in the first r — 1
simple restricted roots). Let {A1,...,A4,} be the dual basis of {ej,...,e.}. The
action of W (a) and of Wk (a)™ on a is by signed permutations and by ordinary
permutations of {Ay, ..., A, }, respectively.

For j =1,...,r, choose E; € g* such that the s[(2)-triple
{E;, 0F;, A; = [0E;, E]} (4)
is normalized as follows

Since the roots {\1,..., A} are strongly orthogonal and g admits a compact Cartan
subalgebra, the vectors {A1,..., A} form an orthogonal basis of a (with respect to
the restriction of the Killing form) and

[Ej, Ex] = [E},0Ek] =0, [Aj, Ex] = Me(A4;)Ex =0, for j # k. (6)

In other words, the above sl(2)-triples commute with each other.

Observe that relations (5) and (4) determine the vectors E; only up to sign, while
on the other hand the vectors A; are independent of those signs. Next, we are going
to show that, once a complex structure Jo of G/K is fized, there is a unique choice
of the vectors E;, which is compatible with Jy (see Definition 2.2 below).

Identify p with the tangent space to G/K at the base point eX. An invariant
complex structure on G/K is uniquely determined by its restriction to p, and it
is given by Jp := ad ZO|,J7 where Z; is an element in the one-dimensional center of
€. Once a complex structure is fixed, one can show that Jy and —Jy are the only
invariant complex structures on G/K.

Let t C £ be a compact Cartan subalgebra of g and let A(g®, ) denote the
root system of g€ under the adjoint action by t€. A root a € A(g®, %) is said to
be compact if the root space g® lies in €© and non-compact if it lies in p©. There
is a choice of positive roots in A(g®, t®) for which the positive non-compact roots
satisfy a(—iZp) =1 (see [KoWo65]).

Under the above choice, the holomorphic tangent space

phl ={W e p® | Jo(W) =iW}

is spanned by the root spaces of the non-compact positive roots.

Now, to the vectors {E1,..., E,.} one can associate a compact Cartan subalgebra
of g

t=s5Dc,
where ¢ := spang{Th,...,T;}, with Tj := E; + 0E;, and s is a Cartan subalgebra
of Zg(a), and vectors in p©

1 , _
Wj=5 (B —08;) —idy),  W_;=W;. (7)
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Lemma 2.1.
(i) For j = 1,...,r the triples {W;, W_;,T;} generate r commuting complex Lie
subalgebras of g©, isomorphic to sl(2,C).

(ii) For j =1,...,r, the vectors W; span the root spaces gXJ’, where Xl, e ,XT are
the strongly orthogonal, non-compact, imaginary roots in A(g®, %), defined by

X (Ty) = 2i

N(T) =0 i j#k

Ajls =0.

Proof. (i) One can easily verify that for j =1,...,r
(T3, Wil = 2iW5, [T, W] = =2iW_;,  [W;, W] = —iTj, (8)
and for j # k
[Wj) Wk] = [ij W—k] =0, [Tj’ Wk} = [Tja W—k] =0. 9)

(i) Since Zg(a) acts trivially on the one-dimensional restricted root spaces g**i,
for every S € s one has

[S,Wj]:[S,W_j]:O, j:l,...,r.
This, together with relations (8) and (9), shows that the W ; span the root spaces
gT for the adjoint action of t€ on g€. Moreover, the roots A, ..., \, are strongly
orthogonal in A(g®, t©), and they are imaginary (i.e. they assume purely imaginary

values on t). Finally, they are non-compact roots, since the root vectors Wy, lie
; C
in p-. O

Definition 2.2. We say that the choice of the vectors E; is compatible with the
complex structure Jo if one of the following equivalent sets of conditions is fulfilled
(1) Aj(—iZp) =1,

(i) [—iZo, W;] = W,

(iii) W; € pi®,

forallj=1,... r.

Remark 2.3. Observe that changing the sign of a vector E; corresponds to chang-
ing the sign of T; = E; + 0F; and likewise of the root ;. As a result, the vector
1 ~

5 (=Ej = (=0E;)) —i4;) € g

no longer lies in p'0.

We conclude this discussion by expressing the “compatibility condition” of
Definition 2.2 entirely in terms of the sl(2)-triples {E;,6E;, A;}. Observe that
the central element Zy € Z(£) lies in every compact Cartan subalgebra of g. In
particular it lies in t = s @ ¢ and can be written as

Zo=S8+Y a;T;, forSes, aj €R. (10)

Jj=1

Lemma 2.4. The choice of the vectors E; is compatible with the complex structure
Jo if one of the following equivalent conditions is fulfilled:
(i) Zo=S+ 32Ty,
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(ii) the action of adz, on p satisfies
[Zo,E; —0E;] = A;, [Zo,Aj]=—(E; —0E;), forj=1,...,r.
In particular, it defines a complex structure on each p; := spang{A;, E; — 0E;}.

Proof. Let W;, for j =1,...,r, be the vectors defined in (7) and Z, the vector in
(10). One easily verifies that

[Z0, W] = a;(A; +i(E; — 0E;)).
Hence conditions (i) of Definition 2.2 hold, i.e.
[ZQ,Wj]:in, jZl,...,’/‘,

if and only if a; = %, for all j, as wished.

For the equivalence of (i) and (ii), observe that the algebra Zy(a) acts trivially
on the one-dimensional restricted root spaces g* and g=*7, and therefore on the
s[(2)-triples defined in (4). Then relations (5) and (6) yield

[Zo, Ej - GEJ} = 2ajAj and [Zo, 2ajAj] = —40,?(EJ - HEJ')7
showing that adz, stabilizes the subspaces p;. Finally, one has that

ifandonlyifaj:%,forallj:17...,r. O

Remark 2.5. A geometric interpretation of Definition 2.2 and Lemma 2.4 is the
following: the compatibility conditions on the vectors E; guarantee that the r-
dimensional polydisk associated to the r commuting s[(2) triples in g is holomor-
phically embedded in the Hermitian symmetric space G/K.

More precisely, consider the lie algebra homomorphism s((2,R) — g mapping

8 é to E; and é _01 to A;. This induces an embedding of symmetric
spaces SL(2,R)/SO(2,R) — G/K. Endow SL(2,R)/SO(2,R) with the unique
invariant complex structure defined by % —01 (1) . Then such an embedding is

holomorphic if and only if the sign of the vector E; is compatible. Otherwise it is
anti-holomorphic.

By the above discussion and Koranyi-Wolf’s Theorem (see Thm. A.3.5 in [HiO197],
p-256), one has the following characterization of Zj.

Proposition 2.6. Fiz the vectors E; as in Definition 2.2. Then the following
conditions are equivalent

(i) G/K is of tube type, i.e. A(a,g) si reduced of type C,

(il) Zo =52, Ty.
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3. THE DOMAIN =7,

Let G/K be an irreducible Hermitian symmetric space of the non-compact type.
Let Jy be the complex structure of p, and let p1'? and p®! be the Fi-eigenspaces
of Jo in p€. Set P := expp®! and Q := KCP. Then Q is a maximal parabolic
subgroup of G®, the quotient G*/Q is the compact dual symmetric space of G/K
and the G-equivariant map

G/K - G°/Q, g—g-eQ

defines an open holomorphic embedding of G/K as the G-orbit D := G - eQ.

Denote by o the antiholomorpic involution of G® defining G. Then o(P) =
exppl? and o(Q) = KCo(P) is the opposite parabolic subgroup, which satisfies
QNao(Q) = K€ Denote by GE/Q the compact dual symmetric space endowed
with the opposite complex structure, i.e. the complex structure which makes the
G-equivariant map

GC/Q — G%/0(Q), 9Q — 0(9Q) = a(9)0(Q)
a biholomorphism. Let G® act on G¢/Q x G€/Q by

9-(z,y) == (9 -2,0(9) )
and set 2 := (eQ, eQ). Then the map
GE/K® = G°/QxGC/Q,  g—g-x

defines an open dense G®-equivariant holomorphic embedding of G¢/KC into the
product G¢/Q x G€/Q , as the orbit through zy. Let m; : G*/Q x G¢/Q — G¢/Q
denote the projection onto the first factor. The domain =7 is defined as follows

=t =21 (D)NGE - .

As 7 is a subdomain of GC -z, it can be regarded as an open G-invariant domain
in G¢/KC.

Recall that the anti-holomorphic tangent bundle of G/K is G-equivariantly
diffeomorphic to the twisted bundle G x i p!. The following fact holds true.

Lemma 3.1. The domain =1 is diffeomorphic to the anti-holomorphic tangent
bundle of G/K wvia the map

¢: Gxpp®t =T (9,Z) — gexp Z - xo.

Proof. Let L be Lie group, let H be closed subgroup of L and let X be an L-
manifold. Assume there exists a differentiable L-equivariant map f: X — L/H.
Then the fiber F := f~1(eH) is an embedded H-manifold and it is a standard fact
that the map

LxgF—X, [g2]—g-x
is an L-equivariant diffeomorphism (see, e.g. [DuKo00], p. 102).

Since the isotropy subgroup of eQ in G¢/Q is Q = K*P = PK® and the
isotropy subgroup of zo in G¢/Q x GC/Q is K, the fiber F := 7w '(eQ) is given
by P -xy. As a consequence the map p®! — F, defined by Z — exp Z - xg, is a
biholomorphism. Now the statement follows from the above remark. O

It should be pointed out that the above map is just a diffeomorphism and not a
biholomorphism, for the simple reason that the symmetric space G/K is a complex
submanifold of its antiholomorphic tangent bundle (embedded as the zero section),
while it is a totally real submanifold of Z+.
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Also note that =t and == := 7, (D) N GC - xy are G-equivariantly anti-
biholomorphic, since the G-equivariant anti-biholomorphism

G°/QxG°/Q - G°/QxGY/Q,  (a,y) = (v, ),
maps Z+ onto Z~. Also note that the restriction of such a map to G®-z¢ = G¢/K®

coincides with the anti-holomorphic G-equivariant involution induced by o.

An alternative construction of the domain =* was given in [Kro08], p.286, and
[KrOp08], Sect.8, via the unipotent parametrization. More precisely, in the notation

of Section 2, choose vectors F; € gV, for j = 1,...,r, compatible with the complex
structure Jy of G/K (see Definition 2.2). Define

A, :=spang{E,...,E.} and A::=spang>e{E1,...,E}. (11)
Then

T
Bt = Gexpi@(—l, ) E; - kg = GexpiA; - x.
j=1
After defining the subcone N’ := Ad g A% of the nilpotent cone of g, it was suggested
that the map
V: Gxg NT == [g,X]— gexpiX - x0

is a G-equivariant homeomorphism. We give a complete proof of this fact in Sec-
tion 5.

4. THE WEYL GROUP Wx(A,)

Resume the notation of Section 2. For j = 1,...,r, choose vectors E; € g
compatible with the complex structure Jy of G/K (see Definition 2.2), and define
A, and A% as in (11).

Consider the Adjoint action of K on g and define
ZK(AT) = {k’ eK : AdgX =X, X ¢ AT}, NK(AT») = {k e K : AdgA, = Ar},

Lemma 4.1.

(i) Zrk(Ay) = Zk(a).

(ii) Nx(A;) is a subgroup of Nk (a), implying that Wg (A,) is a subgroup of Wi (a).
(iii) As a subgroup of Wk (a), the group Wi (A,) coincides with Wi (a)t, acting on
a by permutations of {Ax, ..., Ar}. Moreover, Wi (A,) acts on A, by permutations
Of {El, ey ET}

Proof. (i) Let k € Zx(A,) and X € A, be arbitrary elements. Then AdpX = X
implies Adg#X = 60X and Adg[0X,X] = [#X, X]. Since a is generated by the
vectors A; = [0E}, E;], the inclusion Zx (A,) C Zk(a) holds true.

In order to show the opposite one, observe that every restricted root space is in-
variant under the Adjont action of Zx(a) on g. Since the Adjoint action of K is
isometric with respect to the inner product By(X,Y) := B(X,0Y), for X,Y € g,
and the root spaces gt* are one-dimensional, one has that Ady(E;) = £Ej, for
j=1,...,7. Weclaim that AdyE; = Ej, for every k € Zg(a) and j =1,...,7. Let
W; = 5((E; — 0E;) — iA;) be the vector defined in (7). Recall that

[—iZy, W;] = £W;
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depending on whether the choice of E; is compatible with the complex structure
determined by Zj (see Definition 2.2). If k is an arbitrary element in Zg(a), by
applying Ady to both terms in the above equation, we obtain

[—1Z, AdxW;] = £AdL W,
where
AQW; = £ (Adg(E; — 0F;) —iAdiAj) = 3 ((AdcE; — 6(ARE,) — iA;).
Then Remark 2.3 now implies that indeed for j =1,...,r
Ady(E;) = Ej, for k € Zk(a).

(ii) Let X € A, and k € Nk (A,) be arbitrary elements. Then Ad;X =Y, for some
Y € A,, and likewise Adi0X = 0Y and Adi[0X, X] = [#Y,Y]. Since a is generated
by the vectors A; = [0F;, E;|, there is an inclusion Ng(A,) C Ng(a). Since
Zk(a) = Zk(A;.), there is an induced inclusion of finite groups Wx (A,) — Wik (a).

(iii) We already showed that Wx(A,.) C Wk(a). Next we show that Wi (A,)
contains the subgroup Wi (a)™. Recall that the subgroup Wi (a)™ acts on a by

permutations of Ay, ..., A, and on a* by permutations of the basis vectors ey, ..., e,
defined in Section 2. As a result, the corresponding elements in K permute the root
spaces g™, ..., g and thus normalize A,. This proves the inclusion

Wi (a)t € Wi (A,).
In order to prove equality, assume by contradiction that there exists k € Nk (A;)
lying in Wi (a) \ Wk(a)™. Since Wk (a) acts on a by signed permutations of
Ay, ..., A, this means that there exist indices j, h € {1,...,r} for which Adg(4;) =
—Ay. By applying Ady to both terms of the relation [A;, E;| = 2E;, we obtain
[An, AdpE;] = —2Ad, E;.
We also have [A;, Ad,E;] = 0, for all [ # h: indeed, we can write
[A, Adp Ej] = Adi[Ady-1 A, Ex]
and, since k normalizes a, we have that Adg-14; € {£A4,,}, for some m # j. Thus
Adi[Adg-1 Ay, Ej] = Adi[+ A, Ej] =0,

as claimed. It follows that AdypFE; € g, contradicting the assumption that k
normalizes A,. So Wi (a)* = Wi (A,), as claimed.

To prove that Wi (A,.) acts on A, by permutations of Ey, ..., E,, assume by
contradiction that there exists k € Ng(A,) and indices h,j € {1,...,r} such that

AdpE; = —Ej,

and consequently
AdpOE; = —0FE),, AdipA; = Ay,

From the compatibility condition

[—1Zo, W;] = W;
one obtains then

[—iZy, AdxW;] = AdW;

where

. 1 .
Adej = (Adk(EJ - GE]) - ’LAdkAj) = 5(—(Eh - GE;L) - ZA}L).

1
2
But this contradicts Remark 2.3. In conclusion,
AdiE; = Ej,

and Wi (A,) acts on A% by permutations of Ey,..., E, , as claimed. O
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Corollary 4.2. As a consequence of the previous lemma, the group Wi (A,.) pre-
serves the subset AL.. Hence

Wi (Ar) == Nk (Ar)/Zk (Ar) = Nk (A})/ZKk (AT) -

5. THE DOMAIN =7 AS A NILPOTENT CONE BUNDLE

Consider the nilpotent cone in g given by N7 := {AdyX : k € K and X €
AL}, In [KrOp08] and [Kro08], Rem.4.12, it was suggested that the domain =T is
homeomorphic to the twisted product G x g N . For the sake of completeness we
give a proof of this fact.

5.1. Some topological lemmas. We first need a number of lemmas, which are of
topological nature. Our setting is as follows. Let G be a connected Lie group acting
properly on a Hausdorff topological space Z, and let K be a compact subgroup of
G. Let N be a Hausdorff topological K-space. Assume that there exists a K-
equivariant continuous map j : N — Z such that the continuous map

V:GxgN—Z, [g,x] —g-j(x)

is bijective. Denote by ¥ a closed subset of N such that K -3 = N. We are going
to discuss necessary and sufficient conditions for ¢ to be a homeomorphism.

Lemma 5.1. The following three conditons are equivalent
(i) The map 7;: GxX—Z, (g,2) — g-j(x) is proper,
(ii) The map QZ: Gx N —Z, (9,z) — g-j(x) is proper,
(iil) The map ¢ : G xxg N — Z, [g,x] — g j(x) is proper.
If any of the above conditions is satisfied, then v is a homeomorphism, the map
j: N — j(N) is a homeomorphism, and j(N) is closed in Z.

Proof. We first show that (i) is equivalent to (ii). Consider the commutative dia-
gram

GxX¥

PN

GXNT>Z7

where the vertical arrow is the inclusion map. Being Y closed in N, such a map is
proper. Therefore, if QZ is proper, so is 1} Conversely, assume that 1; is proper and
let C be a compact subset of Z. We claim that the closed subset @‘1(0) coincides
with K -4~ 1(C), where the K-action on G x N is given by k- (g, z) := (gk~', k- z).
In order to see that ¢~ 1(C) C K - ~(C), let (g, ) be an element in ¢—(C) and
choose k € K and ¢’ € ¥ such that x = k- 2/. Then gk - j(z') = g j(x) € C,
implying that (gk,z') € ¢~1(C). Thus (g,z) = k - (gk,2’) belongs to K - 4~ (C).
Being the opposite inclusion straightforward, the claim follows.

Since {5*1((]) is compact by assumption, it follows that 12*1(0) =K. {/;’1(6')
is compact (cf. [Bou89], Cor. 1, p. 251). This concludes the proof of the first
equivalence.

In order to show that (ii) is equivalent to (iii), consider the commutative dia-

gram



ORBIT STRUCTURE 11

GxN

S

GXKN?Z,

where 7 is the natural quotient with respect to the twisted K-action. Being K
compact, such a map is proper (cf. [Bou89], Prop. 2, p. 252). Therefore, if 9
is proper, so is @Z Conversely, assume that 1? is proper and let C' be a compact
subset of Z. Then the inverse image 1 ~1(C) coincides with W(iZ’l(C)). Thus it is
compact, showing that 1 is proper and concluding the proof of the lemma. (Il

Note that assuming j : ¥ — Z proper does not imply G x ¥ — Z proper. For
instance, let G = R act on R? by ¢ - (z,y) = (t+z,y), set N =% :={seR
s < 0ors > 1} and define j : ¥ — R? by j(s) := (0,s), for s € (—o0,0], and
j(s) = (In(s — 1),s — 1), for s € (1,+00). Then ¥ : R x ¥ — R? is continuous
and bijective but it is not a homeomorphism. In this example ¥ = j(X) is a
non-connected, closed submanifold (with boundary) of Z. In higher dimension,
e.g. dimg Z = 3 one can constuct a similar example with ¥ a contractible, closed
submanifold (with boundary) of Z.

Now we also assume that Z has the structure of a G-equivariant fiber bundle,
i.e. that there exists a closed topological K-subspace P of Z such that the map

GxxgP—2Z |g9,p)—9g-p

is a homeomorphism. Let 7 : P — P/K be the canonical projection.

Lemma 5.2. If the map q : ¥ — P/K, given by x — 7r(G -j(x)n P) is proper,
then ¢ : G xxg N — Z, [g,2] — g j(x) is a homeomorphism.

Proof. By Lemma 5.1, it is sufficient to show that the map ’(Z : G XY — Z is proper.
Let {(gn,xn)}n be a sequence in G x X, with g, - j(z,) — 20. Choose {(hyn,pn)}n in
G x P such that g,,-j(x,) = hy,-p,. Being the canonical projection Gx P — G x g P
proper (cf. [Bou89], Prop. 2, p. 252), the map G x P — Z, given by (g,2) — ¢ - z,
is proper. Thus, by passing to a subsequence if necessary, we may assume that
(hnypn) — (ho,po). In particular, ¢(z,) := m(G - j(z,) N P) = w(pn) — w(po)-
Since the map ¢ is proper by assumption, by passing to a subsequence if necessary,
one has that z,, — x, for some z¢ € ¥. Thus j(z,) — j(xo). By the properness of
the G-action, the map G x Z — Z x Z, given by (g,2) — (2,9 2), is proper as well.
Therefore, the sequence {(gn,Zn)}n converges to (go,xg), for some gy in G. As a
result the map J : G x ¥ — Z is proper, and the statement follows from Lemma
5.1. O

As a matter of fact, the converse of the above lemma holds true as well. Indeed
ife): GxgN — Z, [g,2] — g-j(z) is a homeomorphism, then Z/G is homeomorphic
to N/K, as well as to P/K, being Z homeomorphic to G x g P. Therefore one has
a commutative diagram

¥ — Gxg N — Z

\ ! 1

N/K — P/K,

where the map N/K — P/K is a homeomorphism. Being ¥ closed in N, the
restriction ¥ — N/K of the natural projection G x; N — N/K is proper. Hence
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the map ¢ : ¥ — P/K, x — «(G - j(z) N P), given in the above diagram as the
composition of proper maps, is proper, as claimed.

Also note that, being Z connected by assumption, if 9 is a homeomorphism and
K is connected, then N is necessarily connected. Indeed, in this case the principal
bundle G x N — G Xk N has connected base and fibers. Thus the total space
G x N is connected, implying that N is connected.

For later use we also give the following corollary.

Corollary 5.3. Assume there exists a continuous, G-invariant function f : Z — R
such that f o jls : ¥ — R is proper. Then ¢ is a homeomorphism.

Proof. By Lemma 5.1, it is sufficient to show that the map
V:iGxXE 7, (g,2) —g-j)

is proper. Let {(gn, zn)}n be a sequence in G x ¥ such that {gy, - j(x,)}n converges
to an element zy in Z. We need to show that, by replacing it with a subsequence
if necessary, the sequence {(gn,zn)}, converges in G x 3. Let U be a compact
neighborhood of f(29) in R. By assumption, the set V := (foj|s) ~1(U) is a compact
subset of 3. By the continuity and the G-invariance of f one has f(j(x,)) =
f(gn - j(xn)) — f(20). Therefore x,, € V for n large enough. Thus, by passing to a
subsequence if necessary, {x, },, converges to an element x¢ of ¥ and j(z,) — j(xo).
Finally, by the properness of the G-action, the map G x Z — Z x Z, given by
(9,2) — (z,9 - z), is proper. Hence, by passing to a subsequence if necessary,
{(gn,xn)}n converges to (go,xo), for some gg in G. This concludes the proof. O

Remark 5.4. The function f o j|y is proper if and only if f o j is proper. Being ¥
closed in NN, one implication is clear. For the converse, let C' be a compact subset
of R. Then

(foi) HC) =K - (foils) (C),
which is compact if (f o j|s)~(C) is compact (cf. [Bou89], Cor. I, p. 251).

5.2. A slice in the anti-holomorphic tangent bundle. Let G/K be an irre-
ducible Hermitian symmetric space. Resuming the notation of Section 2, denote by
at the open positive Weyl chamber in a and by at its topological closure, given by

+—{ij : <>z > 0}, a*—{z% x> 2> x>0}
Define

a- Z:{Z(EjAj LIy ZO, j:17...77’}.
j=1

The set at is a perfect slice for the Adjoint action of K on p, and
a- = Wg(a)t - at.

Similarly, denote by (A%)* the open positive Weyl chamber in A%, and by (AL)* its
topological closure, given by

(Al;)—i_ = {Z.’EjEj LT > > Xy >0}, (A';)Jr = {Zl’jEj, I SRR O}

By Lemma 4.1 and Corollary 4.2, one has
AL = Wie(A,) - (A5
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Consider the K-equivariant map
U:g—p, X |[Zo,X—-0X]=Jy(X—-60X), (12)

where Zy € Z(¥) is the element defining the complex structure Jy = adz,. Note
that its restriction
\IJ|AT, : AT — a

is a linear isomorphism.
Consider also the homeomorphism
L L 1
DAL —a-, ijEj — §Zlog(1 +x;)A;j,
and the K-equivariant isomorphism
1
Tip—pPl, Y—>—§(Y+iJOY). (13)

The isomorphism 7 maps a, a slice for the Adg-action on p, onto a slice for the Adg-
action on p!, and induces a homeomorphism between the respective fundamental
domains at C a and 7(at) in p®!.

The next lemma is crucial for the main result of this section. It states that
in E* the nilpotent slice expiA’ - o can be mapped continuously onto a slice in
exp p®! - 29, by elements of the abelian group A = expa.

Lemma 5.5. For every X in A\ one has

exp(iX) = exp (X)) exp (—;(\I/(X) + iJO\I/(X)> expix(X),

where x : A5 — € is defined by Y x;E; — Y sinh™" (2\/%> (E; +60E;). Thus

exp(iX) - xog = exp ®(X) exp (—;(\II(X) + z'JO\I/(X)> T .

Proof. Write X = > x;FE; as a sum of nilpotent elements in the embedded s((2)-
triples. By Lemma 2.4 (ii), the complex structure Jy of G/K induces the invariant
0 1
-1 0
associated to the s[(2)-triples. This fact, together with the commutativity of the
s[(2)-triples in g and of the corresponding groups in G®, reduces the proof to the
case of G = SL(2,R). In this case, the equality to be proved reads as

(0 z 0 x 1 //x 0 (0 —x
expz(o 0)6exp<I><O O)exp2<(0 —x)+l<—x 0))80(2,@).

In other words, we are left to check the following matrix identity

1w\ _ (Vit+a 0 -5 it )y,
0 1)"\ 0o virxz JUiz 1+%)"

where M € expiso(2,R) C SO(2,C) is the matrix given by

M = expisinh ™! T 0 1 = 1 1+§ Z%r .
21+ -1 0 Vi4az \ —it5 1435

complex structure defined by % on each of the rank-one symmetric spaces

Lemma 5.6.
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(i) Let X be an element in (A-)*. Then
Zk(X) = Zr(V(X)) = Zk (®(X)).

(ii) Let X and X' be elements in (AL)t such that
U(X') = Adp¥(X), for somek € K.
Then X' =X and k € Zg(X).

Proof. (i) We begin by proving that Zx (X) = Zx(¥(X)). Since the map ¥(X) =
[Zo, X — 6X] defined in (12) is K-equivariant, there is an inclusion

Zx(X) C Zx(¥(X)).

We prove the opposite one by showing that an element k € Zx (¥(X)) centralizes
both X — 60X and X + 6X. From

(Zo, X — 0X] = Ady[Zo, X — 0X] = [Zo, Adi(X — 0X)]

and the fact that adgz, is bijective on p (it is a complex structure), we obtain that
k € Zg(X—0X). Before showing that k € Zx (X +6X), we make a small digression.

Given a subset A of A(g,a)™, the associated orbit stratum in the closure of
the Weyl chamber at is by definition

al:={Acat : BA)=0if BeA, B(A)>0if B Ag,a) \A,}.

Let H be an element in a. Since G* is simply connected, the centralizer Zgc(H) of
H in G® is a connected group (see [Hum95], p.33) with Lie algebra

Zye(H)=Ze(@ede P o~ (14)

aeA(gC,a®)
(H)=0

Moreover, since o(H) = H and 0(H) = —H, the group Zgc(H) is both o and 6-
stable. As a result, if two elements H; and H of a¥ lie in the same orbit stratum,
then Zge(H1) = Zge(Hsz) and likewise Zx (Hq) = Zi (Ha).

Write X = Y a;F; and ¥(X) = Y x;A;. Since the elements ) z;A; and

> \/ 3 A; lie in the same orbit stratum of at, one has Zx (¥(X)) = Zx (X / F 4)).

Moreover, since
S\ D om) =20 Y [24)

one also has Zx (V(X)) C Zx (Y /3 (E; — 0E;)). Then the equality
Zg(U(X)) =Zr(X +60X)

follows from
Adi(X +6X)

Ady () w;(E; + 0E))) Adkz\/EA], \/E —0E;)
[Adk(Z@Aj),Adk(Z\/?j(Ej—HE Z\/E J7Z\/§E —0E;)

> ai(Ej+0E;) = X + 60X
Since X = (X — 0X) + 1(X + 6X), we conclude that
Zg(X) = Zg(¥(X)).

Next we show that
Zk(¥(X)) = Zr(2(X)).
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From the definition of the maps ¥, ® and of the roots defining a* (cf. Sect.2) it
is clear that W(X) and ®(X) lie in the same orbit stratum of a*. Then the desired
equality follows from the above considerations.
(ii) By definition of (AL)T, the elements (X ) and W(X') lie in a*, which is a perfect
slice for the Adg-action on p. Then ¥(X') = ¥(X) and k € Z(V(X)) = Zx(X).
Since the map ¥: A, — a is injective, it follows that X’ = X.

([l

Proposition 5.7. Let G/K be an irreducible Hermitian symmetric space. Then
the map

VG xg Nt —-ZEF [9,X] — gexp(iX) - x¢
is a G-equivariant homeomorphism.

Proof. The map v is G-equivariant by construction. By Lemma 3.1 and Lemma
5.5, it is surjective. Recall that by Corollary 4.2, one has Nt = Adx (AL)*. Hence,
in order to prove that 1 is injective it is sufficient to show that the identity

gexpiX - xg = expiX’ - xo, (15)

for some g € G and X, X’ € (AL)*, implies
geK, and X' =Ad,X.

By Lemma 5.5, equation (15) is equivalent to

gexp ®(X)exp (;(\I/(X) + iJg\I/(X))> T

exp B(X) exp <;(\II(X’) + z‘JO\I/(X’))) 20

By Lemma 3.1 it follows that
l9exp @(X), —5 (W(X) + iJoW(X))] = [exp @(X'), 5 (W(X') + iJoW(X"))

in G x;, p®1, i.e. there exists k € K such that

exp®@(X') =gexp®(X)k™! and U(X') = Ad,¥(X). (16)
From the second equality in (16) and Lemma 5.6, one obtains the relations

X=X, and ke Zg(¥(X))=2Zg(®(X))=Zx(X),
which plugged in the first equality of (16) yield ¢ = k. In conclusion, we have
obtained

g€ Zg(X), X' =X=AdX,

as desired.

Next we are going to show that ) is a homeomorphism. Since by Lemma 3.1 the
map G X g P — =T, given by [g, 2] — gexp Z - zo, is a G-equivariant diffeomorphism,
Lemma 5.2 implies that it is sufficient to show that the following map is proper

q: AL — (expp® - z0)/K, X — n(GexpiX - xoNexpp®! - zp),
where 7 : exp p®! - 29 — (expp®? - 19)/K denotes the canonical projection.

So let {X,,},, be a sequence diverging in A%.. Then {—1(¥(X,,) +iJo¥(Xy))}n
diverges in p®!. Thus the sequence {exp —%(U(X,) + iJo¥(Xy,)) - zo}, diverges
in expp®! - 2o and, by Lemma 5.5, every element exp —1(¥(X,,) + iJoW¥(X,)) - zo
lies in G expiX,, - o Nexpp®! - 9. Since the projection 7 is proper, the sequence
{m(GexpiX, -zoNexpp®! - x9) = m(exp (—5(¥(X) +iJo¥(X)) - z0) }, diverges in
expp®! - 29/K. Thus the map q is proper, as wished. O
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From the above proposition we obtain the following consequences.

Corollary 5.8. The restriction of the map (12)
TNt S, W(X) = [Zo, X — 0X] = Jo(X — 6X)
is a K-equivariant homeomorphism. Likewise, the maps
Nt —p, X - X -60X
and
O N S pt X %(\Il(X) +iJo¥ (X))

are K -equivariant homeomorphisms.

Proof. The map VU is K-equivariant, since both adz, and the Cartan involution 6
commute with the Adjoint action of K. It is also surjective, since its image contains
the closure of the Weyl chamber at. In order to show that W is injective, it is enough
to consider pairs X, Ad(X’), for some X, X’ € (A-)* and k& € K. Assume that
U(X) = U(Adg(X")). Then by Lemma 5.6, one obtains

X=X, keZgW(X)) = Zx(X).

Hence X = Adg(X’), as wished.

It remains to show that W is proper. This follows from the fact that U(X) # 0,
if X #0, and ¥U(¢X) = ¢t¥(X), for all real ¢t. This implies that the image of any
divergent sequence in N7 under ¥ is a divergent sequence in p.

The second part of the statement follows directly from the fact that both
Jo : p — p and the map p — p®!, given by Y — 1 (Y +iJy(Y)), are K-equivariant
linear isomorphisms. O

We conclude this section with another corollary of Proposition 5.7, which will be
needed later on.

Corollary 5.9. Let U be an open subset of A.. Then Adk (U) is open in the nilcone
NT.

Proof. As a consequence of Proposition 5.7, the map Nt — expiN™T -z C =T,
given by X — expiX - xg, is a homeomorphism onto its (closed) image. Moreover,
it follows that

expiAdgU - xg = Gexpil - zg NexpiNT - zg.

Thus, in order to prove the statement, it is sufficient to show that G expiU - zq is
open in =+,
For this note that W(U) is an open subset in the union Wx (a)*-a* of closures

of Weyl chambers of a. Thus Adg ¥ (U) is open in p and consequently the set
1
{AdK( — 5(\I/(U) —l—iJo\I/(X))) : X € U}

is open in p%!. Since the bundle map G x x p®! — =T, given by [g, Z] — gexp Z -z,
a diffeomorphism, the set

Vi={Gexp (- %(\I/(U) +iJo¥(X))) - xo: X €U}

is open as well in Z%. Finally, by Lemma 5.5 the set G exp iU - zo coincides with V.
Hence it is open, as wished. O
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6. AN EXAMPLE.

In this section, we give a different proof of Proposition 5.7 in the case of G =
Sp(2,R) and G = Sp(1,R) = SL(2,R). This proof uses Corollary 5.3 and a global
G-invariant function f : 2% — R, with the property that the map

A5 =R, X — f(expiX - xo)

is proper. As a matter of fact, the function f is the restriction of a G-invariant
function defined on all of G¢/KC.

Consider the real symplectic group

A B . 0 I
GzSp(r,R)z{Zz(C D)6M2 “(R) : 'ZJZ =T}, J = (IT o)

and its complexification G = Sp(r,C). By Witt’s theorem, G* acts transitively
on the Grasmannian of .J-isotropic complex r-planes in C?"
Y = {x complex r-plane in C*" : Jjx xx=0}.

By considering all possible bases of x, given as r-tuples of column vectors in C2",
we view Y as the quotient of

> R r R R
Y:{(R;) : Ry, Ry € M™*7(C), rank (R;) =, (tR1 tRZ)J(R;) O}

by the right action of GL(r,C) defined by

R\ (R -1
(D) (M) oo

Note that GC acts on Y by left multiplication and that the canonical projection
S Ry Ry
e (i) - ()

i,
I,

K:{(_AB Z) :A+iBeU(n)}.

Let g = £+ p be the associated Cartan decomposition of g, where

_ AB.t_ tp _AB.t_t_
(4 B) canapen), o= {(4 B):u-ainon)

The complex structure of p is given by Jy := adgz,, where Zp = % (_3. %)

Under the action of Jy, the complexification p® of p decomposes as the direct sum
of the +i-eigenspaces p™% @ p®!, namely

pl@:{(@,ZZ iZZ> :tZ:Z,}7 p°’1={(_€z __lZZ) itZ:Z,}-

The flag manifold
Y =G% x, 2G%/Q, where Q=K expp"?,

is the compact dual symmetric space of G/K, and the complexification GC/KC of
G/K can be realized as a dense open orbit in the product ¥ x Y
#of.

is GC-equivariant.

Fix the base point x; = [ } €Y. Then G- x4 =2 G/K, where

C/pCoC. . _ Ri| |5 - |’ S
w2y {([B][3]) v v [ 8
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where g = (x4,%4) (see [FHWO5], p. 68).

Define two real G-invariant functions on G¢/K® as follows

() -l

RQ 52 Rl Sl
R SQ
Rl Sl
‘R1 'Re) J | 5 tSy 1Sy) J | G
() el 0 (2)
2 ) = — .
R2 SQ R, ‘gl 2
R2 SQ
A simple computation shows that for
0 -+ 0 2y -+ 0
0 0 0 Ty
X=1o 0 0 0 | €A
0 0 0 0

one has
filexpiX -zo) = (1 —22)... (1 —2?) and folexpiX - o) = 2. 22,

For r = 2, define the G-invariant function f := 1 — f; 4+ fo on G®/K®. Then, by
restricting it to expiAs - zg, one obtains a map

Ay — R, X = a1 By + 29y — f(expiX -x0) = 27 + 3.
which is an exhaustion function on AL. This fact, together with Corollary 5.3, yields
a different proof of Proposition 5.7 for G = Sp(2,R).

A similar proof works for G = SL(2,R) = Sp(1,R), using the global G-invariant
function fs.

It would be interesting to obtain a similar global G-invariant function on
G®/KFC in the higher rank case and in general for all Hermitian symmetric spaces.
In the case of Sp(r,R), for r > 3, we know no global G-invariant functions whose
restrictions to exp(iA,) - xo define other linearly independent symmetric functions

in the ring R[22, ..., 22]. Note that, as a consequence of Proposition 5.7, every sym-
metric function in R[z?, ..., 22] extends continuosly and G-equivariantly at least to
=tuz-.

7. ORBIT STRUCTURE OF =7.

By the results of the previous section, the map

p: Gxg Nt — =T, l[g, X] — gexpiX -z

is a G-equivariant homeomorphism. Hence, every G-orbit in 2T meets exp iN ™t -z

in a K-orbit and the G-orbit structure of =% is completely determined by the K-
orbit structure of the nilpotent cone N = AdxAL. In this section we give further
details.
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Corollary 7.1. Let X be an element in AL, and let expiX -z be the corresponding
point in ZT. Then

GexpiX~:1:0 = ZK(X) = ZK([HX’ X]) .

Proof. Since expiX - 2o = ¥([e, X]), by Proposition 5.7 one has

GexpiX-zo = G[e,X] = ZK(X) )

which proves the first equality.
To prove the second equality, write X = "z, E;, with «; > 0, for all j. It is

clear that
U(X):= ijAj and [0X,X]= Zx?Aj
J J

belong to the same orbit stratum in a-. In particular, Zx (¥ (X)) = Zx([0X, X]).
Since Zx (X) = Zx(P(X)) (by (i) of Lemma 5.6), the rest of the statement follows.
]

The abelian subspace a is a slice for the Adjoint action of K on p. The generic
elements in a are those lying on maximal dimensional Adg-orbits, i.e.

Ugen ={H €a : Zg(H) = Zk(a)}.
At Lie algebra level, one has
Ze(H) = a® Ze(a) ® @ glale,
a(H)=0

where g[a]e is the €-component of the #-stable subspace gla] = g* @ g~ of g. The
fact that A(g,a) is either of type C, or BC,., implies that

agen:{ZajAj t aj # 0 and a; # *ai, forj,l:l,...,randj;él}. (17)
J

Since A% is a slice for the Adg-action on N, we define generic elements in A% in
a similar way.

Definition 7.2. An element X € A% is generic if Zx(X) = Zx(AL). The set of
generic elements in A% is denoted by (AL)gen.

Lemma 7.3. An element X in AL is generic if and only if V(X) = [Zy, X — 0X]
(resp. [0X,X]) is generic in a. In particular the set (A%)gen is given by

(A} ) gen = {ZI’jEj cx;#0and zj # oy, for j=1,...,r and j # 1},
J
and is dense in A%.

Proof. Write X =3, x;E;, with x; > 0, for all j. We already observed that ¥(X)
and [0X, X] lie in the same orbit stratum in a. Moreover, Zx (X) = Zg(¥(X)), by
(i) of Lemma 5.6, and Zx(A,) = Zx(AL) = Zk(a), by Lemma 4.1. From (17) it
follows that X is generic if and only if z; # 0 and z; # x;, for j,l = 1,...,r and
j # 1, as claimed |

Lemma 7.4. Let X € AL and k € K be elements such that Adp X € A,. Then
(i) AdrX lies in AL, implying that Nt N A, = AL,
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(ii) there exists n € Nk (A,) such that AdpX = Ad, X.
In other words, the intersection Adx X N A, of the Adg-orbit of X with A,., is
given by the Wi (A,)-orbit of X in AL.

Proof. (1) We first consider the case when k is an element of Nk (a) and we set
n := k. Then Ad,, acts on a by signed permutations of the A;.

Claim. If for some indices i, h € {1,...,r} one has Ad,,(4;) = Ay, then Ad,(E;) €
gAh; if Adn(Az) = 7Ah, then Adn(El) € gi/\h.

Proof of the claim. From [A;, E;] = 2F;, by applying Ad, to both terms of the
equation we obtain

[AdpAs, Ad,Ei] = [Ap, Ad, Ei] = 2Ad, E;.
Then, in order to show that Ad, E; € g**, we need to show that [A;, Ad, E;] = 0,
for all [ # h. Write
[A;, Ad, E;] = Ad,[Ad,—1 Ay, E}]
and observe that Ad,-14; € {£A,,}, for some m # i. Then
Ad,[Ad,-1 A}, E;] = Ad,[£A,,, E;] =0,

as desired. A similar argument shows the second statement, and concludes the proof
of the claim.

Write X = > «;E;, with z; > 0, and Ad,X = > y;E;, with y; € R. Then
U(X)=> z;A; and, since ¥ is Adg-equivariant, one has

Ad,(U(X)) =) 2;AdpA; = U(Ad, X) = y;4;.

Thus, given ¢ € {1,...,7}, one has y, = z; > 0, if Ad,A; = Ap, and yp, = —2; <0,
if Ad,,A; = —Ap. In order to show that Ad, X =) y,;E; lies in A%, we prove that
x; = 0 whenever Ad, A; = —Ay,.

Assume by contradiction that this is not the case. By the above claim, each
Ad, E; lies in one of the root spaces of the direct sum A, © 0A, = @j oM @
g~ M. Moreover, Ad,, X = Y 2;Ad,E; has a non-zero component in g~*». This
contradicts the fact that Ad,, X lies in A, and concludes the case when k = n is an
element of Nk (a).

Next, the general case. Both elements ¥(X) and U(Ad;X) = Adg(P(X))
belong to a and, by [Kna04], Lemma 7.38, p.459, there exists an element n € N (a)
such that

Ady((X)) = Ad, (¥(X)).
Thus n~1k lies in Zx (¥ (X)) and also in Zx(X), by (i) of Lemma 5.6. Therefore
Adp X = Ad, X.
Since we already showed that Ad,, X belongs to A%, the proof of (i) is now complete.

(if) We first consider the case of a generic element X in A-. By Lemma 7.3, both
U(X) =3 z;A; and Adg(¥(X)) are generic in a, implying that k € Ng(a). We
need to show that k € Nk (A,.).

Assume by contradiction that this is not the case. Then, by (iii) of Lemma
4.1, there exist ¢ and h in {1,...,r} such that AdyxA4; = —A;. By the claim
contained in the proof if part (i), each AdiE; lies in one of the root spaces of
A, ® OA, and AdiE; € g~*. Since Lemma 7.3 implies that all x; are strictly
positive, Ady X = 3 2;Ad,E; has a non-zero component in g~*». This contradicts
the fact that AdgX lies in A,.. Therefore k € Nk (A,), as wished.

Now let X be an arbitrary element in AL. By (i) we know that Ad,X € A%.
Choose fundamental systems of open neighborhoods {U¥ }men and {URy, x fmen of
X and Ady X in Ay, respectively. By Corollary 5.9, the sets Adg Uy and Adx Uy, y
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are open in N'7. By considering intersections if necessary, we may assume that
AdgUY = AdgURy, x, for all m € N.

For each m € N choose an element X, in (A5)9"NUY. Then there exists k,, €
K such that Ady, X, € Uiy, x- By construction X,;, — X and Adg,, X, — Adp X.
Moreover, by the first part of the proof of (ii), there exists elements n,, € Nk (A,)
such that Ady, X, = Ad,,, X,. Being Ng(A,) compact, we may assume that
Nm — n € Nig(A,). Thus

AdipX =lim Ady,, X, = lim Ad,,,, X,,, = Ad,, X,
with n € Ng(A,), as wished. O

By Lemma 4.1 the closure (A;)+ of the open chamber
ANt ={z1E1+ 4 a.E : 21 >29> >z, >0}
is a perfect slice for the Wi (A,)-action on A.

Corollary 7.5.

(i) The closure (AL)
action on N't.
(ii) For X € AL one has

GexpiX - xg ﬂexp iAs - x0 = expi(Wk(Ar) - X) - xg

- of the open chamber (AL)" is a perfect slice for the Adg-

(iii) There are homeomorphisms of orbit spaces
= ~Y L ~ 7-{—
=G = A/ Wic(A) = (&5

Proof. Part (i) follows from (ii) of Lemma 7.4. For parts (ii) and (iii), Lemma 7.4
implies that every G-orbit in G xx Nt intersects AL = {[e, X] € G xxg N

X € AL }in a Wi (A,) orbit. Since by Proposition 5.7, the map G x g N — ET,
given by [g, X] — gexpiX, is a G-equivariant homeomorphism, the statements
follow. ]

Remark. Observe that inside =% there is a proper inclusion
expils-zg C ET NexpiA, -z,
and that .
{X €Ay ¢ expiX -2 € ET} = P(~1,0)E,
=1
(cf. [Kro08], p. 286). In fact, there exist elemejlts X e A, Y € A, \ AL and
g € G\ K such that

gexpiX - xg =expiY - xg.
For example, for G/K = SL(2,R)/SO(2,R), take —1 < & < 1 and b := v/1 — 22.

0 b —iz/b  1/b ) .
Then (l/b 0) € G and (l/b z:z:/b) € SO(2,C); moreover the following

relation holds | | |
<—?/b 8) <(1) ?) - <(1) _1w> (__Zf//zf —%:l;b) '

This shows that the elements

.O—x. d .Ox.
expilgy To an expilg o) %o

lie on the same G-orbit in =7, even though not on the same K-orbit.
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On the subdomains
(717 OO)El DD (*13 I)Ei ©--- O (717 OO)ET )

which are defined for j € {1,...,r}, one has additional symmetries which identify
different elements on the same G-orbit in Z. Namely, for —1 < x; <1, let g; be
the image of the element

- —x2
1/1xj

in the SL(2,R)-subgroup of G generated by the sl(2)-triple { E;,0E;, A;}. Then
giexpi(vi B+ +a; B+ taBr)-wo = expi(v B+ —2 B+ 2By o

Thus inside the j** subdomain of A, defined as above, the elements X and r;(X),
with 75 the reflection with respect to the jt" coordinate plane, are mapped into
each other by g;. Therefore they lie on the same G-orbit, even though not on the
same K-orbit.

8. THE DOMAIN =t AND ITS DISTINGUISHED STEIN SUBDOMAINS.

Let G/K be a rank-one Hermitian symmetric space. In [Gela08] it was shown
that, beside the crown Z, the domain =T contains another distinguished G-invariant
subdomain with the peculiarity that its boundary contains no principal orbits of
GC/KC (i.e. closed G-orbits of maximal dimension).

In the tube case SL(2,R)/SO(2,R), such a subdomain St arises from the
compactly causal structure of a symmetric G-orbit in the semisimple boundary
0s= of the crown and it is Stein. It also turns out that every Stein, invariant,
proper subdomain of =% is either contained in Z or in ST. In the non-tube case
SU(n,1)/U(n), for n > 1, such a subdomain Q% arises from the compactly causal
structure of the orbit of a proper subgroup of G in 9s=. The domain Q7 is not Stein
and contains no invariant Stein subdomains. In this case, every Stein, invariant,
proper subdomain of =% is contained in =.

The purpose of this section is to prove that the domains S and QT have higher
rank analogues, which are contained in Z*. Since the proofs rely on the rank-one
reduction, we recall the rank-one case in detail.

8.1. The rank-one case. We begin with the tube-case G/K = SL(2,R)/SO(2,R).
Fix the sl(2, R)-triple

O R G P (R R

normalized as in (5), and the complex structure Jy = adyz, determined by the
element Zy = 1 (_01 (1)> € Z(¢). In [Kro08] and [KrOp08] the crown = and the

domain =T were described as follows
E=Gexpi(—-1,1)E - zy = Gexpi[0,1)E - xq,
Et = Gexpi(—1,00)E - 79 = Gexpi[0,0)E -z,

where 2o = (eQ, eQ) (see Section 3). Set a = RA and define

. TA 1 (144 0 .
g1 = exp(zig) =7 ( 01— Z) € expia, (19)
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where %A is the dual root of @ in a. Since a(gg) = 7, the point z; := g1 - %o
lies on the semisimple boundary of Z. The orbit G - z; is diffeomorphic to the
symmetric space of Cayley type G/H = SL(2,R)/S0O(1,1) (both compactly and

non-compactly causal), with involution 7 = Adg26 (see [Gela08], Lemma 4.3). The
associated symmetric algebra is given by

s=hoa, b:R(Q (1)) q:R(é 01)+R(°1 é)

The abelian subspace a lies in g N p, and the triple {E, 0F, A} satisfies the further
condition 0F = —7E. Set T := E 4+ 0F. Then
1

ZO - §T
and ¢ = RT is a compact Cartan subspace in q N ¢. Since G/H is a compactly
causal symmetric space of rank-one, there exist precisely two proper, open, convex,
Ady-invariant, elliptic cones W¥ in g, intersecting ¢ in the open halflines 4-(0, c0)T,
and satisfying W=, = +conv (Ady(R+Zp)). Define

min

ST = GexpiW™ -1 = Gexpi(0,00)T - 2.

Since the isotropy subgroup of z; in G€ is given by H® := ¢; K€¢; ', the map
G°/H® — G°/K®, gH® — g1 K",
is a GC-equivariant biholomorphism. Moreover G expiW *H®/H is a Stein domain
in G¢/H® ([Nee99], Thm. 3.5, p.205). Consequently ST is a Stein, G-invariant
domain in G®/K® with the orbit G - z1 in its boundary.
In the next lemma we show that =% contains both the crown = and the do-

main ST. An analogous computation was carried out in [KrOp08], Sect. 3.2, for the
crown domain using the hyperbolic model SOy(1,2,C)/SO(2,C).

Lemma 8.1. Set kg = exp 7T
(i) Fort € (—n/4,7/4) define ai(t) = exp ———A. One has

cos 2t

expitA - xg = koai(t) expisin 2tE - xg . (20)
In particular expitA - xg € Gexpisin2tE - ¢ and
E=Gexpi[0,1)E - .
(ii) Fort € (0,00) define as(t) = exp \/ﬁfl. One has
exp itT g1 - ©o = koaa(t) expicosh2tE - xg . (21)
In particular expitT g1 - ©o € Gexpicosh2tE - xy and
St = Gexpi(l,00)E - .

Proof. Part (i) follows by showing that
expitA = koai(t) expisin 2tE k,

for some k € SO(2,C). The proof is a simple matrix computation with

it 0 11 1 0
itA = . ka = V2 V2 t) = [ Vcos2t
expi (O e‘”) ;Ko <_\}§ \}§> , a1(t) ( 0 Jeos T

1 isin2t 1 e~ —e“)
expisin2tE = , k=—oo (%, %)
P (0 1 > V2 cos 2t <6t e "

The second equality follows directly from equation (20) and the definition of =.
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Similarly, part (i7) follows by showing that
k= g7 (expitT) " ko ag(t) expicosh 2tE
is an element of SO(2,C). The proof is a simple matrix computation with

1—i .. 1 1

3 0 o cosht —isinht NG

91 = (65 1\#) , (expitT) ™ = <z sinht  cosht ) » Ho = —\/i f
2

0 v/sinh 2¢ 0 1

The final part of the statement follows from equation (21) and the definition of ST.
]

1 .
—— 0
as(t) = (m ) . expicosh2tE = <1 zcosh?t) '

In Example 6.3 in [Gela08] it is shown that the orbit G - w of the point w :=
expiFE - g is a real hypersurface in Z*, lying in the common boundary of Z and
ST inside ZT and having G - x; in its closure. This fact together with Lemma 8.1
yields the following description of ZT.

Proposition 8.2. The domain =t in SL(2,C)/SO(2,C) is given by
ET = Gexpi[0,00)E -2 =ZUG -wU ST,

where G - w is a hypersurface orbit lying in the common boundary of 2 and ST .

In the non-tube case SU(n,1)/U(n), for n > 1, an analogue of Proposition
8.2 holds true. Define z1 = g - z9, where g, = exp(i3%) and a(A4) = 1. Since
a(gg) =7 and Qa(gg) = 7, the point z; lies on the semisimple boundary of the
crown. In Example 6.3 in [Gela08], one can see that the orbit G-z is a homogeneous

space of dimension dimg G - z; = 2(2n — 1) and that it is not a G-symmetric
space. The group G = Zg(g}) is a proper subgroup of G and the orbit G- z1 C
G-z is a symmetric space diffeomorphic to SU(1,1)/5S0(1,1) = SL(2,R)/S0O(1,1),
embedded in G®/KC as a totally real submanifold. The isotropy subgroups of z; in
G and in G coincide and the slice representation at xp is equivalent to the isotropy
representation of G-x1. This can be seen most clearly at Lie algebra level. Consider
the restricted root decomposition of g = su(n, 1)

g= ZE(CI) D a@ga @g—a @9204 ®g—2a’
and denote by su(1,1)s2, the 3-dimensional Lie subalgebra spanned by the vectors
A€ a, E € g* and OF € g—2% normalized as in (5). Then the Lie algebra of G
and the isotropy subalgebra at z; are given by
0= Zy(a) ®su(l,1)2o and gg = ax1 = Ze(a) B R(E - 0F),
respectively. The tangent space to the orbit G - a1
T, (G-21)=g*®g “@Ra®dR(E+0FE)

contains the Adg,, -invariant subspace

Ty, (G- 21) 2 Ra@ R(E + 0E),

which is isomorphic to the tangent space of the Cayley type symmetric space
SL(2,R)/SO(1,1) endowed with the isotropy action. Moreover multiplication by ¢
defines an equivariant isomorphism onto the slice representation at z;. Recall that
by Lemma 2.4 the element Z; € Z(¥) defining the complex structure of G/K can
be written as Zy = S + Ty, where S € Z (a) and Ty = 1(E + 0E). Denote by W+
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the maximal proper, open, convex, Adg, -invariant, elliptic cone in Tzl((? - x1),
satisfying W+ = conv (Adgng (R*Tp)). Then

Of =GexpiW™ -1 = G (expi(0,00)Tp) g1 - To

is an open G-invariant domain in G®/KC.

In Example 4.7 and Example 6.3 in [Gela08] it was shown that the orbit G - w
of the point w := expikE - xg, is a real hypersurface in Z¥, lying in the common
boundary of = and Q% and having G - x; in its closure.

Proposition 8.3. The domain E* in SL(n+ 1,C)/GL(n,C) is given by
ET =Gexpi[0,00)E -2g =ZUG - wUQT,

where G - w is a hypersurface orbit lying in the common boundary of = and Q7.

Like the domain ST in the SL(2,R)-case, the domain Q* has the peculiarity
that its boundary 90 consists of non-principal G-orbits in G¢/KC. But unlike
ST, the domain Q7 is not Stein and contains no G-invariant Stein subdomains (see
[Gela08], Ex. 6.3).

8.2. The higher rank case. Let G/K be a Hermitian symmetric space of rank
r > 1. Denote by {wi,...,w,} the dual basis of the simple roots {aq,...,q,}.
Define

zg:—) € expia, (22)
where k,. is the coefficient of the r-th simple restricted root «,. in the highest root
ap € A(g,a)T. If G/K is of tube type, then A(g,a) is of type C, and the highest
root is given by aj = 2a1 + ... 4+ 20,1 + a,.. Hence k, = 1 and g1 = exp(ifw,).
If G/K is not of tube type, then A(g,a) is of type BC, and ap = 2aq + ... + 2q;.

Hence k, = 2 and g1 = exp(i %).

g1 := exp(

In both cases |a(5%=)| < 7, for all restricted roots a, and |A\.(5 =) = 7,
where A, is as in (3). This shows that 2y = g1 - 2o is a point on the semisimple
boundary of the crown domain. For j = 1,...,r, define

LT Aj
g1 = exp(z§7),

where A; is as in (4). The element g ; lies in the SL(2, C)-subgroup of G® corre-
sponding to the j* triple defined in (4).

Lemma 8.4. One has

1
Wy = 5(Al-|-AQ—|—...—|—AT), in the tube case,

wp =A1+As+...+ A, in the non-tube case.

As a consequence, the following identity holds

r
g1 = H g1,5-
j=1
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Proof. In the tube case, (1) and the relations ;(3A4;) = &;;, imply that a;(1(A; +
Ao+ ...+ A;})) =6y, for j =1,...,r. Therefore w, = %(Al +As+...+ A,).

In the non-tube case, (2) and the relations A;(3A;) = &;; imply that a;(4; + As +
.+ Ay) =6, for j=1,...,r. Thus w, = A1 + A2 + ... + A,, proving the first
part of the statement. Since the s((2, R)-triples defined in (4) commute, one has

_ (Eé) (-fé)f
g1,1c .- glﬂ,fexpz2 5 esz2 5 ) =
w1
= exp(z§(§(A1 +A2 + ... +AT))) =431,
as claimed. O

8.2.1. The tube case. Let G/K be an irreducible Hermitian symmetric space of
tube type. We begin by showing that the semisimple boundary of the crown domain
= contains a point x; whose G-orbit is an irreducible symmetric space G/H of
Cayley type. As a consequence, x1 also lies on the boundary of two G-invariant
Stein domains S* € G¢/KC, arising from the compactly causal structure of G/H.
Such domains appear in a larger class of Stein domains studied by Neeb in [Nee99].
The main purpose of this subsection is to show that the domain =% contains both
= and the domain ST, as well as part of their boundaries.

Lemma 8.5. Let G/K be an irreducible Hermitian symmetric space of tube type.
Then the G-orbit of the point 1 = g1 - xo in G¢/KC is a totally real semisimple
symmetric space G/H of Cayley type, with involution T = Adg%H and H = G7. The
space G/H has the same rank, real rank and dimension as G/ K.

Proof. In the tube case w, = %(Al + As + ...+ A,). It is easy to check that
la(Fwy)| < F, for every root a € A(g,a) and that o, (Fw,) = 5. This shows that
x1 lies on the semisimple boundary 0s= of the crown domain =. More precisely,
one has a(fw,) € Z%, for every a € A(g,a). Then the orbit G - x1, with the
involution 7 = Adg, 0Ad ot = Ad,20, is a pseudo-Riemannian symmetric space, say
G/H, of the same rank, real rank and dimension as G/K (see [Geal2], Lemma 2.2).
Since x1 € 9,2, by [GiKr02], Thm. B, the space G/H is a non-compactly causal
symmetric space.

From the definition of 7 and Lemma 8.4, one can check that the further con-
ditions 0F; = —7FEj, for j = 1,...,r, are satisfied. Consequently, all the vectors
T; := E; + 0E;, and in particular the element Zy = %ZJ T; in the center of ¢ (see
Prop. 2.6), are contained in g N ¢. By Thm.1.3.8 and Rem.1.3.9 in [HiO197], the
space G/H is also compactly causal, and therefore of Cayley type, as claimed. O

Let (g = h @ q,7) be the symmetric algebra associated to the Cayley type
symmetric space G/H and let W* denote the mazimal proper, open, convex,
Adp-invariant, elliptic cones in q. Set H® = glKCgf ! Then the two domains
GexpiW*HC/H® in G/H® are Stein (cf. [Nee99], Thm. 3.5, p. 205), and likewise

S* .= GexpiW™ -1 = GexpiW* g1 To

are G-invariant, Stein domains in G¢/KC.

It is important to observe that for the Cayley type symmetric space G/H, the
mazimal and the minimal proper, open, convex, Adpy-invariant, elliptic cones in
q coincide: under the Adjoint action of H, the space q decomposes as the direct
sum of irreducibles subspaces q7 @ q~, with the property that g~ = —fq™. Each
summand contains closed, convex, Adg-invariant cones +C, C q7 and +C_ C
q~, with the property that the minimal elliptic and hyperbolic closed cones in g
are given by +£(C4 — C_) and £(C4 + C_), respectively (cf. [HiOl97], p.53). In
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particular, for the minimal closed, Adg-invariant elliptic cone er;in7 there is an
isomorphism Wt =~ C, +C,.

Denote by 6’3_ the interior of C;. Since the symmetric space G/K is biholo-
morphic to the tube domain g +4iC (see [HiO197], Rem.2.6.9, p.55), the cone C.
is selfadjoint (i.e. it coincides with its dual cone). As a consequence, the minimal

proper, closed, convex, Adg-invariant, elliptic cone in q is selfadjoint and coincides
) . The same is

with the maximal one, which by definition is its dual cone (ng
true for the respective interior parts.

Let (g = hPq,7) be the symmetric algebra associated to the Cayley type sym-
metric space G/H. Since the involutions 6 and 7 commute, g has a joint eigenspace
decomposition g = (hN€) @ (hNp) ® (qN€) @ (qNp). Let a be a maximal
abelian subspace in g Np. Then a is maximal abelian in p and in q (see [HiO197],
Prop. 3.1.11, p.77).

Fix a set of commuting s((2, R)-triples {E;,0E;, A;} as in (4). As we remarked
in the proof of Lemma 8.5, each T; := E; 4 0L is contained in q N ¢ and ¢ :=
spang{Th,..., T} is a compact Cartan subspace in ¢. In particular, ¢ contains the

element Zy = 3(Ty + ...+ T,) € Z(k) (see Prop.2.6).

Lemma 8.6. Let G/K be an irreducible Hermitian symmetric space of tube type.
Then

St=aG expi@(O,oo)Tj g1 Xo-

Jj=1

Proof. A proper, closed, convex, Adg-invariant, elliptic cone in ¢ intersects the
compact Cartan subspace ¢ in a proper, closed, convex, Wy (c)-invariant, elliptic
cone. Since the cone W+ is selfadjoint (i.e. maximal and minimal), we can identify
the intersection W;" := W N ¢ with a minimal proper, closed, convex, Wy (c)-
invariant, elliptic cone in ¢. We prove the lemma by showing that

T

Wij = @[O, OO)TJ

j=1
In order to do this we first observe that
Wr(c) = Whnak(c) = Wronk(c),

where the second isomorphism follows from the fact that the space G¢/H is non-
compactly causal, with éc hyperbolic maximal abelian in 4q. Then, by [HiO197],
Thm. 3.1.18 and Thm. 3.1.20, the group H is essentially connected, i.e. H =
H°Z ke (ic) (see [HiO197], Def. 3.1.16).

Next we need to recall the characterization of the minimal proper, closed,
convex, Wo(c)-invariant, elliptic cones in ¢ (see [KrNe96]). Consider the restricted
root system A(g®,¢®) of g€ with respect to ¢*. Define the Lie subalgebra t =
qNE® [qNEqNE C € A root a € A(gE,¢C) is called compact if g* Nt # {0},
and non-compact otherwise. Denote by A(g®, %), and A(g%, ¢©),, the compact and
non-compact roots in A(g®, ¢©), respectively. The root system A(g®, ¢©) is called
split if g C €C, for all compact roots . The Weyl group Wonx (¢) is isomorphic to
the group W, generated by the reflections in the compact roots ([KrNe96], Def.II1.9
and Prop. V.2.i). If the positive non-compact roots A(g®, ¢*),, are stable under the
group W, the system A(g®,®)* is called t-adapted.

If the symmetric algebra (g,7) is compactly causal then the restricted root
system A(g®, ¢©) is split and admits an t-adapted positive system. Moreover the
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minimal proper, closed, convex, Wronx (¢)-invariant, elliptic cones in ¢ have the
following characterization

iWE = iCOHe({ha}aeA(gC7cC)n),

where h, € ic is defined by a(H) = B(H, hy).

Now we come to our situation: since ¢ is the image of a under a Cayley trans-
form, the root system A(g®, ¢©) is isomorphic to the ordinary restricted root system
A(g, a), and is of type C,. For simplicity, identify c¢g = ic with ¢k using the Killing

form. Since the restrictions of the roots :\17 ..., A defined in Lemma 2.1 are non-
compact in A(g®, ¢©), one has that

cone({2¢;};) C iW,".

The fact that the image of cone({2e;};=1, . ) under the reflections with respect to
roots of the form +(e; +¢;), for 1 <i < j <, is not contained in any regular cone
in ic, implies that such roots are necessarily non-compact. It follows that

cone({2e;};) = cone({2e;, (e; + ex)}; izr) C iWT.

We claim that all roots of the form +(e; — e;), for 1 <i < j <r are compact.
In order to see this, first observe that the compact roots are a non-empty proper
subset of A(g®, ¢®). Then assume by contradiction that there is a non-compact root
of the form e; — e, for some i < k. Without loss of generality, we may also assume
that either e; — e;, for some i < j, or e; — ey, for some j < k, is compact. From the

W.-invariance of the cone iW:™ and

Tei—e;(€i —ex) =ej —er and 7, ., (e; —ep) = e; — e,
we deduce that either e; — e, or e; — e; is a non-compact roots and lies in W
as well. From (e; — e;) + (ej — ex) = (e; + €j) — 2ey, we obtain that R2e;, C iW,";
similarly, from (e; —e)+(e;—e;) = 2e;—(ex+e;), we obtain that R(eg+e;) C iW.

In both cases the assumption that iW" is a proper cone is contradicted. Hence

cone({2e;};) = iW.",
as desired. |

Now we can prove that the domain =% contains both the crown domain Z and
the domain S+.

Proposition 8.7. Let G/K be an irreducible Hermitian symmetric space of tube
type. Then the domain =% contains the crown

E= Gexpiea[o7 E; - xg,

Jj=1

and the domain
,

St = Gexpi@(l,oo)Ej - xg.

j=1

Proof. The first equality was proved in [KrOp08]. The second one follows from
G-invariance, and rank-1 reduction. Indeed by Lemma 8.6 and Lemma 8.1, we have

-
St =@ Hexpi(O,oo)Tj g1 T =
j=1
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=G Hexpi(O,oo)Tj Hgl,j ~xg =G H expi(0,00)T;g1, | - xo =
j=1 j=1

j=1

=G H expi(1l,00)E; - xo,
j=1
as claimed. O

8.2.2. The non-tube case. Assume now that G/K is not of tube type. Consider
the point &1 = g1 - 2o, where g1 = exp(i5 %) is as in (22). Since |a(5%)| < T, for
all @ € A(g,a), and 20, (5 %) = 7, the point z; lies on the boundary of the crown

domain. More precisely, (5 %) € Z%, for all o € A(g,a), and o.(55) = .
Then, by [Geal2], Lemma 2.1, the following facts hold: the G-orbit of z1 is not
a G-symmetric space; the group G = Za(g}) is a reductive proper subgroup of G
the orbit G - x1 C G- x1 is a reductive symmetric space with involution 7 = Adg%Q,
of the same rank and real rank as G/K, but of strictly smaller dimension. The
isotropy subgroups of x; in G and in G coincide, and the slice representation at x;

is equivalent to the isotropy representation of G- 1.

Lemma 8.8. The orbit G - x1 1s diffeomorphic to the Cayley symmetric space
associated to the tube type Hermitian symmetric space contained in G/K.

Proof. One easily verifies that Adg% is an involution of G, commuting both with
the Cartan involution © of G€ and with the conjugation o relative to G. Since
GC is simply connected, GC = Zge(gd) = FiX(GC,Adg%) is a connected reductive
group. Moreover, it is the complexification of U, the fixed point subgroup of Adg%
on the simply connected compact real form U of G©.

From the classification of simply connected, compact symmetric spaces one sees
that the following three cases occur:

G =SU(r,s), (r<s), GE=SL(r+sC), G®=S5(GL(s—rC)xGL(2rC)),
G = Spin*(2r), G© = Spin*(2r,C) G = C*Spin*(2(r —1),C),
G = Eg_14), (r=2), G®=E; G®=C*Spin(10,C).

From the above table one sees that G can be written as the commuting product

a(C = MCGSube? (23)
where M€ is a subgroup of Zgc(a®) and Gt denotes the simply connected com-
plexification of the connected, Hermitian, simple group acting on the tube-type
symmetric space contained in G/K. By [Geal2], Lemma2.1(iv), the isotropy sub-
group of x; in GC is given by (CA;'C)T = Fix(@c, 7). Since the involution 7 preserves
the subgroups M® and Gfube and 7|prc = Id|pse, there is an isomorphism of coset
spaces o

GE/(GO)™ 2 Grupe/ (Grupe) -
Moreover, since the involutions ¢ and 7 commute on CA?(C, there is also an isomor-
phism o
G/GT = Gtube/(Gtube)T~

This last fact can be seen most clearly at Lie algebra level:
g=su(r,s), (r<s), g=u(s—7r)®su(r,r), Gp, =0s =u(s—r)dsl(r,C)OR;
g=250"(2r), (rodd), g=R®s0"(2(r—1)), Gu, =0z, =R®Dsl(r —1,H)DR;
g=¢s—14), (r=2), 9=R®s50(2,8), Pu, = 0o, =R®s0(1,1)Dso(1,7).
O
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As a result of the above discussion, we have reduced ourselves to the case
of a Hermitian symmetric space of tube type Giupe/(Grube)”, With G(tcube simply-
connected. Recall that by Lemma 2.4, the element Z, € Z(¢) determining the
complex structure of G/K can be written as

Zy =S+ Ty,
where S € Zk(a) and Ty = 5 YT}, with T; = E; + 0E;. Observe that Z; lies
in g and Tp lies in gupe. Denote then by W the maximal proper, open, con-
vex, Ad(q,,,.)--invariant elliptic cone in Tj, (Giupe - 1), which satisfies W+ =
conv (Ad(g,,,.)-(R*Tp)). Then
O =GexpiW™' 21 =GexpiWtg -0

is an open G-invariant domain in G®/K®. By similar considerations as in the
previous section one obtains that

.
Qf = Gexpi@(O,oo)Tj g1 - Xo-
j=1

and an analogue of Proposition 8.7 holds true.

Proposition 8.9. Let G/K be an irreducible Hermitian symmetric space which is
not of tube-type. The domain ET contains two distinguished invariant subdomains,
namely the crown domain

E= Gexpi@[o, E; - xg,

j=1
and the domain .
Ot = Gexpi@(l, 00)Ej - xo.

Jj=1

We will see in a forthcoming paper that like in the rank-one case of non-tube type,
the domain Q7 is not Stein and contains no G-invariant Stein subdomains.

9. FINAL REMARKS.

Recall that the domain =% is G-equivariantly diffeomorphic to the anti-holo-
morphic tangent bundle of G/K. From Lemma 5.5 and Lemma 3.1, we obtain
another natural description of the crown = and of the domains St (resp. Q)
inside =%, by means of their intersections with the image of the slice a under the
map (13).

Corollary 9.1. One has

- T 1 : T 1 ‘
2= Gexpzjez?[(), 1) (A) +iJoA;) - 20 = Gexpzj@(q, 1) (A +idoA;) - o
and
T 1
St — Gexpi@(l,oo)i(/lj +iJoA;) -z =
j=1

T 1 :
Gexpi J@ (=00, =1) U (1,00)) 5 (A4; +idoA;) -z
A similar description holds true for Q7.
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Proof. Recall that by Lemma 8.7 and Lemma 8.9 one has

St = Gexpi@(l, )E;-x9 and Qf = Gexpi@(l, 00)Ej - xg
j=1 j=1
inside 27 = Gexp1 @;zl [0,00)E; - 9. Then the result follows from Lemma 5.5 and
the fact that the Weyl group Wik (a) acts by signed permutations of Ay,..., A, ona
and by signed permutations of {A; +iJy A1, ..., A +iJoA.} in {A+iJygA : A€ a},
which is a slice for the K-action on p%!.
O

REFERENCES

[AkGi90] AkHIEZER D. N., GINDIKIN S. G. On Stein extensions of real symmetric spaces. Math.
Ann. 286 (1990) 1-12.

[Bou89] BouURrBAKI N. General Topology: chapters 1-4. Springer-Verlag, Berlin, 1989.

[DuKo00] DUISTERMAAT J.J., KoLK J.A.C. Lie groups. Universitext serie, Springer-Verlag, New
York, 2000.

[FHWO05] FELS G., HUCKLEBERRY A. T., WoOLF J. A. Cycle Spaces of Flag Domains: A Complex
Geometric Viewpoint. Progress in Mathematics 245, Birkh&user, Boston 2005.

[Geal2] GEATTI L. A remark on the orbit structure of complezified symmetric spaces. Diff. Geom.
and its Appl., 30 (2012) 195-330.

[Gela08] GEATTI L., IaANNUZZI A. Univalence of equivariant Riemann domains over the com-
plexifications of rank-1 Riemannian symmetric spaces. Pac. J. Math., 238 N.2 (2008)
275-205.

[GiKr02] GINDIKIN S., KrROTZ B. Complex crowns of Riemannian symmetric spaces and non-
compactly causal symmetric spaces. T. A.M.S. 354 N. 8 (2002) 3299-3327.

[Hel01] HELGASON S. Differential geometry, Lie groups and symmetric spaces. GSM 34, AMS,
Providence, 2001.

[HiO197] HILGERT J., OLAFSSON G. Causal symmetric spaces. Geometry and harmonic analysis.
Perspectives in Mathematics, Vol.18, Academic Press, London, 1997.

[Hum95] HUMPHREYS J.E. Conjugacy Classes in Semisimple Algebraic Groups. Math. Surveys
Monographs, Vol.43, Amer. Math. Soc., Providence, RI, 1995.

[Kna04] KNapp A. W. Lie groups beyond an introduction. Birkhauser, Boston, 2004.

[KoWo65] KORANYI A., WOLF J.A. Realizations of Hermitian symmetric spaces as generalized
half-planes. Ann. of Math. 81 (1965) 265-288.

[Kro08] KRrROTZ B. Domains of holomorphy for irreducible unitary representations of simple Lie
groups. Inv. Math. 172 (2008) 277-288.

[KrNe96] KrOTZ B., NEEB K.H. On hyperbolic cones and mized symmetric spaces. J. Lie Theory
6 (1996) 69-146.

[KrOp08] KrOTZ B., OPDAM E. Analysis on the crown domain. GAFA, Geom. Funct. Anal. 18
(2008) 1326-1421.

[Moo64] MooRE C.C. Compactifications of symmetric spaces II. The Cartan domains. Amer. J.
Math. 86 (1964) 358-378.

[Nee99] NEEB K.H. On the complex geometry of invariant domains in complezified symmetric

spaces. Ann. Inst. Fourier, Grenoble, 49 (1999) 177-225.

[PaTe87] PALAIS R., TERNG C.-L. A general theory of canonical forms. Trans. Amer. Math. Soc.
300 N.2 (1987) 771-789.

LAURA GEATTI AND ANDREA IANNUZZI: D1P. DI MATEMATICA, IT UNIVERSITA DI ROMA “TOR
VERGATA”, VIA DELLA RICERCA SCIENTIFICA, 1-00133 RoMA, ITALY.
E-mail address: geatti@mat.uniroma2.it, iannuzzi®mat.uniroma2.it



