ON HYPERBOLICITY OF SU(2)-EQUIVARIANT, PUNCTURED DISC BUNDLES OVER THE COMPLEX AFFINE QUADRIC

A. IANNUZZI

ABSTRACT. Given a holomorphic line bundle over the complex affine quadric Q^2 , we investigate its Stein, SU(2)-equivariant disc bundles. Up to equivariant biholomorphism, these are all contained in a maximal one, say Ω_{max} . By removing the zero section from Ω_{max} one obtains the unique Stein, SU(2)-equivariant, punctured disc bundle over Q^2 which contains entire curves. All other such punctured disc bundles are shown to be Kobayashi hyperbolic.

1. INTRODUCTION

Consider a Reinhardt domain D_{ρ} in $\mathbb{C} \times \mathbb{C}^*$ of the form

 $\{(w,z)\in\mathbb{C}\times\mathbb{C}^* : |z|\rho(|w|)<1\},\$

where $\rho : \mathbb{R} \to \mathbb{R}^{>0}$ is an even, upper semicontinuous function. Let S^1 act on D_{ρ} by $e^{it} \cdot (w, z) := (e^{it}w, z)$. Then D_{ρ} can be regarded as an S^1 -invariant punctured disc bundle over \mathbb{C} , with S^1 -equivariant projection $D_{\rho} \to \mathbb{C}$ given by $(w, z) \to w$. By rescaling the fiber coordinate one can normalize every D_{ρ} so that $\rho(0) = 1$.

Note that D_{ρ} is Stein if and only if ρ is logarithmically convex, i.e. if $\log \rho$ is convex. Under this assumption one has the extremal case $\rho \equiv 1$, corresponding to the trivial punctured disc bundle $D_{max} = \mathbb{C} \times \Delta^*$. Here Δ^* denotes the punctured unit disc in \mathbb{C} . All other Stein, normalized, punctured disc bundles are contained in D_{max} . These correspond to non constant, logarithmically convex ρ with $\rho(0) = 1$. In particular $\lim \rho(h) = \infty$ as $h \to \infty$ which, by a simple argument, implies that every non-maximal, Stein, punctured disc bundle D_{ρ} is Kobayashi hyperbolic. Then, by a result of Swonek ([?]), one also knows that D_{ρ} is biholomorphic to a bounded Reinhardt domain.

Let $U^{\mathbb{C}} = SL(2,\mathbb{C})$ and $K^{\mathbb{C}}$ be the universal complexifications of

$$U := SU(2) \quad \text{and} \quad K := \left\{ \begin{pmatrix} e^{iy} & 0\\ 0 & e^{-iy} \end{pmatrix} : y \in \mathbb{R} \right\},$$

respectively. Here we are interested in U-equivariant disc bundles over the complex affine quadric $Q^2 \cong U^{\mathbb{C}}/K^{\mathbb{C}}$. In the sequel $K^{\mathbb{C}}$ is identified with \mathbb{C}^* via

Mathematics Subject Classification (2010): 32L05, 32M5, 32Q28, 32Q45.

Key words: holomorphic line bundle, Kobayashi hyperbolicity, Stein manifold.

the Lie group isomorphism given by

$$\begin{pmatrix} \zeta & 0 \\ 0 & \zeta^{-1} \end{pmatrix} \to \zeta \,.$$

One checks that every holomorphic line bundle over Q^2 is isomorphic to a homogeneous line bundle of the form (cf. Sect. 2)

$$L^m := U^{\mathbb{C}} \times_{\chi^m} \mathbb{C},$$

where $m \in \mathbb{Z}$ and the character $\chi^m : K^{\mathbb{C}} \to \mathbb{C}^*$ is defined by $\chi^m(\zeta) = \zeta^m$. Consider the symmetric decomposition $\mathfrak{k} \oplus \mathfrak{p}$ of the Lie algebra \mathfrak{u} of U associated to the compact symmetric space $S^2 \cong U/K$, and let \mathfrak{a} be the maximal abelian subalgebra in \mathfrak{p} generated by a chosen element H in \mathfrak{p} . By a result of Mostow ([?]) one has the decomposition $U^{\mathbb{C}} = U \exp(i\mathfrak{a})K^{\mathbb{C}}$. Then a U-equivariant, punctured disc bundle in L^m is uniquely defined by (cf. Sect. 3)

$$\Omega_{\rho} := \{ [g, z] \in L^m : |z| |\zeta|^m \rho(h) < 1 \},\$$

where $u \exp(ihH)\zeta^{-1}$ is a Mostow decomposition of g and $\rho : \mathbb{R} \to \mathbb{R}^{>0}$ is an even, upper semicontinuous function. Moreover one shows that Ω_{ρ} is Stein if and only if the function $U^{\mathbb{C}} \to \mathbb{R}$, given by $g \to |\zeta|^m \rho(h)$, is logarithmically plurisubharmonic (Prop. ??). Warning: the function $g \to \log |\zeta|$ is not plurisubharmonic.

By acting fiberwise with a suitable element of $\exp(i\mathfrak{k})$ one can normalize Ω_{ρ} so that $\rho(0) = 1$. Then, for all $m \in \mathbb{Z}$ one finds a maximal Stein, *U*-equivariant disc bundle Ω_{max} defined by $\rho_{max}(h) := (\cosh(2h))^{|m|/2}$. It turns out that the associated punctured disc bundle Ω_{max}^* , which is obtained by removing the zero section, is not Kobayashi hyperbolic. Indeed its universal covering admits a proper \mathbb{C} -action. Moreover one shows (Thm. ??)

All other normalized, Stein, U-equivariant, punctured disc bundles are contained in Ω_{max}^* and are Kobayashi hyperbolic.

As an application we give a new proof of a known characterization of the 3-dimensional, bounded symmetric domain of type IV (Thm. ??).

Acknowledgement. I wish to thank Stefano Trapani for several helpful and pleasant discussions.

2. Line bundles over Q^2 .

Here all holomorphic line bundles over the affine complex quadric Q^2 are shown to be isomorphic to homogeneous line bundles of the form $U^{\mathbb{C}} \times_{\chi^m} \mathbb{C}$, with χ^m a character of $K^{\mathbb{C}}$.

Recall that the homogeneous bundle $U \times_K \mathfrak{p} := (U \times \mathfrak{p})/K$, where K acts on $U \times \mathfrak{p}$ by $k \cdot (u, X) := (uk^{-1}, Ad_k X)$, can be identified with the tangent bundle of

ON HYPERBOLICITY

the compact symmetric space $S^2 \cong U/K$ via the *U*-equivariant diffeomorphism $U \times_K \mathfrak{p} \to TS^2$, defined by $[u, X] \to u_*(X)$. Here \mathfrak{p} is identified with the tangent space of S^2 at the base point via the differential of the canonical projection $U \to S^2$.

As a consequence of Mostow's decomposition ([?], Lemma 4.1, cf. [?], Thm. D and [?], Sect. 9) one also has a *U*-equivariant identification of $U \times_K \mathfrak{p} \to U^{\mathbb{C}}/K^{\mathbb{C}} \cong Q^2$ given by $[u, X] \to u \exp(iX)K^{\mathbb{C}}$. Hence one obtains an identification of $U^{\mathbb{C}}/K^{\mathbb{C}}$ with the tangent bundle of U/K.

Realize the sphere $S^2 \cong U/K$ as the zero section of its tangent bundle via the immersion $\iota: U/K \to U^{\mathbb{C}}/K^{\mathbb{C}}$ defined by $uK \to uK^{\mathbb{C}}$. Let

$$B = \left\{ \begin{pmatrix} \zeta & 0\\ \beta & \zeta^{-1} \end{pmatrix} : \zeta \in \mathbb{C}^*, \ \beta \in \mathbb{C} \right\}$$

be the isotropy at [0:1] with respect to the standard linear $U^{\mathbb{C}}$ -action on \mathbb{P}^1 . Consider the projection $\pi: U^{\mathbb{C}}/K^{\mathbb{C}} \to U^{\mathbb{C}}/B$ given by $uK^{\mathbb{C}} \to uB$. One has the natural identifications $U^{\mathbb{C}}/B \cong \mathbb{P}^1 \cong S^2$ and $\pi \circ \iota = Id_{S_2}$. On the other hand the composition $\iota \circ \pi$ is the fiberwise projection onto the zero section in the tangent bundle $U^{\mathbb{C}}/K^{\mathbb{C}}$, therefore it is homotopic to $Id_{U^{\mathbb{C}}/K^{\mathbb{C}}}$. It follows that ι is a homotopic equivalence and consequently

$$\pi^*: H^2(\mathbb{P}^1, \mathbb{Z}) \to H^2(Q^2, \mathbb{Z})$$

is an isomorphism. Since $H^1(\mathbb{P}^1, \mathcal{O}^*) = H^2(\mathbb{P}^1, \mathbb{Z})$ and $H^1(Q^2, \mathcal{O}^*) = H^2(Q^2, \mathbb{Z})$, this gives an isomorphism among the groups of holomorphic line bundles

$$\pi^*: Pic(\mathbb{P}^1) \to Pic(Q^2)$$

Now recall that

$$Pic(\mathbb{P}^1) = \{ \hat{L}^m := U^{\mathbb{C}} \times_{\hat{\chi}^m} \mathbb{C} : m \in \mathbb{Z} \},\$$

where $\hat{\chi}^m$ is the character of B defined by $\begin{pmatrix} \zeta & 0 \\ \beta & \zeta^{-1} \end{pmatrix} \to \zeta^m$ and $U^{\mathbb{C}} \times_{\hat{\chi}^m} \mathbb{C}$ is the quotient of $U^{\mathbb{C}} \times \mathbb{C}$ with respect to the B-action defined by $b \cdot (g, z) = (gb^{-1}, \hat{\chi}^m(b)z)$. Indeed, since a homogeneous bundle is uniquely defined by the isotropy representation on the fiber at the base point, one has

$$\hat{L}^{m+n} = \hat{L}^m \otimes \hat{L}^n \,.$$

Then it is enough to note that the generator \hat{L}^{-1} of the group $\{\hat{L}^m : m \in \mathbb{Z}\}$ is biholomorphic to the tautological line bundle $T \subset \mathbb{P}^1 \times \mathbb{C}^2$ over \mathbb{P}^1 (cf. [?]) via the the map

$$[g,z] \to \left(g \begin{bmatrix} 0\\1 \end{bmatrix}, zg \begin{pmatrix} 0\\1 \end{pmatrix}\right),$$

where the action of $U^{\mathbb{C}}$ on \mathbb{C}^2 is the standard linear one.

Finally consider the homogeneous bundles over Q^2 of the form $L^m := U^{\mathbb{C}} \times_{\chi^m} \mathbb{C}$, where χ^m is the character on $K^{\mathbb{C}}$ defined by $\zeta \to \zeta^m$. One has the canonical

projection $U^{\mathbb{C}} \times_{\chi^m} \mathbb{C} \to U^{\mathbb{C}}/K^{\mathbb{C}}$ given by $[g, z] \to gK^{\mathbb{C}}$ and the bundle projection $U^{\mathbb{C}} \times_{\chi^m} \mathbb{C} \to U^{\mathbb{C}} \times_{\hat{\chi}^m} \mathbb{C}$ defined by $[g, z] \to [g, z]$. Moreover the diagram $U^{\mathbb{C}} \times_{\chi^m} \mathbb{C} \to U^{\mathbb{C}} \times_{\hat{\chi}^m} \mathbb{C}$ $\downarrow \qquad \qquad \downarrow$ $U^{\mathbb{C}}/K^{\mathbb{C}} \xrightarrow{\pi} U^{\mathbb{C}}/B$,

whose vertical maps are the canonical $U^{\mathbb{C}}$ -equivariant projections, is commutative. It follows that $\pi^*(U^{\mathbb{C}} \times_{\hat{\chi}^m} \mathbb{C}) = U^{\mathbb{C}} \times_{\chi^m} \mathbb{C}$ which, by the above remarks implies the following

Proposition 2.1. Every holomorphic line bundle over the affine complex quadric Q^2 is isomorphic to a homogeneous line bundle $L^m := U^{\mathbb{C}} \times_{\chi^m} \mathbb{C}$, for some $m \in \mathbb{Z}$.

3. Stein, U-equivariant disc bundles over Q^2

Define a disc bundle in L^m as a subdomain whose intersection with every fiber of the canonical projection onto $Q^2 \cong U^{\mathbb{C}}/K^{\mathbb{C}}$ consists of a disc of finite radius. As a consequence of Mostow's decomposition, one has

$$U^{\mathbb{C}} = U \exp(i\mathfrak{a}) K^{\mathbb{C}}$$

with \mathfrak{a} a maximal abelian subalgebra of \mathfrak{p} (cf. Sect. 1). Moreover every *U*-orbit in $U^{\mathbb{C}}/K^{\mathbb{C}}$ meets the "slice" $\exp(i\mathfrak{a})K^{\mathbb{C}}$ in an orbit of the Weyl group $W \cong \mathbb{Z}_2$. Here the non trivial element of the *W*-action is given by reflection in \mathfrak{a} .

In particular $U \setminus U^{\mathbb{C}}/K^{\mathbb{C}}$ is homeomorphic to \mathfrak{a}/W and for every fixed $m \in \mathbb{Z}$ there is a one-to-one correspondence among U-equivariant disc bundles in L^m and even, upper semicontinuous, positive functions on \mathfrak{a} . Namely, let \mathfrak{a} be generated by $H := \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$. Then an even, upper semicontinuous, positive function $\rho : \mathbb{R} \to \mathbb{R}^{>0}$ defines a unique U-equivariant disc bundle in L^m by

$$\Omega_{\rho} := \left\{ \left[g, z \right] \in U^{\mathbb{C}} \times_{\chi^m} \mathbb{C} : |z| |\zeta|^m \rho(h) < 1 \right\},$$

where $u \exp(ihH)\zeta^{-1}$ is a Mostow decomposition of g. Let $U \times K$ act on $U^{\mathbb{C}}$ by $(u,k) \cdot g := ugk^{-1}$.

It is easy to check that the $U \times K$ -invariant function $U^{\mathbb{C}} \to \mathbb{R}^{>0}$, defined by $g \to |\zeta|^m \rho(h)$, does not depend on the chosen decomposition of g and consequently Ω_{ρ} is well defined. Also note that such a function defines a U-invariant hermitian norm on L^m . **Proposition 3.1.** (i) The U-equivariant disc bundle Ω_{ρ} is Stein if and only if the $U \times K$ -invariant function $|\zeta|^m \rho(h)$ defined on $U^{\mathbb{C}}$ is logarithmically plurisub-harmonic.

(ii) If Ω_{ρ} is Stein then ρ is logarithmically convex. In particular ρ is continuous and realizes a minimum at zero.

Proof. (i) Let $\Pi : U^{\mathbb{C}} \times \mathbb{C} \to U^{\mathbb{C}} \times_{\chi^m} \mathbb{C}$ be the natural projection and $O_{\rho} := \Pi^{-1}(\Omega_{\rho})$. Then O_{ρ} is a principal \mathbb{C}^* -bundle over Ω_{ρ} and, by a classical result of Serre (cf. [?], Thm. 4 and 6), if Ω_{ρ} is Stein so is O_{ρ} . On the other hand Ω_{ρ} is the quotient of O_{ρ} with respect to the twisted $K^{\mathbb{C}}$ -action. Thus if O_{ρ} is Stein, so is Ω_{ρ} by Theorem 5 in [?].

Finally note that the generalized Reinhardt domain $O_{\rho} = \{ (g, z) \in U^{\mathbb{C}} \times \mathbb{C} : |z| < |\zeta|^{-m} \rho(h)^{-1} \}$ is Stein if and only if the function $U^{\mathbb{C}} \to \mathbb{R}$, given by $g \to -\log(|\zeta|^{-m} \rho(h)^{-1})$, is plurisubharmonic (cf. [?], Sect. 19.4).

(ii) Let $f : \mathbb{C} \to U^{\mathbb{C}}$ be the holomorphic map defined by $x + iy \to \exp(x + iy)H$. By composing with the plurisubharmonic function $\log(|\zeta|^m \rho(h))$ one obtains the \mathbb{R} -invariant function $\mathbb{C} \to \mathbb{R}$, given by $x + iy \to \log \rho(y)$, whose subharmonicity is equivalent to convexity of $\log \rho$. The last part of the statement follows from elementary properties of convex, even functions on \mathbb{R} . \Box

Remark 3.2. By [?], Thm. 1, p. 367, the function $\rho : \mathbb{R} \to \mathbb{R}^{>0}$ is logarithmically convex if and only if the $U \times K^{\mathbb{C}}$ -invariant function on $U^{\mathbb{C}}$, defined by $g \to \rho(h)$, is logarithmically plurisubharmonic.

Remark 3.3. In the definition of a disc bundle one could allow the fibers to have infinite radius, i.e. the function ρ to take values in $\mathbb{R}^{>0} \cup \{\infty\}$. Then, for a Stein, *U*-equivariant disc bundle Ω_{ρ} , the convexity of ρ would imply that either $\Omega_{\rho} = L^m$ or ρ is real valued as in the above setting. That is, no matter which definition one chooses, the above proposition describes all proper, Stein, *U*-equivariant disc bundles over Q^2 .

4. Some coordinates

For later use we introduce some coordinates on the double quotient $U \setminus U^{\mathbb{C}}/K$. First consider the map

$$\Pi_1: U^{\mathbb{C}} \to U^{\mathbb{C}}, \quad g \to \sigma_U(g)^{-1}g,$$

where $\sigma_U : U^{\mathbb{C}} \to U^{\mathbb{C}}$, given by $g \to^t \overline{g}^{-1}$, is the antiholomorphic involutive automorphism of $U^{\mathbb{C}}$ whose fixed point set is U. Let U act on $U^{\mathbb{C}}$ by left

multiplication and note that every fiber of Π_1 consists of a single *U*-orbit. Thus $\Pi_1(U^{\mathbb{C}})$ is set theoretically equivalent to $U \setminus U^{\mathbb{C}}$ and

$$\Pi_1: U^{\mathbb{C}} \to \Pi_1(U^{\mathbb{C}})$$

is a realization of the quotient map. Moreover, one checks that $\Pi_1(U^{\mathbb{C}})$ consist of the connected component of $\{g \in U^{\mathbb{C}} : \sigma_U(g) = g^{-1}\}$, explicitly given by

$$\mathcal{Q} := \left\{ \begin{pmatrix} s & b \\ \overline{b} & t \end{pmatrix} : s, t \in \mathbb{R}^{>0}, b \in \mathbb{C} \text{ and } st - |b|^2 = 1 \right\}.$$

Let us describe how the right K-action on $U^{\mathbb{C}}$ is transformed after applying Π_1 . An element of K is given by $k = \exp(yC)$ for some real y and $C := \begin{pmatrix} i & 0 \\ 0 & -i \end{pmatrix}$. Then one has

$$\Pi_1(gk^{-1}) = \sigma_U(g\exp(-yC))^{-1}g\exp(-yC) = \sigma_U(\exp(-yC))^{-1}\sigma_U(g)^{-1}g\exp(-yC) = k\Pi_1(g)k^{-1}$$

Therefore $\Pi_1 : U^{\mathbb{C}} \to \mathcal{Q}$ is *K*-equivariant, if one lets *K* act on $U^{\mathbb{C}}$ by right multiplication and on \mathcal{Q} by conjugation, i.e.

$$\exp(yC) \cdot \begin{pmatrix} s & b \\ \overline{b} & t \end{pmatrix} := \begin{pmatrix} s & e^{2iy}b \\ e^{-2iy}\overline{b} & t \end{pmatrix},$$

for every $y \in \mathbb{R}$. In particular, after applying Π_1 , the K-action reads as rotations on b. Let

$$\mathcal{P} := \{ (s,t) \in \mathbb{R}^2 : st \ge 1 \}$$

and define $\Pi_2 : \mathcal{Q} \to \mathcal{P}$ by

$$\begin{pmatrix} s & b \\ \overline{b} & t \end{pmatrix} \to (s, t) \,.$$

For every $(s,t) \in \mathcal{P}$ the inverse image $\Pi_2^{-1}(s,t)$ consists of a single K-orbit given by

$$\left\{ \begin{pmatrix} s & b \\ \overline{b} & t \end{pmatrix} \in \mathcal{Q} : |b|^2 = st - 1 \right\}.$$

Hence \mathcal{P} is a realization of the quotient $\mathcal{Q}/K \cong U \setminus U^{\mathbb{C}}/K$ and (s,t) can be regarded as coordinates for $U \setminus U^{\mathbb{C}}/K$. Moreover the composition map $\Pi_2 \circ \Pi_1$ is a realization of the quotient map.

Now let $u \exp(ihH)\zeta^{-1}$ be a Mostow decomposition of an element g of $U^{\mathbb{C}}$, with $\zeta = e^{x+iy}$. One has

$$\Pi_2 \circ \Pi_1(g) = \Pi_1 \circ \Pi_2 \left(\exp(ihH) \begin{pmatrix} e^{-x} & 0\\ 0 & e^x \end{pmatrix} \right) =$$

$$\Pi_2 \left(\begin{pmatrix} e^{-x} & 0\\ 0 & e^x \end{pmatrix} \begin{pmatrix} 0 & -2ih\\ 2ih & 0 \end{pmatrix} \begin{pmatrix} e^{-x} & 0\\ 0 & e^x \end{pmatrix} \right) = \left(e^{-2x} \cosh 2h, e^{2x} \cosh 2h \right).$$

Then one can define the $U \times K$ -invariant functions $|\zeta| = e^x$ and h in terms of the coordinates (s,t) on the quotient $\mathcal{P} \cong U \setminus U^{\mathbb{C}}/K$. For this it is convenient to choose h to be positive.

Lemma 4.1. Let $u \exp(ihH)\zeta^{-1}$ be a Mostow decomposition of an element g in $U^{\mathbb{C}}$, with $h \ge 0$.

(i) The $U \times K$ -invariant function $g \to |\zeta|$ on $U^{\mathbb{C}}$ pushes down on \mathcal{P} to

$$|\zeta| = \sqrt[4]{\frac{t}{s}} \,.$$

(i) The $U \times K$ -invariant function $g \to h$ on $U^{\mathbb{C}}$ pushes down on \mathcal{P} to

$$h = \frac{1}{2}\operatorname{arccosh}\sqrt{st}$$

Remark 4.2. Note that if $g = \begin{pmatrix} z_1 & z_3 \\ z_2 & z_4 \end{pmatrix}$, then $(s,t) = (|z_1|^2 + |z_2|^2, |z_3|^2 + |z_4|^2)$. It follows that $\log t$ and $\log s$ are plurisubharmonic functions on $U^{\mathbb{C}}$.

5. Hyperbolicity

Given a U-equivariant disc bundle Ω_{ρ} as in section 4, the associated punctured disc bundle $\Omega_{\rho}^* := \{ [g, z] \in U^{\mathbb{C}} \times_{\chi^m} \mathbb{C}^* : |z||\zeta|^m \rho(h) < 1 \}$ is obtained by removing the zero section and can be regarded as a particular annular bundle (cf. [?]). Here we first show that, up to U-equivariant biholomorphism, every Stein, U-equivariant disc bundle Ω_{ρ} over Q^2 is contained in a maximal one, say Ω_{max} . Then we note that the universal covering of the associated punctured disc bundle Ω_{max}^* admits a proper \mathbb{C} -action. In fact Ω_{max}^* turns out to be the unique Stein, U-equivariant punctured disc bundle over Q^2 which is not Kobayashi hyperbolic. We need the following lemma. Let \mathbb{C}^* act on L^m by fiberwise multiplication.

Lemma 5.1. There exists a \mathbb{C}^* -equivariant biholomorphism $\varphi : L^m \to L^{-m}$ which maps U-equivariant, punctured disc bundles in L^m onto U-equivariant, punctured disc bundles in L^{-m} . *Proof.* Consider the basis of \mathfrak{u} given by

$$C := \begin{pmatrix} i & 0 \\ 0 & -i \end{pmatrix}, \quad H := \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}, \quad W := \begin{pmatrix} 0 & i \\ i & 0 \end{pmatrix}$$

and let $\hat{\varphi} : U^{\mathbb{C}} \to U^{\mathbb{C}}$ be the Lie group isomorphism associated to the Lie algebra isomorphism mapping $\{C, H, W\}$ into $\{-C, -H, W\}$. Extend $\hat{\varphi}$ to the isomorphism of $U^{\mathbb{C}} \times \mathbb{C}$ defined by $(g, z) \to (\hat{\varphi}(g), z)$. Since $\hat{\varphi}(k) = k^{-1}$ for all $k \in K^{\mathbb{C}}$, one has

$$\hat{\varphi}(gk^{-1},\chi^m(k)z) = (\hat{\varphi}(g)k,\chi^m(k)z) = (\hat{\varphi}(g)(k^{-1})^{-1},\chi^{-m}(k^{-1})z).$$

This implies that $\hat{\varphi}$ pushes down to a biholomorphism $\varphi: L^m \to L^{-m}$. Moreover by construction $\hat{\varphi}(U) = U$, therefore every U-invariant domain of L^m is mapped onto a U-invariant domain of L^{-m} .

In order to avoid ambiguity, here we let $\Omega_{m,\rho}$ denote the U-equivariant disc bundle Ω_{ρ} contained in L^m . If $[g, z] \in \Omega_{m,\rho}$, with $g = u \exp(ihH)\zeta^{-1}$, one has

$$\varphi([g,z]) = [\varphi(u)\exp(-ihH)(\zeta^{-1})^{-1}, z],$$

with $|z||\zeta^{-1}|^{-m}\rho(-h) = |z||\zeta|^m\rho(h) < 1$. Thus $\varphi(\Omega_{m,\rho}) = \Omega_{-m,\rho}$, implying the statement.

Remark 5.2. Since $\hat{\varphi}(K^{\mathbb{C}}) = K^{\mathbb{C}}$, one can consider the induced biholomorphism $\hat{\varphi}: Q^2 \to Q^2$ and it is easy to check that $L^m = \hat{\varphi}^*(L^{-m})$ for all m > 0. However recall that L^m and L^{-m} are not isomorphic as line bundles over Q^2 .

If $m \neq 0$, then $U^{\mathbb{C}}$ acts transitively on $U^{\mathbb{C}} \times_{\chi^m} \mathbb{C}^*$ by $g \cdot [g', z] := [gg', z]$ and the isotropy at [e, 1] is the cyclic group $\Gamma_m = \{\zeta \in K^{\mathbb{C}} : \zeta^m = 1\}$. Therefore one has a commutative diagram

$$\begin{array}{cccc}
 & & & & \\
 & & & & \\
 & & & & \\
 & & & U^{\mathbb{C}} \times_{\chi^m} \mathbb{C}^*
\end{array}$$

where π is the orbit map given by $\pi(g) = [g, 1]$. It follows that $\widetilde{\Omega}_{\rho}^* := \pi^{-1}(\Omega_{\rho}^*) = \{g \in U^{\mathbb{C}} : |\zeta|^m \rho(h) < 1\}$ is a covering of Ω_{ρ}^* with *m*-sheets. In fact it is the universal covering of Ω_{ρ}^* , since it is homeomorphic to $U^{\mathbb{C}}$, which is simply connected. Indeed $\widetilde{\Omega}_{\rho}^*$ itself can be regarded as a disc bundle over Q^2 and one can apply a suitable fiberwise radial dilatation deforming $\widetilde{\Omega}_{\rho}^*$ onto $U^{\mathbb{C}}$.

For every $m \in \mathbb{Z}$ let Ω_{max}^* be the *U*-equivariant, punctured disc bundle in L^m associated to $\rho_{max} : \mathbb{R} \to \mathbb{R}^{>0}$ defined by $\rho_{max}(h) := (\cosh 2h)^{|m|/2}$.

ON HYPERBOLICITY

Proposition 5.3. The U-equivariant, punctured disc bundle Ω_{max}^* is Stein and its universal covering admits a proper \mathbb{C} -action. In particular Ω_{max}^* is not Kobayashi hyperbolic.

Proof. For m = 0 one has $\Omega_{max}^* = Q^2 \times \Delta^*$ and the statement follows by considering the action on Q^2 of any one parameter subgroup in $U^{\mathbb{C}}$. Next, by Lemma ?? one has $|\zeta| = \sqrt[4]{\frac{t}{s}}$ and

$$h = \frac{1}{2}\operatorname{arccosh}\sqrt{st} = \frac{1}{2}\operatorname{arccosh} e^{\frac{1}{2}(\log s + \log t)}.$$

Define $\theta : \mathbb{R}^{\geq 0} \to \mathbb{R}^{\geq 0}$ by $\theta(\tau) := \log \rho(\frac{1}{2}\operatorname{arccosh} e^{\frac{\tau}{2}})$. Then

$$\log(|\zeta|^m \rho(h)) = m \log|\zeta| + \log \rho(h) = \frac{m}{4} (\log t - \log s) + \theta(\log t + \log s) =$$
$$\theta(\log t + \log s) - \frac{m}{4} (\log t + \log s) + \frac{m}{2} \log t.$$

Assume that m > 0 and fix $\rho_{max}(h) = (\cosh 2h)^{m/2}$, which corresponds to $\theta_{max}(\tau) = \frac{m}{4}\tau$. Then the above equation implies that $\log |\zeta|^m \rho_{max}(h) = \frac{m}{2}\log t$, which is plurisubharmonic by Remark ??. Therefore Ω_{max} is Stein by Prop. ?? and so is the associated punctured disc bundle Ω_{max}^* .

Finally note that the function $U^{\mathbb{C}} \to \mathbb{R}^{>0}$ given by $g \to t$ is invariant with respect to the proper \mathbb{C} -action on $U^{\mathbb{C}}$ defined by (cf. Rem. ??)

$$w \cdot g := g \begin{pmatrix} 1 & 0 \\ w & 1 \end{pmatrix}.$$

Thus the universal covering $\widetilde{\Omega}_{max}^* = \{g \in U^{\mathbb{C}} : \frac{m}{2} \log t < 0\}$ is a \mathbb{C} -invariant subdomain of $U^{\mathbb{C}}$, proving the statement for m > 0. A similar argument (or use Lemma ??) applies to the case when m < 0.

Note that the fiberwise multiplication by $\rho(0)$ on $U^{\mathbb{C}} \times_{\chi^m} \mathbb{C}$, given by $[g, z] \to [g, \rho(0)z]$, maps Ω_{ρ} biholomorphically and U-equivariantly onto $\Omega_{\rho/\rho(0)}$. It follows that one can always normalize Ω_{ρ} so that $\rho(0) = 1$.

Theorem 5.4.

(i) Every Stein, normalized, U-equivariant, disc bundle Ω_{ρ} over Q^2 is contained in Ω_{max} , and

(ii) if Ω_{ρ} does not coincide with Ω_{max} , then the associated Stein, punctured disc bundle Ω_{ρ}^{*} is Kobayashi Hyperbolic.

Proof. First assume m = 0 and let $\Omega_{\rho} = \{ (gK^{\mathbb{C}}, z) \in Q^2 \times \mathbb{C} : |z|\rho(h) < 1 \}$ be Stein. Since $\rho(0) = 1$ and ρ is logarithmically convex by Prop. ??, it follows that $\Omega_{\rho} \subset Q^2 \times \Delta = \Omega_{max}$, proving (i). For (ii) consider the associated (Stein) punctured disc bundle Ω_{ρ}^* and the projection $\pi : \Omega_{\rho}^* \to \Delta^*$ onto the second factor. Note that if ρ is non constant then $\rho(h)^{-1} \to 0$ as $h \to \infty$. As a consequence for every relatively compact domain A of Δ^* the preimage $\pi^{-1}(A)$ is contained in the product $U \exp(IiH)K^{\mathbb{C}} \times A$, for some relatively compact interval I in \mathbb{R} . In particular $\pi^{-1}(A)$, being relatively compact in a Stein manifold, is Kobayashi hyperbolic and so is Ω_{ρ}^* by Thm. 3.2.15 in [?].

If $m \neq 0$ we prove the inclusion in (i) for the universal coverings Ω_{ρ} and $\widetilde{\Omega}_{max}$. As a consequence of Lemma ?? it is enough to consider the case m > 0. Recall that

$$\widetilde{\Omega}_{max} = \left\{ g \in U^{\mathbb{C}} : \frac{m}{2} \log t < 0 \right\}.$$

Note that

$$\widetilde{\Omega}_{\rho} = \left\{ g \in U^{\mathbb{C}} : \delta(\log s + \log t) + \frac{m}{2} \log t < 0 \right\},\$$

where $\delta: [0,\infty) \to \mathbb{R}$ is defined by

$$\delta(\tau) := \theta(\tau) - \frac{m}{4}\tau = \log \rho(\frac{1}{2}\operatorname{arccosh}(e^{\tau/2})) - \frac{m}{4}\tau.$$

Since $\delta(0) = 0$, in order to prove (i) it is enough to show that δ is increasing. Indeed one has

Claim. The function δ is increasing. Moreover, if $\delta \neq 0$ then $\delta(\tau) \to \infty$ as $\tau \to \infty$.

Proof. Since Ω_{ρ} is Stein, the $U \times K$ -invariant function $U^{\mathbb{C}} \to \mathbb{R}^{>0}$, given by $|\zeta|^m \rho(h) = \delta(\log s + \log t) + \frac{m}{2} \log t$, is plurisubharmonic (cf. Proposition ??). Then, by composing with the holomorphic map $\mathbb{C} \to U^{\mathbb{C}}$, defined by

$$x + iy \to \begin{pmatrix} 1 & 0\\ e^{x + iy} & 1 \end{pmatrix} +$$

one obtains an subharmonic, $i\mathbb{R}$ -invariant function, namely $x + iy \to \delta(\log(1 + e^{2x}))$. It follows that the function $x \to \delta(\log(1 + e^{2x}))$ is convex. Then it is necessarily increasing, since it converges to 0 as $x \to -\infty$. Furthermore $x \to \log(1 + e^{2x})$ is strictly increasing, therefore δ is also increasing, as claimed. Finally note that if $\delta \not\equiv 0$, then $x \to \delta(\log(1 + e^{2x}))$ is non constant, convex and increasing. Then necessarily $\delta(\tau) \to \infty$ as $\tau \to \infty$, concluding the proof of the claim.

For (ii) note that by Theorem 3.2.8 in [?] the Stein, punctured disc bundle Ω_{ρ}^* is Kobayashi hyperbolic if and only if its covering $\widetilde{\Omega}_{\rho}^* \subset U^{\mathbb{C}}$ is hyperbolic.

Assume as above that m > 0 and consider the projection

$$P: \widetilde{\Omega}^*_{\rho} \to \mathbb{C}^2 \setminus \{(0,0)\}, \qquad \begin{pmatrix} z_1 & z_3 \\ z_2 & z_4 \end{pmatrix} \to (z_3, z_4).$$

Since $\delta \geq 0$ and $\delta(\log s + \log t) + \frac{m}{2}\log t < 0$ on $\widetilde{\Omega}_{\rho}^{*}$ it follows that $t = |z_{3}|^{2} + |z_{4}|^{2} < 1$ and consequently $P(\widetilde{\Omega}_{\rho}^{*})$, being contained in the punctured unit ball $\mathbb{B}_{1}^{*}(0,0)$ of \mathbb{C}^{2} , is Kobayashi hyperbolic. Then, by Thm. 3.2.15 in [?], in order to show that $\widetilde{\Omega}_{\rho}^{*}$ is Kobayashi hyperbolic it is sufficient to show that for every fixed (z_{3}, z_{4}) in $P(\widetilde{\Omega}_{\rho}^{*})$ there exists ε small enough such that $P^{-1}(\mathbb{B}_{\varepsilon}(z_{3}, z_{4}))$ is Kobayashi hyperbolic. Here $\mathbb{B}_{\varepsilon}(z_{3}, z_{4})$ denotes the ball centered in (z_{3}, z_{4}) of radius ε . Choose ε such that $\mathbb{B}_{\varepsilon}(z_{3}, z_{4})$ is relatively compact in $\mathbb{B}_{1}^{*}(0, 0)$. Then there exists a real, positive constant C such that $-C < \log t$ and consequently $\delta(\log s + \log t) < \frac{m}{2}C$ on $P^{-1}(\mathbb{B}_{\varepsilon}(z_{3}, z_{4}))$. Since by assumption $\rho \not\equiv \rho_{max}$, i.e. $\delta \not\equiv 0$, the above claim implies that $\delta(\tau) \to \infty$ as $\tau \to \infty$. It follows that $\log s + \log t < D$ for some real constant D. Hence $\log s < D + C$ and consequently $s = |z_{1}|^{2} + |z_{2}|^{2}$ is bounded. This implies that $P^{-1}(\mathbb{B}_{\varepsilon}(z_{3}, z_{4}))$ is contained in the product of two balls in \mathbb{C}^{4} , therefore it is Kobayashi hyperbolic.

Remark 5.5. Note that the Stein, *U*-equivariant, punctured disc bundles Ω_{ρ}^{*} are not hyperconvex, in the sense of [?]. Assume by contradiction that there exists a bounded plurisubharmonic exhaustion φ defined on Ω_{ρ}^{*} . Since every fiber *F* is closed in Ω_{ρ}^{*} , the restriction $\varphi|_{F}$ of φ to *F* is a subharmonic exhaustion. In particular $\varphi|_{F}$ is not constant. However *F* is biholomorphic to a punctured disc and $\varphi|_{F}$ is bounded, therefore $\varphi|_{F}$ extends to a bounded, subharmonic function on the whole disc with a maximum at the origin. Hence $\varphi|_{F}$ is constant, giving a contradiction.

For later use we note the following fact.

Lemma 5.6. Let $\Omega_{\rho} \subset L^m$ be a Stein, U-equivariant disc bundle over Q^2 . If $m \neq 0$ then every automorphism of Ω_{ρ} leaves the zero section invariant.

Proof. Note that if p belongs to the zero section $Z \cong U^{\mathbb{C}}/K^{\mathbb{C}}$, then for every X in the 2-dimensional tangent space $T_pZ \cong \mathfrak{p}^{\mathbb{C}}$ there exists an entire curve through p and tangent to X. Namely, $\exp(\mathbb{C}X) \cdot p$. Then it is enough to show that for $p \in \Omega_{\rho}^*$ the subspace of the elements of $T_p\Omega_{\rho}$ with this property is lower dimensional.

For this consider the free action of the cyclic group $\Gamma_m \subset K^{\mathbb{C}} \cong \mathbb{C}^*$ on the punctured unit ball $\mathbb{B}_1^*(0,0)$ in \mathbb{C}^2 given by $\gamma \cdot (z,w) := (\gamma z, \gamma w)$. Let $P: \Omega_{\rho}^* \to \mathbb{B}_1^*(0,0)/\Gamma_m$ be the projection defined by (cf. the proof of Thm. ??)

$$\begin{bmatrix} \begin{pmatrix} z_1 & z_3 \\ z_2 & z_4 \end{pmatrix}, 1 \end{bmatrix} \to \begin{bmatrix} z_3, z_4 \end{bmatrix}$$

and let $\iota : \mathbb{B}_1^*(0,0)/\Gamma_m \to \Delta^3$ be the injective holomorphic map defined by $[z,w] \to (z^m, z^{m-1}w, w^m)$.

For an entire curve $f : \mathbb{C} \to \Omega_{\rho}$ through $p \in \Omega_{\rho}^{*}$ the inverse image $f^{-1}(Z)$ is a discrete set. Moreover the composition $\iota \circ P \circ f|_{\mathbb{C} \setminus f^{-1}(Z)} : \mathbb{C} \setminus f^{-1}(Z) \to \Delta^{3}$ defines a bounded holomorphic map. Thus it extends to a bounded holomorphic function on \mathbb{C} which, by Liouville's theorem is constant. It follows that $f(\mathbb{C})$ is contained in the one dimensional fiber $P^{-1}(P(p))$ of P, which proves the statement. \Box

6. A CHARACTERIZATION

A recent classification of holomorphic actions of classical simple, real Lie groups by Huckleberry and Isaev applies to show that the bounded symmetric domain $SO(3,2)/(SO(3) \times SO(2))$ is characterized among Stein manifolds by its complex dimension and by its automorphism group (see Thm. 8.1 in [?]). As an application of Theorem ?? we present a different proof of this fact. Here we follow the strategy pointed out in [?], where higher dimensional bounded symmetric domains of type IV were considered. We need a preparatory lemma. For notations and definitions we refer to [?].

Lemma 6.1. (cf. Prop. 4.7 in [?]) Let X be a 3-dimensional Stein manifold such that Aut(X) is isomorphic to SO(3,2). Assume that X contains a minimal $SO(3) \times SO(2)$ -orbit of dimension 3 which is SO(3)-homogeneous. Then X is biholomorphic to a $U \times K$ -invariant domain in $U^{\mathbb{C}}/\Gamma_m$.

Proof. Let $M = (SO(3, \mathbb{R}) \times SO(2, \mathbb{R}))/H$ be the minimal 3-dimensional orbit. Then the connected component H^e of the isotropy subgroup H at eis 1-dimensional and there exists an isomorphism $SO(2, \mathbb{R}) \to H^e$, say $t \to (\varphi(t), \psi(t))$. By (ii) of Lemma 4.6 in [?] the $SO(2, \mathbb{R})$ -action on M is free, therefore the homomorphism φ is injective. Up to Lie group isomorphism we may assume that $\varphi(SO(2, \mathbb{R}))$ is the one parameter subgroup of $SO(3, \mathbb{R})$ generated by the element

$$\begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 0 \end{pmatrix}$$

belonging to the Lie algebra of $SO(3,\mathbb{R})$. By assumption $M = SO(3,\mathbb{R})/F$, where $F := H \cap SO(3)$ is finite. Since F is a subgroup of H, it normalizes H^e . As a consequence F is contained in the normalizer of $\varphi(SO(2,\mathbb{R}))$, which

ON HYPERBOLICITY

is given by $\varphi(SO(2,\mathbb{R})) \cup \gamma \varphi(SO(2,\mathbb{R})) \cong O(2,\mathbb{R})$, where $\gamma := diag(-1,-1,1)$. However, if F contains an element of the form $\gamma \varphi(t')$, then for all $t \in SO(2,\mathbb{R})$ one has $(\gamma \varphi(t')\varphi(t)\varphi(t')^{-1}\gamma^{-1},\psi(t)) = (\varphi(t)^{-1},\psi(t)) \in H$ and consequently $(\varphi(t)^{-1},\psi(t))(\varphi(t),\psi(t)) = (e,\psi(t)^2) \in H$. Since the $SO(2,\mathbb{R})$ -action on M is free ((ii) of Lemma 4.6 in [?]), this implies that the homomorphism ψ is trivial and $M = SO(3,\mathbb{R})/O(2,\mathbb{R}) \times SO(2,\mathbb{R})$, contradicting the transitivity of the $SO(3,\mathbb{R})$ -action. Hence F is a cyclic subgroup of $\varphi(SO(2,\mathbb{R}))$. Consider the commutative diagram

$$SO(3, \mathbb{R})$$

 $\downarrow \qquad \searrow \Psi$
 $SO(3, \mathbb{R})/F \cong (SO(3, \mathbb{R}) \times SO(2, \mathbb{R}))/H = M$

where the surjective orbit map Ψ is defined by $\Psi(g) = [g, e]$. Let $SO(3, \mathbb{R}) \times SO(2, \mathbb{R})$ act on $SO(3, \mathbb{R})$ by $(g', t) \cdot g := g'g\varphi(t)^{-1}$ and naturally on M (i.e., by left $SO(3, \mathbb{R}) \times SO(2, \mathbb{R})$ -action). One has

$$\Psi(g'g\varphi(t)^{-1}) = [g'g\varphi(t)^{-1}, \psi(t)\psi(t)^{-1}] = [g'g, \ \psi(t)] = (g', \psi(t)) \cdot \Psi(g)$$

Now recall that X is biholomorphic to an $SO(3, \mathbb{R}) \times SO(2, \mathbb{R})$ -invariant domain in the complexified orbit $(SO(3, \mathbb{C}) \times SO(2, \mathbb{C}))/H^{\mathbb{C}}$ (cf. the beginning of Sect. 4.1 in [?]) and extend the isomorphism in the above diagram to $SO(3, \mathbb{C})/F \rightarrow (SO(3, \mathbb{C}) \times SO(2, \mathbb{C}))/H^{\mathbb{C}}$. Then, the analytic continuation principle and the above equivariance relation imply that the manifold X is biholomorphic to an $SO(3, \mathbb{R}) \times SO(2, \mathbb{R})$ -invariant domain in $SO(3, \mathbb{C})/F$.

Finally let $\Pi : U^{\mathbb{C}} \to SO(3, \mathbb{C})$ be a universal covering of $SO(3, \mathbb{C})$ which maps U onto $SO(3, \mathbb{R})$ and K onto H^e . Then the finite subgroup $\Pi^{-1}(F)$ of K is cyclic and $SO(3, \mathbb{C})/F$ is equivariantly biholomorphic to $U^{\mathbb{C}}/\Pi^{-1}(F)$, implying the statement. \Box

Theorem 6.2. Let X be a 3-dimensional Stein manifold such that Aut(X) is isomorphic to SO(3,2). Then X is biholomorphic to the bounded symmetric domain $SO(3,2)/(SO(3) \times SO(2))$.

Proof. If the maximal compact subgroup $SO(3) \times SO(2)$ has a fixed point in X, then the statement follows from Prop. 3.1 in [?].

So let us assume by contradiction that $SO(3) \times SO(2)$ has no fixed points in X. Then, as a consequence of Lemma ?? above, Prop. 4.8 and 4.10 in [?], the manifold X is biholomorphic to a U-invariant domain in a line bundle either over the complex affine quadric Q^2 or over Q^2/\mathbb{Z}_2 . Here we allow finite ineffectivity in order to replace the action of $SO(3, \mathbb{R})$ with the action of its universal covering U = SU(2). If the base is Q^2 , the line bundle is given by $L^m := U^{\mathbb{C}} \times_{\chi^m} \mathbb{C}^*$, for

some $m \in \mathbb{Z}$, with projection $p: L^m \to Q^2$ given by $[g, z] \to gK^{\mathbb{C}}$ (cf. Sect.2). We distinguish several cases.

If p(X) does not coincide with Q^2 , then p(X) is Kobayashi hyperbolic and so is X by Thm. 3.2.15 in [?] (cf. the proof of Thm. 5.5 in [?]). Then, as a consequence of Prop. 3.2 in [?] the group $SO(3) \times SO(2)$ has a fixed point, giving a contradiction.

If $p(X) = Q^2$ and m = 0, analogous arguments as in the proof of Thm. 5.5 in [?] imply that either X is Kobayashi hyperbolic or Aut(X) is infinite dimensional, giving again a contradiction.

If $p(X) = Q^2$ and $m \neq 0$, then one checks that X is biholomorphic either to a disc bundle Ω_{ρ} or to a punctured disc bundle Ω_{ρ}^* . As a consequence of Lemma ??, in both cases SO(3,2) acts on Ω_{ρ}^* . If $\Omega_{\rho}^* \neq \Omega_{max}^*$, then Ω_{ρ}^* is Kobayashi hyperbolic by Theorem ?? and one obtains a contradiction as above.

In the case when $\Omega_{\rho}^* = \Omega_{max}^*$ consider the projection $P : \Omega_{max}^* \to \mathbb{B}_1^*(0,0)/\Gamma_m$ introduced in the proof of Lemma ?? and note that every fiber F of P is biholomorphic to \mathbb{C} . Then hyperbolicity of $\mathbb{B}_1^*(0,0)/\Gamma_m$ implies that for every $g \in SO(3,2)$ the composition $P \circ g|_F$ is constant. That is, g maps fibers to fibers and consequently the SO(3,2)-action on Ω_{max}^* pushes down to an action on $\mathbb{B}_1^*(0,0)/\Gamma_m$. By hyperbolicity of $\mathbb{B}_1^*(0,0)/\Gamma_m$ such an action is necessarily proper and consequently every isotropy subgroup is contained in a copy of the maximal one. It follows that the minimal real dimension of every SO(3,2)-orbit in $\mathbb{B}_1^*(0,0)/\Gamma_m$ is six. Since $\mathbb{B}_1^*(0,0)/\Gamma_m$ is a complex 2-dimensional manifold, this gives a contradiction.

Similar arguments apply to the case when X is biholomorphic to a Uinvariant domain in a line bundle over Q^2/\mathbb{Z}_2 and we omit the details. \Box

References

- [Aba] M. Abate, Annular bundles, Pacific. J. Math. 134, 1 (1988), 1–26.
- [AzLo] H. Azad and J.J. Loeb, Plurisubharmonic functions and Kählerian metrics on complexification of symmetric spaces, Indag. Math. N.S. 4, 3 (1992), 365-375.
- [GIL] L. Geatti, A. Iannuzzi and J.J. Loeb, A characterization of bounded symmetric domains of type IV, Man. Math. 135 (2011) 183–202.
- [GrHa] P. Griffith and J. Harris, Principle of algebraic geometry, Wiley, New York, 1978.
- [HeSc] P. Heinzner and G. D. Schwarz, Cartan decomposition of the moment map, Math. Ann. 338, 1 (2007), 197–232.
- [HuIs] A. T. Huckleberry and A. V. Isaev, Classical Symmetries of Complex Manifolds, J. Geom. Anal. 20, 1 (2010), 132–152.

- [Las] M. Lassalle, Séries de Laurent des fonctions holomorphes dans la complexification d'un espace symétrique compact, Ann. Scient. Éc. Norm. Sup., série 4, 11 (1978), 167–210.
- [Kob] S. Kobayashi, Hyperbolic complex spaces, Grundlehren der Mathematischen Wissenshaften 318, Springer-Verlag, Berlin, 1998.
- [MaMo] Y. Matsushima and A. Morimoto, Sur certains espaces fibrés holomorphes sur une variété de Stein, Bull. Soc. Math. France 99, 1 (1960), 137–155.
- [Mos] G. D. Mostow, On covariant fiberings of Klein spaces, Amer. J. Math. 77 (1955), 247– 278.
- [Sth] J. L. Stehlé, Fonctions plurisousharmoniques et convexité holomorphe de certains fibrés analytiques, in Séminaire P. Lelong (Analyse) 1973–74, Lecture Notes in Math. 474, Springer, Berlin, 1975, 155–179.
- [Swo] W. Swonek, On hyperbolicity of pseudoconvex Reinhardt domains, Arch. Math. 72, 4 (1999), 304–314.
- [Vla] V. S. Vladimirov, Methods of the theory of functions of many complex variables, Dover Publications Inc., Mineola, New York, 2007.

Andrea Iannuzzi: Dip. di Matematica, Università di Roma "Tor Vergata", Via della Ricerca Scientifica, I-00133 Roma, Italy.

E-mail address: iannuzzi@mat.uniroma2.it