ALGORITMI E STRUTTURE DI DATI II MODULO PROVA SCRITTA del 24/02/2020

Matricola:

Nome:

Cognome:

pti)

Esercizio 1. Minimum Spanning Tree (MST) e Cammini di un grafo pesato. Si consideri un grafo pesato connesso $(G=(V,E), c)$ (pesi positivi e tutti distinti), ed un arco specifico $e=(u,v)$ e si valuti il seguente enunciato: SE vi sono 100 cammini distinti in $G=(V,E)$ che collegano u e v ma u messuno di essi è fatto di u tutti e u archi di costo u e u messuno di essi è fatto di u
1) L'enunciato è falso? Se SI, disegnare in modo chiaro un <i>controesempio</i> qui sotto (6 pti).

2) Se l'enunciato fosse vero, fornire una dimostrazione rigorosa basandosi sulle proprietà degli MST (10

tasks ad un insieme di macchine identiche in modo da minimizzare il massimo carico (<i>MakeSpan</i>) delle macchine.	
1.	Si definisca <u>rigorosamente</u> una generica istanza I di LB , una soluzione ammissibile ed il suo costo (Il <i>MakeSpan</i>), e quindi la funzione obiettivo che si intende minimizzare (5 pti).
2.	Si descriva in modo chiaro un algoritmo ALG polinomiale basato su approccio <i>greedy</i> che ottenga nel <i>worst-case</i> una <i>2-approssimazione</i> rispetto al costo ottimo (5 pti).
3.	La dimostrazione dell'approssimazione di ALG utilizza un lower bound su OPT(I): enunciare rigorosamente questo lower bound e darne una dimostrazione sintetica (6 pti).

ESERCIZIO 2 (2-Apx per Load Balancing). Si consideri il problema Load Balancing (LB): assegnare un insieme di