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Abstract. Given a holomorphic line bundle over the complex affine quadric
Q2, we investigate its Stein, SU(2)-equivariant disc bundles. Up to equivariant
biholomorphism, these are all contained in a maximal one, say Ωmax. By
removing the zero section from Ωmax one obtains the unique Stein, SU(2)-
equivariant, punctured disc bundle over Q2 which contains entire curves. All
other such punctured disc bundles are shown to be Kobayashi hyperbolic.

1. Introduction

Consider a Reinhardt domain Dρ in C× C∗ of the form

{ (w, z) ∈ C× C∗ : |z|ρ(|w|) < 1 },
where ρ : R → R>0 is an even, upper semicontinuous function. Let S1 act on
Dρ by eit · (w, z) := (eitw, z). Then Dρ can be regarded as an S1-invariant
punctured disc bundle over C, with S1-equivariant projection Dρ → C given by
(w, z) → w. By rescaling the fiber coordinate one can normalize every Dρ so
that ρ(0) = 1.

Note that Dρ is Stein if and only if ρ is logarithmically convex, i.e. if log ρ is
convex. Under this assumption one has the extremal case ρ ≡ 1, corresponding
to the trivial punctured disc bundle Dmax = C × ∆∗. Here ∆∗ denotes the
punctured unit disc in C. All other Stein, normalized, punctured disc bundles
are contained in Dmax. These correspond to non constant, logarithmically convex
ρ with ρ(0) = 1. In particular lim ρ(h) = ∞ as h → ∞ which, by a simple
argument, implies that every non-maximal, Stein, punctured disc bundle Dρ is
Kobayashi hyperbolic. Then, by a result of Swonek ([?]), one also knows that
Dρ is biholomorphic to a bounded Reinhardt domain.

Let UC = SL(2,C) and KC be the universal complexifications of

U := SU(2) and K :=

{(
eiy 0
0 e−iy

)
: y ∈ R

}
,

respectively. Here we are interested in U -equivariant disc bundles over the com-
plex affine quadric Q2 ∼= UC/KC. In the sequel KC is identified with C∗ via
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the Lie group isomorphism given by(
ζ 0
0 ζ−1

)
→ ζ .

One checks that every holomorphic line bundle over Q2 is isomorphic to a ho-
mogeneous line bundle of the form (cf. Sect. 2)

Lm := UC ×χm C,
where m ∈ Z and the character χm : KC → C∗ is defined by χm(ζ) = ζm.
Consider the symmetric decomposition k⊕p of the Lie algebra u of U associated
to the compact symmetric space S2 ∼= U/K, and let a be the maximal abelian
subalgebra in p generated by a chosen element H in p. By a result of Mostow
([?]) one has the decomposition UC = U exp(ia)KC. Then a U -equivariant,
punctured disc bundle in Lm is uniquely defined by (cf. Sect. 3)

Ωρ := { [g, z] ∈ Lm : |z||ζ|mρ(h) < 1 } ,
where u exp(ihH)ζ−1 is a Mostow decomposition of g and ρ : R → R>0 is
an even, upper semicontinuous function. Moreover one shows that Ωρ is Stein
if and only if the function UC → R, given by g → |ζ|mρ(h), is logarithmically
plurisubharmonic (Prop. ??). Warning: the function g → log |ζ| is not plurisub-
harmonic.

By acting fiberwise with a suitable element of exp(ik) one can normalize Ωρ

so that ρ(0) = 1. Then, for all m ∈ Z one finds a maximal Stein, U -equivariant
disc bundle Ωmax defined by ρmax(h) := (cosh(2h))|m|/2. It turns out that the
associated punctured disc bundle Ω∗max, which is obtained by removing the zero
section, is not Kobayashi hyperbolic. Indeed its universal covering admits a
proper C-action. Moreover one shows (Thm. ??)

All other normalized, Stein, U-equivariant, punctured disc bundles are contained
in Ω∗max and are Kobayashi hyperbolic.

As an application we give a new proof of a known characterization of the
3-dimensional, bounded symmetric domain of type IV (Thm. ??).

Acknowledgement. I wish to thank Stefano Trapani for several helpful and
pleasant discussions.

2. Line bundles over Q2.

Here all holomorphic line bundles over the affine complex quadric Q2 are
shown to be isomorphic to homogeneous line bundles of the form UC×χm C, with
χm a character of KC.

Recall that the homogeneous bundle U×K p := (U×p)/K, where K acts on
U×p by k ·(u,X) := (uk−1, AdkX), can be identified with the tangent bundle of
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the compact symmetric space S2 ∼= U/K via the U -equivariant diffeomorphism
U×K p→ TS2, defined by [u,X]→ u∗(X). Here p is identified with the tangent
space of S2 at the base point via the differential of the canonical projection
U → S2.

As a consequence of Mostow’s decomposition ([?], Lemma 4.1, cf. [?], Thm. D
and [?], Sect. 9) one also has a U -equivariant identification of U×Kp→ UC/KC ∼=
Q2 given by [u,X] → u exp(iX)KC. Hence one obtains an identification of
UC/KC with the tangent bundle of U/K.

Realize the sphere S2 ∼= U/K as the zero section of its tangent bundle via
the immersion ι : U/K → UC/KC defined by uK → uKC. Let

B =

{(
ζ 0
β ζ−1

)
: ζ ∈ C∗, β ∈ C

}
be the isotropy at [0 : 1] with respect to the standard linear UC-action on P1.
Consider the projection π : UC/KC → UC/B given by uKC → uB. One has
the natural identifications UC/B ∼= P1 ∼= S2 and π ◦ ι = IdS2 . On the other
hand the composition ι ◦ π is the fiberwise projection onto the zero section in
the tangent bundle UC/KC, therefore it is homotopic to IdUC/KC . It follows that
ι is a homotopic equivalence and consequently

π∗ : H2(P1,Z)→ H2(Q2,Z)

is an isomorphism. Since H1(P1,O∗) = H2(P1,Z) and H1(Q2,O∗) = H2(Q2,Z),
this gives an isomorphism among the groups of holomorphic line bundles

π∗ : Pic(P1)→ Pic(Q2) .

Now recall that

Pic(P1) = {L̂m := UC ×χ̂m C : m ∈ Z} ,

where χ̂m is the character of B defined by

(
ζ 0
β ζ−1

)
→ ζm and UC ×χ̂m C

is the quotient of UC × C with respect to the B-action defined by b · (g, z) =
(gb−1, χ̂m(b)z). Indeed, since a homogeneous bundle is uniquely defined by the
isotropy representation on the fiber at the base point, one has

L̂m+n = L̂m ⊗ L̂n .
Then it is enough to note that the generator L̂−1 of the group {L̂m : m ∈ Z} is
biholomorphic to the tautological line bundle T ⊂ P1 × C2 over P1 (cf. [?]) via
the the map

[g, z]→
(
g

[
0
1

]
, zg

(
0
1

))
,

where the action of UC on C2 is the standard linear one.
Finally consider the homogeneous bundles over Q2 of the form Lm := UC×χm

C, where χm is the character on KC defined by ζ → ζm. One has the canonical
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projection UC×χmC→ UC/KC given by [g, z]→ gKC and the bundle projection
UC ×χm C→ UC ×χ̂m C defined by [g, z]→ [g, z]. Moreover the diagram

UC ×χm C → UC ×χ̂m C

↓ ↓

UC/KC π→ UC/B ,

whose vertical maps are the canonical UC-equivariant projections, is commuta-
tive. It follows that π∗(UC ×χ̂m C) = UC ×χm C which, by the above remarks
implies the following

Proposition 2.1. Every holomorphic line bundle over the affine complex quadric
Q2 is isomorphic to a homogeneous line bundle Lm := UC ×χm C, for some
m ∈ Z.

3. Stein, U-equivariant disc bundles over Q2

Define a disc bundle in Lm as a subdomain whose intersection with every
fiber of the canonical projection onto Q2 ∼= UC/KC consists of a disc of finite
radius. As a consequence of Mostow’s decomposition, one has

UC = U exp(ia)KC ,

with a a maximal abelian subalgebra of p (cf. Sect. 1). Moreover every U -orbit
in UC/KC meets the “slice” exp(ia)KC in an orbit of the Weyl group W ∼= Z2.
Here the non trivial element of the W -action is given by reflection in a.

In particular U\UC/KC is homeomorphic to a/W and for every fixed m ∈ Z
there is a one-to-one correspondence among U -equivariant disc bundles in Lm

and even, upper semicontinuous, positive functions on a. Namely, let a be

generated by H :=

(
0 −1
1 0

)
. Then an even, upper semicontinuous, positive

function ρ : R→ R>0 defines a unique U -equivariant disc bundle in Lm by

Ωρ := { [g, z] ∈ UC ×χm C : |z||ζ|mρ(h) < 1 } ,
where u exp(ihH)ζ−1 is a Mostow decomposition of g. Let U ×K act on UC

by (u, k) · g := ugk−1.
It is easy to check that the U × K-invariant function UC → R>0, defined

by g → |ζ|mρ(h), does not depend on the chosen decomposition of g and conse-
quently Ωρ is well defined. Also note that such a function defines a U -invariant
hermitian norm on Lm.
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Proposition 3.1. (i) The U-equivariant disc bundle Ωρ is Stein if and only if
the U×K-invariant function |ζ|mρ(h) defined on UC is logarithmically plurisub-
harmonic.
(ii) If Ωρ is Stein then ρ is logarithmically convex. In particular ρ is continuous
and realizes a minimum at zero.

Proof. (i) Let Π : UC × C → UC ×χm C be the natural projection and Oρ :=
Π−1(Ωρ). Then Oρ is a principal C∗-bundle over Ωρ and, by a classical result
of Serre (cf. [?], Thm. 4 and 6), if Ωρ is Stein so is Oρ. On the other hand Ωρ is
the quotient of Oρ with respect to the twisted KC-action. Thus if Oρ is Stein,
so is Ωρ by Theorem 5 in [?].

Finally note that the generalized Reinhardt domain Oρ = { (g, z) ∈ UC ×
C : |z| < |ζ|−mρ(h)−1} is Stein if and only if the function UC → R, given by
g → − log(|ζ|−mρ(h)−1), is plurisubharmonic (cf. [?], Sect. 19.4).

(ii) Let f : C→ UC be the holomorphic map defined by x+ iy → exp(x+ iy)H.
By composing with the plurisubharmonic function log(|ζ|mρ(h)) one obtains the
R-invariant function C→ R, given by x+ iy → log ρ(y), whose subharmonicity
is equivalent to convexity of log ρ. The last part of the statement follows from
elementary properties of convex, even functions on R. � �

Remark 3.2. By [?], Thm. 1, p. 367, the function ρ : R→ R>0 is logarithmically
convex if and only if the U×KC-invariant function on UC, defined by g → ρ(h),
is logarithmically plurisubharmonic.

Remark 3.3. In the definition of a disc bundle one could allow the fibers to
have infinite radius, i.e. the function ρ to take values in R>0 ∪ {∞}. Then,
for a Stein, U -equivariant disc bundle Ωρ, the convexity of ρ would imply that
either Ωρ = Lm or ρ is real valued as in the above setting. That is, no matter
which definition one chooses, the above proposition describes all proper, Stein,
U -equivariant disc bundles over Q2.

4. Some coordinates

For later use we introduce some coordinates on the double quotient U\UC/K.
First consider the map

Π1 : UC → UC , g → σU(g)−1g ,

where σU : UC → UC, given by g →t g−1, is the antiholomorphic involutive
automorphism of UC whose fixed point set is U . Let U act on UC by left
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multiplication and note that every fiber of Π1 consists of a single U -orbit. Thus
Π1(U

C) is set theoretically equivalent to U\UC and

Π1 : UC → Π1(U
C)

is a realization of the quotient map. Moreover, one checks that Π1(U
C) consist

of the connected component of { g ∈ UC : σU(g) = g−1 }, explicitly given by

Q :=

{(
s b
b t

)
: s, t ∈ R>0, b ∈ C and st− |b|2 = 1

}
.

Let us describe how the right K-action on UC is transformed after applying Π1.

An element of K is given by k = exp(yC) for some real y and C :=

(
i 0
0 −i

)
.

Then one has

Π1(gk
−1) = σU(g exp(−yC))−1g exp(−yC) =

σU(exp(−yC))−1σU(g)−1g exp(−yC) = kΠ1(g)k−1

Therefore Π1 : UC → Q is K-equivariant, if one lets K act on UC by right
multiplication and on Q by conjugation, i.e.

exp(yC) ·
(
s b
b t

)
:=

 s e2iyb

e−2iyb t

 ,

for every y ∈ R. In particular, after applying Π1, the K-action reads as rotations
on b. Let

P := { (s, t) ∈ R2 : st ≥ 1}
and define Π2 : Q → P by (

s b
b t

)
→ (s, t) .

For every (s, t) ∈ P the inverse image Π−1
2 (s, t) consists of a single K-orbit

given by {(
s b
b t

)
∈ Q : |b|2 = st− 1

}
.

Hence P is a realization of the quotient Q/K ∼= U\UC/K and (s, t) can be
regarded as coordinates for U\UC/K. Moreover the composition map Π2 ◦ Π1

is a realization of the quotient map.
Now let u exp(ihH)ζ−1 be a Mostow decomposition of an element g of UC,

with ζ = ex+iy. One has

Π2 ◦ Π1(g) = Π1 ◦ Π2

(
exp(ihH)

(
e−x 0
0 ex

))
=
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Π2

((
e−x 0
0 ex

)(
0 −2ih

2ih 0

)(
e−x 0
0 ex

))
= (e−2x cosh 2h, e2x cosh 2h) .

Then one can define the U ×K-invariant functions |ζ| = ex and h in terms of
the coordinates (s, t) on the quotient P ∼= U\UC/K. For this it is convenient
to choose h to be positive.

Lemma 4.1. Let u exp(ihH)ζ−1 be a Mostow decomposition of an element g
in UC, with h ≥ 0.

(i) The U ×K-invariant function g → |ζ| on UC pushes down on P to

|ζ| = 4

√
t

s
.

(i) The U ×K-invariant function g → h on UC pushes down on P to

h =
1

2
arccosh

√
st .

Remark 4.2. Note that if g =

(
z1 z3

z2 z4

)
, then (s, t) = (|z1|2 + |z2|2, |z3|2 + |z4|2).

It follows that log t and log s are plurisubharmonic functions on UC.

5. Hyperbolicity

Given a U -equivariant disc bundle Ωρ as in section 4, the associated punc-
tured disc bundle Ω∗ρ := { [g, z] ∈ UC ×χm C∗ : |z||ζ|mρ(h) < 1 } is obtained
by removing the zero section and can be regarded as a particular annular bundle
(cf. [?]). Here we first show that, up to U -equivariant biholomorphism, every
Stein, U -equivariant disc bundle Ωρ over Q2 is contained in a maximal one,
say Ωmax. Then we note that the universal covering of the associated punc-
tured disc bundle Ω∗max admits a proper C-action. In fact Ω∗max turns out to
be the unique Stein, U -equivariant punctured disc bundle over Q2 which is not
Kobayashi hyperbolic. We need the following lemma. Let C∗ act on Lm by
fiberwise multiplication.

Lemma 5.1. There exists a C∗-equivariant biholomorphism ϕ : Lm → L−m

which maps U-equivariant, punctured disc bundles in Lm onto U-equivariant,
punctured disc bundles in L−m.
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Proof. Consider the basis of u given by

C :=

(
i 0
0 −i

)
, H :=

(
0 −1
1 0

)
, W :=

(
0 i
i 0

)
and let ϕ̂ : UC → UC be the Lie group isomorphism associated to the Lie
algebra isomorphism mapping {C,H,W} into {−C,−H,W}. Extend ϕ̂ to the
isomorphism of UC × C defined by (g, z)→ (ϕ̂(g), z). Since ϕ̂(k) = k−1 for all
k ∈ KC, one has

ϕ̂(gk−1, χm(k)z) = (ϕ̂(g)k, χm(k)z) = (ϕ̂(g)(k−1)−1, χ−m(k−1)z) .

This implies that ϕ̂ pushes down to a biholomorphism ϕ : Lm → L−m. Moreover
by construction ϕ̂(U) = U , therefore every U -invariant domain of Lm is mapped
onto a U -invariant domain of L−m.

In order to avoid ambiguity, here we let Ωm,ρ denote the U -equivariant disc
bundle Ωρ contained in Lm. If [g, z] ∈ Ωm,ρ, with g = u exp(ihH)ζ−1, one has

ϕ([g, z]) = [ϕ(u) exp(−ihH)(ζ−1)−1, z] ,

with |z||ζ−1|−mρ(−h) = |z||ζ|mρ(h) < 1. Thus ϕ(Ωm,ρ) = Ω−m,ρ, implying the
statement. � �

Remark 5.2. Since ϕ̂(KC) = KC, one can consider the induced biholomorphism
ϕ̂ : Q2 → Q2 and it is easy to check that Lm = ϕ̂∗(L−m) for all m > 0. However
recall that Lm and L−m are not isomorphic as line bundles over Q2.

If m 6= 0, then UC acts transitively on UC×χm C∗ by g · [g′, z] := [gg′, z] and
the isotropy at [e, 1] is the cyclic group Γm = { ζ ∈ KC : ζm = 1}. Therefore
one has a commutative diagram

UC

↓ ↘ π

UC/Γm ∼= UC ×χm C∗ ,

where π is the orbit map given by π(g) = [g, 1]. It follows that Ω̃∗ρ := π−1(Ω∗ρ) =

{g ∈ UC : |ζ|mρ(h) < 1 } is a covering of Ω∗ρ with m-sheets. In fact it is

the universal covering of Ω∗ρ, since it is homeomorphic to UC, which is simply

connected. Indeed Ω̃∗ρ itself can be regarded as a disc bundle over Q2 and one

can apply a suitable fiberwise radial dilatation deforming Ω̃∗ρ onto UC.
For every m ∈ Z let Ω∗max be the U -equivariant, punctured disc bundle in

Lm associated to ρmax : R→ R>0 defined by ρmax(h) := (cosh 2h)|m|/2.
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Proposition 5.3. The U-equivariant, punctured disc bundle Ω∗max is Stein and
its universal covering admits a proper C-action. In particular Ω∗max is not
Kobayashi hyperbolic.

Proof. For m = 0 one has Ω∗max = Q2 × ∆∗ and the statement follows by
considering the action on Q2 of any one parameter subgroup in UC. Next, by

Lemma ?? one has |ζ| = 4

√
t
s

and

h =
1

2
arccosh

√
st =

1

2
arccosh e

1
2
(log s+log t) .

Define θ : R≥0 → R≥0 by θ(τ) := log ρ(1
2
arccosh e

τ
2 ). Then

log(|ζ|mρ(h)) = m log |ζ|+ log ρ(h) =
m

4
(log t− log s) + θ(log t+ log s) =

θ(log t+ log s)− m

4
(log t+ log s) +

m

2
log t.

Assume that m > 0 and fix ρmax(h) = (cosh 2h)m/2, which corresponds to
θmax(τ) = m

4
τ . Then the above equation implies that log |ζ|mρmax(h) = m

2
log t,

which is plurisubharmonic by Remark ??. Therefore Ωmax is Stein by Prop. ??
and so is the associated punctured disc bundle Ω∗max.

Finally note that the function UC → R>0 given by g → t is invariant with
respect to the proper C-action on UC defined by (cf. Rem. ??)

w · g := g

(
1 0
w 1

)
.

Thus the universal covering Ω̃∗max = { g ∈ UC : m
2

log t < 0 } is a C-invariant
subdomain of UC, proving the statement for m > 0. A similar argument (or use
Lemma ??) applies to the case when m < 0. � �

Note that the fiberwise multiplication by ρ(0) on UC ×χm C, given by
[g, z]→ [g, ρ(0)z], maps Ωρ biholomorphically and U -equivariantly onto Ωρ/ρ(0).
It follows that one can always normalize Ωρ so that ρ(0) = 1.

Theorem 5.4.
(i) Every Stein, normalized, U-equivariant, disc bundle Ωρ over Q2 is contained
in Ωmax, and
(ii) if Ωρ does not coincide with Ωmax, then the associated Stein, punctured disc
bundle Ω∗ρ is Kobayashi Hyperbolic.
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Proof. First assume m = 0 and let Ωρ = { (gKC, z) ∈ Q2 × C : |z|ρ(h) < 1 }
be Stein. Since ρ(0) = 1 and ρ is logarithmically convex by Prop. ??, it follows
that Ωρ ⊂ Q2 ×∆ = Ωmax, proving (i). For (ii) consider the associated (Stein)
punctured disc bundle Ω∗ρ and the projection π : Ω∗ρ → ∆∗ onto the second factor.

Note that if ρ is non constant then ρ(h)−1 → 0 as h → ∞. As a consequence
for every relatively compact domain A of ∆∗ the preimage π−1(A) is contained
in the product U exp(IiH)KC×A, for some relatively compact interval I in R .
In particular π−1(A), being relatively compact in a Stein manifold, is Kobayashi
hyperbolic and so is Ω∗ρ by Thm. 3.2.15 in [?].

If m 6= 0 we prove the inclusion in (i) for the universal coverings Ω̃ρ and

Ω̃max. As a consequence of Lemma ?? it is enough to consider the case m > 0.
Recall that

Ω̃max = { g ∈ UC :
m

2
log t < 0 } .

Note that

Ω̃ρ = { g ∈ UC : δ(log s+ log t) +
m

2
log t < 0 } ,

where δ : [0,∞)→ R is defined by

δ(τ) := θ(τ)− m

4
τ = log ρ(

1

2
arccosh (eτ/2))− m

4
τ .

Since δ(0) = 0, in order to prove (i) it is enough to show that δ is increasing.
Indeed one has

Claim. The function δ is increasing. Moreover, if δ 6≡ 0 then δ(τ) → ∞ as
τ →∞.

Proof. Since Ωρ is Stein, the U ×K-invariant function UC → R>0, given by
|ζ|mρ(h) = δ(log s + log t) + m

2
log t, is plurisubharmonic (cf. Proposition ??).

Then, by composing with the holomorphic map C→ UC, defined by

x+ iy →
(

1 0
ex+iy 1

)
,

one obtains an subharmonic, iR-invariant function, namely x + iy → δ(log(1 +
e2x)). It follows that the function x → δ(log(1 + e2x)) is convex. Then it
is necessarily increasing, since it converges to 0 as x → −∞. Furthermore
x→ log(1 + e2x) is strictly increasing, therefore δ is also increasing, as claimed.
Finally note that if δ 6≡ 0, then x→ δ(log(1 + e2x)) is non constant, convex and
increasing. Then necessarily δ(τ) → ∞ as τ → ∞, concluding the proof of the
claim.

For (ii) note that by Theorem 3.2.8 in [?] the Stein, punctured disc bundle

Ω∗ρ is Kobayashi hyperbolic if and only if its covering Ω̃∗ρ ⊂ UC is hyperbolic.
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Assume as above that m > 0 and consider the projection

P : Ω̃∗ρ → C2 \ {(0, 0)} ,
(
z1 z3

z2 z4

)
→ (z3, z4).

Since δ ≥ 0 and δ(log s + log t) + m
2

log t < 0 on Ω̃∗ρ it follows that t = |z3|2 +

|z4|2 < 1 and consequently P (Ω̃∗ρ), being contained in the punctured unit ball

B∗1(0, 0) of C2, is Kobayashi hyperbolic. Then, by Thm. 3.2.15 in [?], in order

to show that Ω̃∗ρ is Kobayashi hyperbolic it is sufficient to show that for every

fixed (z3, z4) in P (Ω̃∗ρ) there exists ε small enough such that P−1(Bε(z3, z4))
is Kobayashi hyperbolic. Here Bε(z3, z4) denotes the ball centered in (z3, z4) of
radius ε. Choose ε such that Bε(z3, z4) is relatively compact in B∗1(0, 0). Then
there exists a real, positive constant C such that −C < log t and consequently
δ(log s + log t) < m

2
C on P−1(Bε(z3, z4)). Since by assumption ρ 6≡ ρmax, i.e.

δ 6≡ 0, the above claim implies that δ(τ) → ∞ as τ → ∞. It follows that
log s+log t < D for some real constant D. Hence log s < D+C and consequently
s = |z1|2 + |z2|2 is bounded. This implies that P−1(Bε(z3, z4)) is contained in
the product of two balls in C4, therefore it is Kobayashi hyperbolic. � �

Remark 5.5. Note that the Stein, U -equivariant, punctured disc bundles Ω∗ρ
are not hyperconvex, in the sense of [?]. Assume by contradiction that there exists
a bounded plurisubharmonic exhaustion ϕ defined on Ω∗ρ. Since every fiber F
is closed in Ω∗ρ, the restriction ϕ|F of ϕ to F is a subharmonic exhaustion. In
particular ϕ|F is not constant. However F is biholomorphic to a punctured disc
and ϕ|F is bounded, therefore ϕ|F extends to a bounded, subharmonic function
on the whole disc with a maximum at the origin. Hence ϕ|F is constant, giving
a contradiction.

For later use we note the following fact.

Lemma 5.6. Let Ωρ ⊂ Lm be a Stein, U-equivariant disc bundle over Q2. If
m 6= 0 then every automorphism of Ωρ leaves the zero section invariant.

Proof. Note that if p belongs to the zero section Z ∼= UC/KC, then for every
X in the 2-dimensional tangent space TpZ ∼= pC there exists an entire curve
through p and tangent to X. Namely, exp(CX) · p. Then it is enough to show
that for p ∈ Ω∗ρ the subspace of the elements of TpΩρ with this property is lower
dimensional.

For this consider the free action of the cyclic group Γm ⊂ KC ∼= C∗ on
the punctured unit ball B∗1(0, 0) in C2 given by γ · (z, w) := (γz, γw). Let
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P : Ω∗ρ → B∗1(0, 0)/Γm be the projection defined by (cf. the proof of Thm. ??)[(
z1 z3

z2 z4

)
, 1

]
→ [z3, z4]

and let ι : B∗1(0, 0)/Γm → ∆3 be the injective holomorphic map defined by
[z, w]→ (zm, zm−1w,wm).

For an entire curve f : C → Ωρ through p ∈ Ω∗ρ the inverse image f−1(Z)

is a discrete set. Moreover the composition ι ◦ P ◦ f |C\f−1(Z) : C \ f−1(Z)→ ∆3

defines a bounded holomorphic map. Thus it extends to a bounded holomorphic
function on C which, by Liouville’s theorem is constant. It follows that f(C)
is contained in the one dimensional fiber P−1(P (p)) of P , which proves the
statement. � �

6. A characterization

A recent classification of holomorphic actions of classical simple, real Lie
groups by Huckleberry and Isaev applies to show that the bounded symmetric
domain SO(3, 2)/(SO(3) × SO(2)) is characterized among Stein manifolds by
its complex dimension and by its automorphism group (see Thm. 8.1 in [?]). As
an application of Theorem ?? we present a different proof of this fact. Here
we follow the strategy pointed out in [?], where higher dimensional bounded
symmetric domains of type IV were considered. We need a preparatory lemma.
For notations and definitions we refer to [?].

Lemma 6.1. (cf. Prop. 4.7 in [?]) Let X be a 3-dimensional Stein manifold such
that Aut(X) is isomorphic to SO(3, 2). Assume that X contains a minimal
SO(3) × SO(2)-orbit of dimension 3 which is SO(3)-homogeneous. Then X is
biholomorphic to a U ×K-invariant domain in UC/Γm.

Proof. Let M = (SO(3,R) × SO(2,R))/H be the minimal 3-dimensional or-
bit. Then the connected component He of the isotropy subgroup H at e
is 1-dimensional and there exists an isomorphism SO(2,R) → He, say t →
(ϕ(t), ψ(t)). By (ii) of Lemma 4.6 in [?] the SO(2,R)-action on M is free, there-
fore the homomorphism ϕ is injective. Up to Lie group isomorphism we may
assume that ϕ(SO(2,R)) is the one parameter subgroup of SO(3,R) generated
by the element 0 0 0

0 0 −1
0 1 0


belonging to the Lie algebra of SO(3,R). By assumption M = SO(3,R)/F ,
where F := H ∩ SO(3) is finite. Since F is a subgroup of H, it normalizes
He. As a consequence F is contained in the normalizer of ϕ(SO(2,R)), which
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is given by ϕ(SO(2,R)) ∪ γϕ(SO(2,R)) ∼= O(2,R), where γ := diag(−1,−1, 1).
However, if F contains an element of the form γϕ(t′), then for all t ∈ SO(2,R)
one has (γϕ(t′)ϕ(t)ϕ(t′)−1γ−1, ψ(t)) = (ϕ(t)−1, ψ(t)) ∈ H and consequently
(ϕ(t)−1, ψ(t))(ϕ(t), ψ(t)) = (e, ψ(t)2) ∈ H. Since the SO(2,R)-action on M is
free ((ii) of Lemma 4.6 in [?]), this implies that the homomorphism ψ is trivial
and M = SO(3,R)/O(2,R) × SO(2,R), contradicting the transitivity of the
SO(3,R)-action. Hence F is a cyclic subgroup of ϕ(SO(2,R)). Consider the
commutative diagram

SO(3,R)

↓ ↘ Ψ

SO(3,R)/F ∼= (SO(3,R)× SO(2,R))/H = M ,

where the surjective orbit map Ψ is defined by Ψ(g) = [g, e]. Let SO(3,R) ×
SO(2,R) act on SO(3,R) by (g′, t) · g := g′gϕ(t)−1 and naturally on M (i.e.,
by left SO(3,R)× SO(2,R)-action). One has

Ψ(g′gϕ(t)−1) = [g′gϕ(t)−1, ψ(t)ψ(t)−1] = [g′g, ψ(t)] = (g′, ψ(t)) ·Ψ(g) .

Now recall that X is biholomorphic to an SO(3,R) × SO(2,R)-invariant do-
main in the complexified orbit (SO(3,C)× SO(2,C))/HC (cf. the beginning of
Sect. 4.1 in [?]) and extend the isomorphism in the above diagram to SO(3,C)/F →
(SO(3,C) × SO(2,C))/HC. Then, the analytic continuation principle and the
above equivariance relation imply that the manifold X is biholomorphic to an
SO(3,R)× SO(2,R)-invariant domain in SO(3,C)/F .

Finally let Π : UC → SO(3,C) be a universal covering of SO(3,C) which
maps U onto SO(3,R) and K onto He. Then the finite subgroup Π−1(F )
of K is cyclic and SO(3,C)/F is equivariantly biholomorphic to UC/Π−1(F ),
implying the statement. � �

Theorem 6.2. Let X be a 3-dimensional Stein manifold such that Aut(X) is
isomorphic to SO(3, 2). Then X is biholomorphic to the bounded symmetric
domain SO(3, 2)/(SO(3)× SO(2)).

Proof. If the maximal compact subgroup SO(3)×SO(2) has a fixed point in X,
then the statement follows from Prop. 3.1 in [?].

So let us assume by contradiction that SO(3) × SO(2) has no fixed points
in X. Then, as a consequence of Lemma ?? above, Prop. 4.8 and 4.10 in [?], the
manifold X is biholomorphic to a U -invariant domain in a line bundle either over
the complex affine quadric Q2 or over Q2/Z2. Here we allow finite ineffectivity in
order to replace the action of SO(3,R) with the action of its universal covering
U = SU(2). If the base is Q2, the line bundle is given by Lm := UC ×χm C∗, for
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some m ∈ Z, with projection p : Lm → Q2 given by [g, z] → gKC (cf. Sect.2).
We distinguish several cases.

If p(X) does not coincide with Q2, then p(X) is Kobayashi hyperbolic and
so is X by Thm. 3.2.15 in [?] (cf. the proof of Thm. 5.5 in [?]). Then, as a
consequence of Prop. 3.2 in [?] the group SO(3) × SO(2) has a fixed point,
giving a contradiction.

If p(X) = Q2 and m = 0, analogous arguments as in the proof of Thm. 5.5
in [?] imply that either X is Kobayashi hyperbolic or Aut(X) is infinite dimen-
sional, giving again a contradiction.

If p(X) = Q2 and m 6= 0, then one checks that X is biholomorphic either to
a disc bundle Ωρ or to a punctured disc bundle Ω∗ρ. As a consequence of Lemma
??, in both cases SO(3, 2) acts on Ω∗ρ. If Ω∗ρ 6= Ω∗max, then Ω∗ρ is Kobayashi
hyperbolic by Theorem ?? and one obtains a contradiction as above.

In the case when Ω∗ρ = Ω∗max consider the projection P : Ω∗max → B∗1(0, 0)/Γm
introduced in the proof of Lemma ?? and note that every fiber F of P is bi-
holomorphic to C. Then hyperbolicity of B∗1(0, 0)/Γm implies that for every
g ∈ SO(3, 2) the composition P ◦ g|F is constant. That is, g maps fibers to
fibers and consequently the SO(3, 2)-action on Ω∗max pushes down to an action
on B∗1(0, 0)/Γm. By hyperbolicity of B∗1(0, 0)/Γm such an action is necessarily
proper and consequently every isotropy subgroup is contained in a copy of the
maximal one. It follows that the minimal real dimension of every SO(3, 2)-orbit
in B∗1(0, 0)/Γm is six. Since B∗1(0, 0)/Γm is a complex 2-dimensional manifold,
this gives a contradiction.

Similar arguments apply to the case when X is biholomorphic to a U -
invariant domain in a line bundle over Q2/Z2 and we omit the details. � �
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[Las] M. Lassalle, Séries de Laurent des fonctions holomorphes dans la complexification d’un
espace symétrique compact, Ann. Scient. Éc. Norm. Sup., série 4, 11 (1978), 167–210.
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