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Stackelberg Game 

 2 players: leader and follower 
 The leader moves first, then the follower 

moves 
 The follower optimizes his objective 

function 
 …knowing the leader’s move 

 The leader optimizes his objective function  
 …by anticipating the optimal response of the 

follower 
 Our goal: to find a good strategy for the 

leader 



Setting 
 We have a graph G=(V,E), with E=RB 
 each eR, has a fixed positive cost c(e) 
 Leader owns B, and has to set a price p(e) for each eB 
 function c and function p define a weight function     

w:E  R+ 

 the follower buys an MST T of G (w.r.t. to w) 
 Leader’s revenue of T is: 

  p(e) 
eE(T)B 

goal: find prices in order to maximize the revenue 



There is a trade-off: 
 Leader should not put too a high price on 

the edges  
 otherwise the follower will not buy them 

 But the leader needs to put sufficiently 
high prices to optimize revenue 



 
Minimum Spanning Tree 

problem 



Minimum Spanning Tree (MST) 
problem 

 Input:  
 undirected weighted graph G=(V,E,w) 

 Solution:  
 a spanning tree of G, i.e. a tree T=(V,F) 

with FE 

 Measure (to minimize):  

 Total weight of T: eF w(e) 



A famous algorithm: Kruskal’s 
algorithm (1956) 

 Start with an empty tree T 

 consider the edges of G in non-decreasing 
order: 
 add the current edge e to T iff e does not form a 

cycle with the previous selected edges 
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…turning to the Stackelberg 
MST Game 
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One more example 
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The revenue is 13 
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One more example 
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The revenue is 11 



Assumptions 

 G contains a spanning tree whose edges are 
all red 
 Otherwise the optimal revenue is unbounded 

 Among all edges of the same weight, blue 
edges are always preferred to red edges 
 If we can get revenue r with this assumption, 

then we can get revenue r-, for any >0 

 by decreasing prices suitably 



Results: 

The Stackelberg MST game is NP-hard, even when  
c(e){1,2} for all eR. 

Theorem 

There exists a polynomial-time -approximated 
algorithm for StackelbergMST with =1+min{log|B|, 
log (n-1), log(ck/c1)}, where c1 and ck are the minimum 
and maximum cost of a red edge. 

Theorem 



 
 Let w1<w2<…<wh be the different edge weights 
 The greedy(Kruskal’s) algorithm works in h phases 
 In its phase i, it considers:  

 all blue edges of weight wi (if any) 
 Then, all red edges of weight wi (if any) 

 
 Number of selected blue edges of weight wi does 

not depend on the order on which red and blue 
edges are considered! 

 This implies… 

The revenue of the leader depends on the price 
function p  and not on the particular MST picked 
by the follower 

1 

2 2 

2 

2 



In every optimal price function, the prices assigned to  
blue edges appearing in some MST belong to the set 
{c(e): e R} 

Lemma 1 



Let p be an optimal price function and T be the 
corresponding MST. Suppose that there exists a red 
edge e in T and a blue edge f not in T such that e belongs 
to the unique cycle C in T+f. Then there exists a blue 
edge f’ distinct to f in C such that c(e) < p(f’) ≤ p(f) 

Lemma 2 

proof 

e f T 

X 

V\X 

c(e) < p(f) 

p(f’) ≤ p(f) 

f’: the heaviest blue edge in C  
(different to f)  

f’ 

if p(f’)≤c(e)… 

…p(f)=c(e) will imply a greater revenue 



The Stackelberg MST game is NP-hard, even when  
c(e){1,2} for all eR 

Theorem 

reduction from Set cover problem 



minimum Set Cover Problem 

 INPUT: 
 Set of objects U={u1,…,un} 

 S ={S1,…,Sm}, SjU   

 OUTPUT: 
 A cover C  S whose union is U and |C | 

is minimized 



U={u1,…,un} S ={S1,…,Sm} w.l.o.g. we assume:  
unSj, for every j 
 

We define the following graph: 

a blue edge  
(ui,Sj) iff uiSj 

1 1 1 1 1 

2 2 2 

2 

u1 u2 
u3 ui un-1 un 

Sm 
Sm-1 Sj S1 

Claim: 
(U,S) has a cover of size at most t    
maximum revenue r* ≥ n+t-1+2(m-t)= n+2m-t-1 



We define the price function as follows: 

a blue edge  
(ui,Sj) iff uiSj 

1 1 1 1 1 

2 2 2 

2 

u1 u2 
u3 ui un-1 un 

Sm 
Sm-1 Sj S1 

() 

For every blue edge e=(ui,Sj),  
 p(e)=1 if Sj is in the cover, 2 otherwise 

revenue r= n+t-1+2(m-t) 



p: optimal price function p:B{1,2,} such that the  
   corresponding MST T minimizes the number of red edges 

() 

by contradiction… 

e cannot belong to T 

Remark: 
If all red edges in T have cost 1, then for every blue edge 
e=(ui,Sj) in T with price 2, we have that Sj is a leaf in T 

2 

Sj red or  
blue? 

…blue 
ui 

uh 

 path of red edges of cost 1 

We’ll show that: 
1. T has blue edges only 
2. There exists a cover of size at most t 



(), (1) 

e: heaviest red edge in T 

e f T 

X 

V\X 
f’ 

Lemma 2: 
 f’f such that c(e)<p(f’)p(f) 

c(e)=1 and p(f’)=2 

By previous remark… 
all blue edges in C-{f,f’} 

have price 1 

2 

1 

p(f)=1 and p(f’)=1 leads to a new MST 
with same revenue and less red edges. 
A contradiction. 

since (V,B) is connected, 
there exists blue edge fT… 

Sj 

ui 



(), (2) 

Assume T contains no red edge 
We define: 

C ={Sj: Sj is linked to some blue edge in T with price 1} 

every ui must be incident in T to 
some blue edge of price 1 

C is a cover 

revenue = n+| C |-1+2(m-| C |)=n+2m-|C|-1 

any Sj  C must be a leaf in T 

≥ n+2m -t-1 

| C |  t 

1 1 1 1 1 

2 2 2 

2 

u1 u2 
u3 ui un-1 un 

Sm 
Sm-1 Sj S1 

ui ui+1 

Sj 

1 

path in T  
between  
ui and ui+1 



The single price algorithm 

 Let c1<c2<…<ck be the different fixed 
costs 

 For i = 1,…,k 
 set p(e)=ci for every eB 
 Look at the revenue obtained 

 return the solution which gives the 
best revenue 



Let r be the revenue of the single price algorithm; and 
let r* be the optimal revenue. Then, r*/r  , where 
=1+min{log|B|, log (n-1), log(ck/c1)} 

Theorem 



T: MST corresponding to the optimal price function 
hi: number of blue edges in T with price ci 

hk hk-1 hk-2 h1 

xA 

A 

ck 

ck-1 

c1 

f(x)=xAA 1/x 

c 

c ≥ ck 

r* c +  c 1/x dx = c(1+ log xB – log 1)= c(1+log xB) 

xB 

xB=j hj  min{n-1,|B|} 

xB 

1 

Notice: 
The revenue r of the single  
price algorithm is at least c 

hence: 
r*/r 1+log xB 

c 

1 



T: MST corresponding to the optimal price function 
ki: number of blue edges in T with price ci 

hk hk-1 hk-2 h1 

xA 

A 

ck 

ck-1 

c1 

f(y)=xAA 1/y 

c 

c ≥ ck 

r* c +  c 1/y dy = c(1+ log ck – log c1)= c(1+log (ck/c1)) 

xB 

xB=j hj  min{n-1,|B|} 

ck 

Notice: 
The revenue r of the single  
price algorithm is at least c 

hence: 
r*/r 1+log (ck/c1) 

y 

x 

c1 



T: MST corresponding to the optimal price function 
ki: number of blue edges in T with price ci 

hk hk-1 hk-2 h1 

xA 

A 

ck 

ck-1 

c1 

f(y)=xAA 1/y 

c 

c ≥ ck 

r* c +  c 1/y dy = c(1+ log ck – log c1)= c(1+log (ck/c1)) 

xB 

xB=j hj  min{n-1,|B|} 

ck 

Notice: 
The revenue r of the single  
price algorithm is at least c 

hence: 
r*/r 1+log (ck/c1) 

y 

x 

c1 

 
 

hence: 
r*/r   1+min{log|B|, log (n-1), log(ck/c1)} 

 
 



An asymptotically tight 
example 

1/i … 1/n … 1/2 1 

The single price algorithm obtains revenue r=1 

The optimal solution obtains revenue 

r*=  1/j = Hn = (log n) 
j=1 

n 



Let r be the revenue of the single price algorithm; and 
let r* be the optimal revenue. Then, r*/r  k, where k 
is the number of distinct red costs 

Exercise: prove the following 



Give a polynomial time algorithm that, given an acyclic 
subset FB, find a pricing p such that: 

(i) The corresponding MST T of p contains exactly F 
as set o blue edges, i.e. E(T)B=F 

(ii) The revenue is maximized 

Exercise: 


