Geometria, Ingegneria CAl	EI, Iannuzzi-Lido, a.a. 22/23, scr	itto del 4 settembre 2023	Versione B
COGNOME	NOME	MATRICOLA	
Risolvere gli esercizi negli s	pazi predisposti. È <i>necessario</i> acc	compagnare le risposte con spi	egazioni <i>chiare</i>
e sintetiche. Consegnare S	OLO QUESTI FOGLI A4.		

Esercizio 1. Sia W il sottospazio vettoriale di \mathbb{E}^4 definito dall'equazione $x_1 - x_2 = 0$ e sia W^{\perp} il sottospazio vettoriale ortogonale a W.

- i) Trovare una base ortonormale di W e completarla ad una base ortonormale di \mathbb{E}^4 .
- ii) Descrivere l'insieme C di tutti i vettori di \mathbb{E}^4 che non appartengono all'unione (insiemistica) $W \cup W^{\perp}$ in termini dei loro coefficienti rispetto alla base di \mathbb{E}^4 trovata in i). Indicare quindi un vettore di C che formi un angolo di ampiezza $\pi/4$ con tutti i vettori non nulli di W^{\perp} .
- iii) Scegliere un operatore autoaggiunto $L: \mathbb{E}^4 \to \mathbb{E}^4$ la cui immagine coincida con W e tale che L(1,1,0,0)=(0,0,1,1), indicandone esplicitamente la matrice che lo rappresenta rispetto alla base di \mathbb{E}^4 trovata al punto i).

Esercizio 2. In \mathbb{R}^4 sia S_{λ} l'insieme delle soluzioni delle due equazioni $x + (\lambda + 1)y + (\lambda^2 - 1)z + \lambda w = 2$ e x - w = 0, al variare del parametro reale λ .

- i) Determinare tutti i valori di λ per i quali l'insieme S_{λ} è non vuoto, ben giustificando la risposta.
- ii) Risolvere il sistema nel caso di $\lambda = 0$.
- iii) Sia V = Span((0, 1, 2, 0), (0, 3, 4, 0)). Trovare tutti i valori di $\lambda \in \mathbb{R}$ per i quali $V \cap S_{\lambda}$ è una retta. Fornire equazioni cartesiane della retta r parallela a $V \cap S_1$ e passante per il punto (0, 0, 0, 1).

Esercizio 3. Sia $\{v_1, v_2, v_3\}$ una base di vettori unitari di \mathbb{E}^3 tali che $\langle v_1, v_2 \rangle_{st} = 0 = \langle v_1, v_3 \rangle_{st}$ e anche $\langle v_2, v_3 \rangle_{st} = 1/2$. Sia R la riflessione ortogonale rispetto al sottospazio Span $\{v_1, v_2\}$. Determinare la matrice che rappresenta R rispetto alla base $\{v_1, v_2, v_3\}$ (sugg. scegliere una più comoda base \mathcal{B} e poi effettuare il necessario cambio di base. Oppure, determinare direttamente e correttamente le immagini dei vettori v_1, v_2, v_3 rispetto alla base $\{v_1, v_2, v_3\}$. Come sempre, un disegno ben realizzato sarà certamente di aiuto).

Esercizio 4. Nel piano euclideo \mathbb{E}^2 si considerino i punti A = (0,0), B = (4,0) e C = (0,3).

- (i) Trovare il punto P tale che d(P, A) = d(P, B) = d(P, C).
- (ii) Descrivere in forma cartesiana tutte le rette che, oltre a contenere B, formano un angolo di $\pi/4$ con la retta per i punti $B \in C$.
- (iii) Calcolare la proiezione ortogonale H di B sulla retta per A e P. Quindi calcolare l'area del triangolo \widehat{ABH} .
- (iv) Passiamo ora allo spazio euclideo. In \mathbb{E}^3 si considerino i punti D=(0,0,0), F=(1,0,0) e G=(0,9,0). Descrivere in forma parametrica l'insieme dei punti Q tali che d(Q,D)=d(Q,F)=d(Q,G).

Esercizio 5. Sia $L: \mathbb{E}^4 \to \mathbb{E}^4$ l'endomorfismo definito da L(x, y, z, w) = (x, y + w - x, y + w + z, z),

- (i) Dopo aver determinarto una base di Ker(L) e una base di Im(L), stabilire se i due sottospazi sono in somma diretta.
- (ii) Determinare una base per ogni autospazio di L e decidere se L è diagonalizzabile.
- (iii) Scelto un intero n > 1, esibire un esplicito endomorfismo $F : \mathbb{E}^n \to \mathbb{E}^n$ tale che $\operatorname{Ker}(F)$ e $\operatorname{Im}(F)$ NON siano in somma diretta.