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Stackelberg Game 

 2 players: leader and follower 
 The leader moves first, then the follower 

moves 
 The follower optimizes his objective 

function 
 …knowing the leader’s move 

 The leader optimizes his objective function  
 …by anticipating the optimal response of the 

follower 
 Our goal: to find a good strategy for the 

leader 



Setting 
 We have a graph G=(V,E), with E=RB 
 each eR, has a fixed positive cost c(e) 
 Leader owns B, and has to set a price p(e) for each eB 
 function c and function p define a weight function     

w:E  R+ 

 the follower buys an MST T of G (w.r.t. to w) 
 Leader’s revenue of T is: 

  p(e) 
eE(T)B 

goal: find prices in order to maximize the revenue 



There is a trade-off: 
 Leader should not put too a high price on 

the edges  
 otherwise the follower will not buy them 

 But the leader needs to put sufficiently 
high prices to optimize revenue 



 
Minimum Spanning Tree 

problem 



Minimum Spanning Tree (MST) 
problem 

 Input:  
 undirected weighted graph G=(V,E,w) 

 Solution:  
 a spanning tree of G, i.e. a tree T=(V,F) 

with FE 

 Measure (to minimize):  

 Total weight of T: eF w(e) 



A famous algorithm: Kruskal’s 
algorithm (1956) 

 Start with an empty tree T 

 consider the edges of G in non-decreasing 
order: 
 add the current edge e to T iff e does not form a 

cycle with the previous selected edges 
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…turning to the Stackelberg 
MST Game 



Example 
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One more example 
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One more example 
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One more example 
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One more example 
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Assumptions 

 G contains a spanning tree whose edges are 
all red 
 Otherwise the optimal revenue is unbounded 

 Among all edges of the same weight, blue 
edges are always preferred to red edges 
 If we can get revenue r with this assumption, 

then we can get revenue r-, for any >0 

 by decreasing prices suitably 



 
 Let w1<w2<…<wh be the different edge weights 
 The greedy(Kruskal’s) algorithm works in h phases 
 In its phase i, it considers:  

 all blue edges of weight wi (if any) 
 Then, all red edges of weight wi (if any) 

 
 Number of selected blue edges of weight wi does 

not depend on the order on which red and blue 
edges are considered! 

 This implies… 

The revenue of the leader depends on the price 
function p  and not on the particular MST picked 
by the follower 

1 

2 2 

2 

2 



In every optimal price function, the prices assigned to  
blue edges appearing in some MST belong to the set 
{c(e): e R} 

Lemma 1 



Let p be an optimal price function and T be the 
corresponding MST. Suppose that there exists a red 
edge e in T and a blue edge f not in T such that e belongs 
to the unique cycle C in T+f. Then there exists a blue 
edge f’ distinct to f in C such that c(e) < p(f’) ≤ p(f) 

Lemma 2 

proof 

e f T 

X 

V\X 

c(e) < p(f) 

p(f’) ≤ p(f) 

f’: the heaviest blue edge in C  
(different to f)  

f’ 

if p(f’)≤c(e)… 

…p(f)=c(e) will imply a greater revenue 



The Stackelberg MST game is NP-hard, even when  
c(e){1,2} for all eR 

Theorem 

reduction from Set cover problem 



minimum Set Cover Problem 

 INPUT: 
 Set of objects U={u1,…,un} 

 S ={S1,…,Sm}, SjU   

 OUTPUT: 
 A cover C  S whose union is U and |C | 

is minimized 



U={u1,…,un} S ={S1,…,Sm} w.l.o.g. we assume:  
unSj, for every j 
 

We define the following graph: 

a blue edge  
(ui,Sj) iff uiSj 

1 1 1 1 1 

2 2 2 

2 

u1 u2 
u3 ui un-1 un 

Sm 
Sm-1 Sj S1 

Claim: 
(U,S) has a cover of size at most t    
maximum revenue r* ≥ n+t-1+2(m-t)= n+2m-t-1 



We define the price function as follows: 

a blue edge  
(ui,Sj) iff uiSj 

1 1 1 1 1 

2 2 2 

2 

u1 u2 
u3 ui un-1 un 

Sm 
Sm-1 Sj S1 

() 

For every blue edge e=(ui,Sj),  
 p(e)=1 if Sj is in the cover, 2 otherwise 

revenue r= n+t-1+2(m-t) 



p: optimal price function p:B{1,2,} such that the  
   corresponding MST T minimizes the number of red edges 

() 

by contradiction… 

e cannot belong to T 

Remark: 
If all red edges in T have cost 1, then for every blue edge 
e=(ui,Sj) in T with price 2, we have that Sj is a leaf in T 

2 

Sj red or  
blue? 

…blue 
ui 

uh 

 path of red edges of cost 1 

We’ll show that: 
1. T has blue edges only 
2. There exists a cover of size at most t 



(), (1) 

e: heaviest red edge in T 

e f T 

X 

V\X 
f’ 

Lemma 2: 
 f’f such that c(e)<p(f’)p(f) 

c(e)=1 and p(f’)=2 

By previous remark… 
all blue edges in C-{f,f’} 

have price 1 

2 

1 

p(f)=1 and p(f’)=1 leads to a new MST 
with same revenue and less red edges. 
A contradiction. 

since (V,B) is connected, 
there exists blue edge fT… 

Sj 

ui 



(), (2) 

Assume T contains no red edge 
We define: 

C ={Sj: Sj is linked to some blue edge in T with price 1} 

every ui must be incident in T to 
some blue edge of price 1 

C is a cover 

revenue = n+| C |-1+2(m-| C |)=n+2m-|C|-1 

any Sj  C must be a leaf in T 

≥ n+2m -t-1 

| C |  t 

1 1 1 1 1 

2 2 2 

2 

u1 u2 
u3 ui un-1 un 

Sm 
Sm-1 Sj S1 

ui ui+1 

Sj 

1 

path in T  
between  
ui and ui+1 



The single price algorithm 

 Let c1<c2<…<ck be the different fixed 
costs 

 For i = 1,…,k 
 set p(e)=ci for every eB 
 Look at the revenue obtained 

 return the solution which gives the 
best revenue 



Let r be the revenue of the single price algorithm; and 
let r* be the optimal revenue. Then, r*/r  , where 
=1+min{log|B|, log (n-1), log(ck/c1)} 

Theorem 



T: MST corresponding to the optimal price function 
hi: number of blue edges in T with price ci 

hk hk-1 hk-2 h1 

xA 

A 

ck 

ck-1 

c1 

f(x)=xAA 1/x 

c 

c ≥ ck 

r* c +  c 1/x dx = c(1+ log xB – log 1)= c(1+log xB) 

xB 

xB=j hj  min{n-1,|B|} 

xB 

1 

Notice: 
The revenue r of the single  
price algorithm is at least c 

hence: 
r*/r 1+log xB 

c 

1 



T: MST corresponding to the optimal price function 
ki: number of blue edges in T with price ci 

hk hk-1 hk-2 h1 

xA 

A 

ck 

ck-1 

c1 

f(y)=xAA 1/y 

c 

c ≥ ck 

r* c +  c 1/y dy = c(1+ log ck – log c1)= c(1+log (ck/c1)) 

xB 

xB=j hj  min{n-1,|B|} 

ck 

Notice: 
The revenue r of the single  
price algorithm is at least c 

hence: 
r*/r 1+log (ck/c1) 

y 

x 

c1 



An asymptotically tight 
example 

1/i … 1/n … 1/2 1 

The single price algorithm obtains revenue r=1 

The optimal solution obtains revenue 

r*=  1/j = Hn = (log n) 
j=1 

n 



Let r be the revenue of the single price algorithm; and 
let r* be the optimal revenue. Then, r*/r  k, where k 
is the number of distinct red costs 

Exercise: prove the following 



Give a polynomial time algorithm that, given an acyclic 
subset FB, find a pricing p such that: 

(i) The corresponding MST T of p contains exactly F 
as set o blue edges, i.e. E(T)B=F 

(ii) The revenue is maximized 

Exercise: 


