

The Stackelberg Minimum Spanning Tree Game

J. Cardinal, E. Demaine, S. Fiorini, G. Joret, S. Langerman, I. Newman, O. Weimann, The Stackelberg Minimum Spanning Tree Game, WADS'07

Stackelberg Game

- 2 players: leader and follower
- The leader moves first, then the follower moves
- The follower optimizes his objective function
 - ...knowing the leader's move
- The leader optimizes his objective function
 - ...by anticipating the optimal response of the follower
- Our goal: to find a good strategy for the leader

Setting

- 'We have a graph G=(V,E), with $E=R\cup B$
- each e∈R, has a fixed positive cost c(e)
- Leader owns B, and has to set a price p(e) for each $e \in B$
- function c and function p define a weight function w:E → R+
- the follower buys an MST T of G (w.r.t. to w)
- Leader's revenue of T is:

$$\sum_{e \in E(T) \cap B} p(e)$$

goal: find prices in order to maximize the revenue

There is a trade-off:

- Leader should not put too a high price on the edges
 - otherwise the follower will not buy them
- But the leader needs to put sufficiently high prices to optimize revenue

Minimum Spanning Tree problem

Minimum Spanning Tree (MST) problem

- Input:
 - undirected weighted graph G=(V,E,w)
- Solution:
 - a spanning tree of G, i.e. a tree T=(V,F) with $F\subseteq E$
- Measure (to minimize):
 - Total weight of T: $\sum_{e \in F} w(e)$

A famous algorithm: Kruskal's algorithm (1956)

- Start with an empty tree T
- consider the edges of G in non-decreasing order:
 - add the current edge e to T iff e does not form a cycle with the previous selected edges

...turning to the Stackelberg MST Game

The revenue is 6

A better pricing...

...with revenue 12

The revenue is 13

The revenue is 11

Assumptions

- G contains a spanning tree whose edges are all red
 - Otherwise the optimal revenue is unbounded
- Among all edges of the same weight, blue edges are always preferred to red edges
 - If we can get revenue r with this assumption, then we can get revenue $r-\epsilon$, for any $\epsilon>0$
 - by decreasing prices suitably

The revenue of the leader depends on the price function p and not on the particular MST picked by the follower

- Let $w_1 < w_2 < ... < w_h$ be the different edge weights
- The greedy(Kruskal's) algorithm works in h phases
- In its phase i, it considers:
 - all blue edges of weight w_i (if any)
 - Then, all red edges of weight w_i (if any)

- Number of selected blue edges of weight w_i does not depend on the order on which red and blue edges are considered!
- This implies...

Lemma 1

In every optimal price function, the prices assigned to blue edges appearing in some MST belong to the set $\{c(e): e \in R\}$

Lemma 2

Let p be an optimal price function and T be the corresponding MST. Suppose that there exists a red edge e in T and a blue edge f not in T such that e belongs to the unique cycle C in T+f. Then there exists a blue edge f' distinct to f in C such that $c(e) < p(f') \le p(f)$

proof

f': the heaviest blue edge in C (different to f)

$$p(f') \le p(f)$$

...p(f)=c(e) will imply a greater revenue

4

Theorem

The Stackelberg MST game is NP-hard, even when $c(e) \in \{1,2\}$ for all $e \in R$

reduction from Set cover problem

minimum Set Cover Problem

INPUT:

- Set of objects U={u₁,...,u_n}
- $S = \{S_1, ..., S_m\}, S_j \subseteq U$

OUTPUT:

A cover C ⊆ S whose union is U and |C |
is minimized

$$U=\{u_1,...,u_n\}$$

$$U = \{u_1, ..., u_n\}$$
 $S = \{S_1, ..., S_m\}$

w.l.o.g. we assume: $u_n \in S_i$, for every j

We define the following graph:

a blue edge (u_i,S_i) iff $u_i \in S_i$

Claim:

(U,S) has a cover of size at most $t \Leftrightarrow$ maximum revenue $r^* \ge n+t-1+2(m-t)=n+2m-t-1$

We define the price function as follows:

For every blue edge
$$e=(u_i,S_j)$$
, $p(e)=1$ if S_j is in the cover, 2 otherwise

revenue r= n+t-1+2(m-t)

(⇐)

p: optimal price function p:B \rightarrow {1,2, ∞ } such that the corresponding MST T minimizes the number of red edges

We'll show that:

- 1. Thas blue edges only
- 2. There exists a cover of size at most t

Remark:

If all red edges in T have cost 1, then for every blue edge $e=(u_i,S_i)$ in T with price 2, we have that S_i is a leaf in T

by contradiction...

e cannot belong to T

path of red edges of cost 1

(⇐), **(1**)

e: heaviest red edge in T since (V,B) is connected, there exists blue edge f∉T...

Lemma 2:

 \exists f' \neq f such that c(e)<p(f') \leq p(f)

p(f)=1 and p(f')=1 leads to a new MST with same revenue and less red edges.
A contradiction.

Assume T contains no red edge We define:

 $C = \{S_j : S_j \text{ is linked to some blue edge in T with price 1}\}$

every u_i must be incident in T to some blue edge of price 1

C is a cover

 U_{i+1}

any $S_i \notin C$ must be a leaf in T

revenue = $n+|C|-1+2(m-|C|)=n+2m-|C|-1 \ge n+2m-t-1$

| **C** | ≤ †

path in T

between

 u_i and u_{i+1}

The single price algorithm

- Let c₁<c₂<...<c_k be the different fixed costs
- For i = 1,...,k
 - set $p(e)=c_i$ for every $e \in B$
 - Look at the revenue obtained
- return the solution which gives the best revenue

Theorem

Let r be the revenue of the single price algorithm; and let r* be the optimal revenue. Then, $r*/r \le \rho$, where $\rho=1+\min\{\log|B|,\log(n-1),\log(c_k/c_1)\}$

T: MST corresponding to the optimal price function h_i : number of blue edges in T with price c_i

$$r^* \le c + \int_1^{x_B} c \frac{1}{x} dx = c(1 + \log x_B - \log 1) = c(1 + \log x_B)$$

T: MST corresponding to the optimal price function ki: number of blue edges in T with price ci

$$x_B = \Sigma_j h_j \le min\{n-1, |B|\}$$

Notice:

The revenue r of the single price algorithm is at least c

hence:

r*/r
$$\leq$$
 1+log (c_k/c₁)

$$r^* \le c + \int_{c_1}^{c_k} c \frac{1}{y} \, dy = c(1 + \log c_k - \log c_1) = c(1 + \log (c_k/c_1))$$

An asymptotically tight example

The single price algorithm obtains revenue r=1

The optimal solution obtains revenue

$$r^* = \sum_{j=1}^{n} 1/j = H_n = \Theta(\log n)$$

Exercise: prove the following

Let r be the revenue of the single price algorithm; and let r^* be the optimal revenue. Then, $r^*/r \le k$, where k is the number of distinct red costs

Exercise:

- Give a polynomial time algorithm that, given an acyclic subset $F\subseteq B$, find a pricing p such that:
- (i) The corresponding MST T of p contains exactly F as set o blue edges, i.e. E(T)∩B=F
- (ii) The revenue is maximized