Enrico Nardelli Logic Circuits and Computer Architecture

Appendix A

Digital Logic Circuits

Part 1: Combinational Circuits and Minimization

Structured organization

- Problem-oriented language level
- Assembly language level
- Operating system machine level
- Instruction set architecture level
- Microarchitecture level
- Digital logic level

Abstraction lelvel

Digital Logic level

- Digital circuits
 - Only two logical levels present (i.e., binary)
 - low/high voltage
- Basic gates
 - AND, OR, NOT
- Basic circuits
 - Combinational (without memory, stateless)
 - Sequential (with memory, state dependent behaviour)

Boolean Algebra

- Variables: A, B, ...
- Domain of variables: 2 values
 - 1 or 0; Y or N; true or false; ...
- Fundamental Operations
 - AND, OR, NOT
- Intended meaning (for humans Laws of Thought)
 - AND: both inputs are true
 - OR: at least one input is true
 - NOT: negate the input
- Named from George Boole

George Boole (1815-1864)

An Investigation of the Laws of Thought, on Which are founded the Mathematical Theories of Logic and Probabilities (1854)

Formal definition of functions (1)

- By means of "truth tables"
 - Explicit representation of the output for all possible inputs

Α	В	AND
0	0	0
0	1	0
1	0	0
1	1	1

Α	В	OR
0	0	0
0	1	1
1	0	1
1	1	1

Α	NOT
0	1
1	0

Boolean functions

Conventions

- NOT (negation): NOT(A) = A' = \overline{A}
- AND (conjunction): AND(A,B) = AB = A.B
- OR (disjunction): OR(A,B) = A+B
- NAND(A,B) = NOT(AND(A,B)) = (AB)'
- NOR(A,B) = NOT(OR(A,B)) = (A+B)'

Formal definition of functions (2)

- By means of "boolean equation"
- Functional description of result

$$M = OR(AND(NOT(A),NOT(B)),AND(A,B))$$

$$M = A'B' + AB$$

NOT gate - the simplest one

NOT gate - inverts the signal

A NOT gate is also called an inverter

AND gate

- Output is 1 if all inputs are 1
 - In general, if the AND gate has N inputs, both input 1 AND input 2 AND ... AND input N must be 1 for the output to be 1
- 2-input AND gate

OR gate

- Output is 1 if at least one input is 1
 - In general, if the OR gate has N inputs, input 1 OR input 2 OR ... OR input N must be 1 for the output to be 1
- 2-input OR gate A

A more complex example

- 2-input "equivalence" circuit
- The output is 1 if the inputs are the same
 - (i.e., both 0 or both 1)
- Boolean function:

$$M = A'B' + AB$$

Truth table

Α	В	М
0	0	1
0	1	0
1	0	0
1	1	1

Formal definition of functions (3)

- By means of logic circuits
 - Combination of logic gates joined by wires

Conventions for logic circuits

Rev. 4.1 (2006-07) by Enrico Nardelli

A1 - 14

Exercise (1)

Write the truth table and the logic circuit for

$$F = X + Y'Z$$

Truth table

X	Y	Z	F
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	1

Logic Circuit

Exercise (2)

 Write the boolean function and its truth table for the following logic circuit

Function and Truth Table

•
$$F = Y' + X'YZ' + XY$$

X	Υ	Z	F
0	0	0	1
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	1

Exercise (3)

 Write the boolean function and its truth table for the following logic circuit

Function and Truth Table

•
$$F = X'YZ + X'YZ' + XZ$$

Х	Y	Z	F
0	0	0	0
0 0 0 0	0	1	0
0	1	0	1
0	.1	1	1
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	1

A simpler equivalent circuit

•
$$F = X'Y + XZ$$

Conversion between represent.

- Circuit ->
 - -> Boolean formula (left-to-right inspection)
 - -> Truth table (explicit case-by-case computation)
- Boolean formula ->
 - -> Circuit (to "normal" form, then inspection)
 - -> Truth table (explicit case-by-case computation)
- Truth table ->
 - -> Circuit (through boolean formula)
 - -> Boolean formula (explicit case-by-case)

Boolean Identities

4	Λ		Λ
	/\		Δ
	$\overline{}$	_	\neg

$$0A = 0$$

$$AA = A$$

$$AA' = 0$$

$$AB = BA$$

$$(AB)C = A(BC)$$

$$A+BC = (A+B)(A+C)$$
 $A(B+C) = AB+AC$

$$A(A+B) = A$$

$$(AB)' = A' + B'$$

$$0+A=A$$

$$1 + A = 1$$

$$A+A=A$$

$$A+A'=1$$

$$A+B=B+A$$

$$A(B+C) = AB+AC$$

$$A+AB=A$$

$$(A+B)' = A'B'$$

$$(A+B)+C = A+(B+C)$$
 Associative $A(B+C) = AB+AC$ Distributive

Truth tables to verify De Morgan's theorem

A)	Х	Υ	X + Y	$\overline{X + Y}$	B) X	Y	X	Ÿ	X ⋅ Y
	0	0	0	1	0	0	1	1	1
	0	1	1	0	0	1	1	0	0
	1	0	1	0	1	0	0	1	0
	1	10	1	0	1	1	0	0	0

De Morgan circuit equivalents

AND/OR can be interchanged if you invert the inputs and outputs

NAND gate - the negation of AND

 The opposite of the AND gate is the NAND gate (output is 0 if all inputs are 1)

Logic diagram

Truth table

Α	В	NAND
0	0	1
0	1	1
1	0	1
1	1	0

NOR gate - the negation of **OR**

 The opposite of the OR gate is the NOR gate (output is 0 if any input is 1)

Logic diagram

Truth table

Α	В	NOR
0	0	1
0	1	0
1	0	0
1	1	0

Exercise

- Write the truth table for:
 - a 3 input NAND gate
 - a 3 input NOR gate

XOR gate - the exclusive OR

- For a 2-input gate
 - Output is 1 if <u>exactly one</u> of the inputs is 1

Truth table

Logic diagram

 For > 2 inputs: output is 1 if an odd number of inputs is 1

Α	В	XOR
0	0	0
0	1	1
1	0	1
1	1	0

Universal Gates

- How many logical functions there are?
- With n inputs there are $2^{(2^n)}$ possible logical functions

Α	В	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
0	1	0	0	0	0	1	1	1	1	0	0	0	0	1	1	1	1
1	0	0	0	1	1	0	0	1	1	0	0	1	1	0	0	1	1
1	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1

Universal Gates (2)

- AND, OR, NOT can generate all possible boolean functions (boolean algebra)
- Is it possible to use fewer basic operations?

Universal Gates (3)

- AND, NOT are enough!
- OR, NOT are enough!
- Even NAND alone or NOR alone are enough!

How NAND simulates AND, OR

• Simulation of NOT ???

Alternative NAND representations

$$\overline{X}$$
 \overline{X} \overline{X}

How NOR simulates AND, OR

• Simulation of NOT ???

Alternative NOR representations

$$X \longrightarrow Z \longrightarrow Z = X + Y + Z$$

Gate equivalence

 Any AND, OR, NOT gate can be obtained using just NAND gates or just NOR gates

 Consequence: any circuit can be constructed using just NAND gates or just NOR gates (easier to build)

Equivalence modifications (1)

On any wire, you can introduce a bubble at beginning and end

Equivalence modifications (2)

Substitute equivalent gates

Transforming OR, AND to NAND

Transform the following circuit

Solution

Exercise

Write a NAND only logic circuit for

$$F = XY' + X'Y + Z$$

Solution

Exercise

 Write a NAND only logic circuit for the exclusive OR function (XOR)

$$XOR(A,B) = A'B + AB'$$

Solution (1)

Truth table

Α	В	XOR
0	0	0
0	1	1
1	0	1
1	1	0

initial circuit

Solution (2): equivalence transform.

Rev. 4.1 (2006-07) by Enrico Nardelli

Exercise

Write a NOR only logic circuit for

$$F = (A+D)(C+D)E$$

Solution

Direct realization

Boolean function implementation

- Any function can be implemented as the OR of the AND combinations of its inputs
 - Called sum of products (SOP)
- Start from the truth table
 - For each 1 in the output
 - Write its inputs in AND
 - Write these in OR
- M=A'BC+AB'C+ABC'+ABC

A	В	С	M
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

Equivalent Logic Circuit

Exercise

 Write the boolean function and its truth table for the following logic circuit

Solution: truth table

X	Υ	Z	F
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	0
1	1	1	1

Solution: boolean formula

$$F = X.(Y'+Z).(X+Y+Z')$$

$$= (XY'+XZ).(X+Y+Z')$$

$$= XY'X+XY'Y+XY'Z'+XZX+XZY+XZZ'$$

$$= XY'+XY'Z'+XZ+XZY$$

$$= X(Y'+Z)+X(Y'Z'+YZ)$$

N.B.: Y'Z'+YZ is not 1!!!

Exercise

• Express Z=(A(B+C(A'+B')))' as sum of products

Solution

$$Z = (A(B+C(A'+B')))'$$
= A' + (B+C(A'+B'))'
= A' + B'(C(A'+B'))'
= A' + B'(C'+(A'+B')')
= A' + B'(C'+AB)
= A' + B'C' + ABB'
= A' + B'C' + A0
= A' + B'C' + O = A' + B'C'

Boolean function implem. (2)

- Any function can be implemented as the AND of the OR combinations of its inputs
 - Called product of sums (POS)
- Start from the truth table
 - For each 0 in the output
 - Write its inputs in AND
 - Write these **negated** in AND
 - Obtain $F = Z_0' . Z_1' . Z_2' ...$
 - Finally, apply De Morgan to F

A	В	C	F
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	0

Boolean function implem. (3)

- De Morgan (general): (ABC)'=A'+B'+C'
- F=(A'B'C')'.(A'B'C)'.(AB'C')'.(AB'C)'.(ABC)'
 =(A"+B"+C").(A"+B"+C").(A'+B"+C").
 .(A'+B"+C').(A'+B'+C')
 =(A+B+C).(A+B+C').(A'+B+C).
 .(A'+B+C').(A'+B'+C')

Boolean function implem. (4)

- Shortcut procedure for POS form (use only if you know what you are doing!)
 - Complement the table by substituting everywhere a 0 with a 1 and a 1 with a 0
 - Write a SOP form for the complemented table
 - Complement the formula by substituting everywhere and AND with an OR and an OR with an AND
 - Why does it work ???

Canonical Form for boolean functions

- It is a "standard" way of expressing SOP or POS supporting realization by means of standard electronic components
- It is:
 - a sum of minterms, for SOP
 - a product of maxterms for POS
- A minterm is a product containing all variables, either in the positive form or in the negative form
- A maxterm is a sum containing all variables, either in the positive or in the negative form.
- Examples:

```
F = (A'+B+C) \cdot (B'+C) is not in a POS canonical form M = AB + A'BC is not in a SOP canonical form
```

Standard implementation

- Given a boolean function expressed as sum of products or as product of sums it can be directly implemented in a circuit
- PLA: programmable logic array
- A PLA for sum of products is made by a first module combining inputs to form products, followed by a second module combining products to give the desired function

Schema for a sum-of-products PLA

- Inputs are variables and their negation
- Each output line realizes a boolean function

An example

Α	В	С	W	X	Υ
0	0	0	0	0	0
0	0	1	1	0	0
0	1	0	1	0	0
0	1	1	1	1	0
1	0	0	1	0	0
1	0	1	1	1	0
1	1	0	1	1	0
1	1	1	1	0	1

The PLA implementation

Rev. 4.1 (2006-07) by Enrico Nardelli

A1 - 64

Real circuits

- 74LS00 has four 2-input NAND gates
- Small scale integration (SSI)

Integrated circuits

Scales of integration

• (Small) SSI: 1-10 gates

(Medium) MSI: 10-100 gates

• (Large) LSI: 100-100.000 gates

• (Very Large) VLSI: > 100.000 gates

Equivalent Functions

- Sum of products (or product of sums) is not necessarily the more efficient form
- Manipulate boolean function to give an equivalent function
- Example: M = AB + AC = A(B+C)

Minimization procedures

- Karnaugh's maps (by hand)
- Used to minimize boolean functions of up to 4-5 input variables
- For more variables use the method of Quine-McKluskey (programmable)

Karnaugh's Maps (KM)

- Grid-like representation for boolean functions
- Minterms with just one variable different occupies adjacent cells
- Consider only 1s in the representation (focusing on a SOP representation)
- IDEA: if 2 adjacent cells have a 1 the function can be simplified

A KM for 2-variable functions

• The generic KM

• Function F = XY

Function F = X + Y

X	0	
0		*
1	***** **	***

A KM for 3-variable functions

An example

• F = XY'Z + XY'Z' + X'YZ + X'YZ'

Circular adjacencies for 3 variables

Four 1 adjacents

Exercise (1)

Which is the minimal function F1 for this KM?

Solution

•
$$F1 = YZ + XZ'$$

Exercise (2)

Which is the minimal function F2 for this KM?

Solution

•
$$F2 = Z' + XY'$$

k-cube of 1s

- Is a set of 2^k adjacent cells in k dimensions,
 where at most k variables change value
- 0-cube, 1 cell, a minterm
- 1-cube, 2 adjacent cells
- 2-cube, 4 adjacent cells
- 3-cube, 8 adjacent cells
-

Prime implicants

- $F = P_1 + P_2 + P_3 + ...$
- A k-cube is also called an implicant
 - Infact, it is a term P_n which implies the function F,
 - i.e. if P_n is *true* then F is *true*
- A k-cube is a prime implicant for F if it does not imply any other implicant of F

Minimal representation

A prime implicant can be chosen by selecting a
 k-cube in the KM which is not contained in a
 larger h-cube (maximal k-cube)

•
$$F = P_1 + P_2 + P_3 + ...$$

has a **minimal representation** if:

- 1. Each P_n is a prime implicant
- 2. There is a minimum number of them

Minimality procedure

- 1. Find maximal *k*-cubes (prime implicants)
- 2. If a 1 is covered by only one maximal *k*-cube this has to be chosen (**essential** prime implicants)
- 3. Select a minimum number of the remaining *k*-cube so to cover all 1s not covered by essential prime implicants

Exercise (3)

Which is the minimal function F3 for this KM?

Exercise (4)

Which is the minimal function F4 for this KM?

Solutions

•
$$F3 = X'Z + XY' + XZ' = Y'Z + XZ' + X'YZ$$

•
$$F4 = Z + X'Y$$

A KM for 4-variable functions

Rev. 4.1 (2006-07) by Enrico Nardelli

Circular adjacencies for 4 variables

A simple example (1)

- All prime implicants are shown
- Find the essential ones

A simple example (2)

Rev. 4.1 (2006-07) by Enrico Nardelli

More exercise (1)

Which is the function G1 for this KM?

Rev. 4.1 (2006-07) by Enrico Nardelli

More exercise (2)

Which is the function G2 for this KM?

Rev. 4.1 (2006-07) by Enrico Nardelli

More exercise (3)

Which is the function G3 for this KM?

Rev. 4.1 (2006-07) by Enrico Nardelli

Answers

•
$$G1 = Y' + W'Z' + XZ'$$

•
$$G2 = B'C' + B'D' + A'CD'$$

•
$$G3 = A'D + A'B + BD'$$

The KM method for POS

 Which is the POS expression of function F represented by this KM?

Rev. 4.1 (2006-07) by Enrico Nardelli

Solution

Use the same method used for build POS canonical form from truth tables

•
$$F = (CD)' \cdot (BD')' \cdot (AB)'$$

= $(C'+D') \cdot (B'+D'') \cdot (A' + B')$
= $(C'+D') \cdot (B'+D) \cdot (A' + B')$

Don't care values

- A don't care value in a truth table means indifference for the actual value of the function
 - Truth table on the left may be substitued by anyone on the right

Α	В	F
0	0	0
0	1	1
1	0	1
1	1	dc

Α	В	F
0	0	0
0	1	1
1	0	1
1	1	1

Α	В	F
0	0	0
0	1	1
1	0	1
1	1	0

Don't care values in KMs

 Simplify the choice, since each of them (X) can be considered a 0 or a 1

Rev. 4.1 (2006-07) by Enrico Nardelli

An alternative choice

 Previous choice gives F = CD + A'B' but a different choice is possible F = CD + A'D

Rev. 4.1 (2006-07) by Enrico Nardelli