Geometria, Ingegneria Medic	a, a.a. $16/17$, scritto del 27 g	iugno 2017, Andrea Iannuzzi	Versione G
COGNOME	NOME	MATRICOLA	
Risolvere gli esercizi negli spa	zi predisposti. È <i>necessario</i> ac	ccompagnare le risposte con spi	egazioni <i>chiare</i>
e sintetiche. Consegnare SOI	LO QUESTO FOGLIO.		

Esercizio 1. Nello spazio euclideo \mathbb{E}^4 sono assegnati i sottospazi vettoriali

$$U := Span\{(0,2,1,3), (0,1,-1,0), (1,1,1,0)\}$$
 e $W := \{(x_1,x_2,x_3,x_4) : x_1 + x_3 + x_2 + x_4 = 0\}$.

- (i) Determinare una base dell'intersezione $U \cap W$ ed una della somma U + W.
- (ii) Determinare una base dei sottospazi U^{\perp} e W^{\perp} ortogonali ad U e W, rispettivamente.
- (iii) Scegliere due vettori $v_1 \in U^{\perp}$ e $v_2 \in W^{\perp}$, tali che $\langle v_1, v_2 \rangle = 288$.

Esercizio 2. Si discuta la compatibilità del sistema lineare
$$\begin{cases} 3x + (2+a)y - (1+3a)z = 1\\ x - 2y + 3z = 0\\ (2+a)x + 3y - 4z = 2 - a\\ 5x - y + 2z = 1 \end{cases}$$
 nei due

distinti casi a=0 e a=1. Ove compatibile, si determinino equazioni parametriche dello spazio delle soluzioni.

Esercizio 3. Nello spazio euclideo \mathbb{E}^3 sia π il piano per i punti di coordinate A=(1,2,3), B=(3,2,1) e C=(2,1,3) ed r la retta per A perpendicolare a π .

- (i) Determinare equazioni parametriche e cartesiane sia del piano π che della retta r.
- (ii) Mostrare che il piano σ di equazione x+y+z=0 non è parallelo alla retta r. Determinare le coordinate dell'intersezione $D:=\sigma\cap r$.
- (iii) Determinare un'equazione della sfera di centro D tangente a π e un'equazione della sfera di centro C tangente a σ .

Esercizio 4. Sia W il sottospazio di \mathbb{E}^3 di equazioni 4x + y + 3z = 0 = 4x - y + 3z. Scelta un'isometria INVERSA $F: \mathbb{E}^3 \to \mathbb{E}^3$ che fissa tutti i punti di W, si determini la matrice che rappresenta F rispetto alla base canonica.

Esercizio 5. Sia $L:\mathbb{E}^3\to\mathbb{E}^3$ l'operatore lineare rappresentato, rispetto alla base canonica, dalla matrice

$$\begin{pmatrix} 1 & 2 & -1 \\ 2 & 0 & 0 \\ -1 & 2 & 1 \end{pmatrix}.$$

- (i) Determinare una base di ogni autospazio di L e discutere la diagonalizzabilità di L.
- (ii) Mostrare che $W=\{(x,y,z): x=z\}$ definisce un sottospazio vettoriale L-invariante, ovvero che $L(W)\subseteq W$.
- (iii) Scelta una base di W, si determini la matrice che rappresenta la restrizione $L|_W:W\to W$ di L a W rispetto a tale base.
- (iv) Mostrare che $L|_W:W\to W$ è diagonalizzabile e determinare una base diagonalizzante.

Esercizio 6. Nello spazio euclideo \mathbb{E}^2 si consideri la parabola \mathcal{C} di fuoco F=(1,7) e direttrice di equazione 3x-4y=0.

- (i) Determinare un'equazione di \mathcal{C} .
- (ii) Determinare un'equazione della forma canonica \mathcal{C}' di \mathcal{C} .
- (iii) Determinare un isometria che trasforma \mathcal{C} in \mathcal{C}' .