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Global Connection Game 
 G=(V,E): directed graph 

 ce: non-negative cost of the edge e  E 

 player i has a source node si and a sink node ti 

 Strategy for player i: a path Pi from si to ti 

 Given a strategy vector S, the cost of player i 

costi(S) =  ce/ke(S) 
ePi 

ke(S): number of players whose path contains e 
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 Global Connection Game 
 potential game 

 a NE always exists 

 better-response dynamics always converge to a NE 

 

 Facts 
 no one knows how to define a dynamic converging to a NE in 

poly-time 

 no one knows how to compute a NE in poly-time 

 

 question:  
 can we derive an evidence that the probem is hard? 

 

 (tricky) answer:  
 theory of PLS-completeness 



Congestion Game 
 E: set of resources 

 k players 

 player i picks a strategy Si from an explicit set of 
strategies Si  2E 

 each resource eE has possible costs ce(1), ce(2),…, 
ce(k)   

 Given a strategy vector S, the cost of player i is: 

costi(S) =  ce(ke(S)) 
eSi 

ke(S): number of players whose chosen strategy contains e 



properties of CG 
 Congestion Game is a potential game 

 

 Rosenthal potential function: 

eE 

(S) =     ce(i) i=1 

ke(S) 

a NE always exists (any local minimum of  is a NE) 

better response dynamic converges to a NE 



 
Given an instance of Congestion Game, find any NE 
  

CG-NE problem 

can we prove that CG-NE is NP-hard? 

….if yes, this would yield to quite surprising consequences. 



Addressing a typechecking error 

 an NP problem is a decision problem admitting short 
(polynomial size) witnesses for YES-instances and 
poly-time verifier 
 inputs accepted by the verifier are called witnesses 

 CG-NE is not a decision problem 

 

 class FNP (Functional NP): problem just like NP 
probems except that, for YES-instances, a witness 
must be provided  
 also called search problems 

 

 An algorithm for an FNP problem:  
 takes as input an instance  

 outputs a witness for a YES-instance or say “No”. 



Reduction from one serch problem L1 to onother one L2 

Two polynomial-time algorithms:  

- A1 mapping instances xL1 to instances A1(x) of L2 

- A2 mapping witnesses of A1(x) to witnesses of x  
                                                                   (and “no” to “no”) 

Notice: if L2 is solvable in poly-time then L1 is solvable in poly-
time as well. 



CG-NE is not FNP-complete unless NP=coNP 

Theorem 

proof 
Assume we have two poly-time algs 

- A1 that maps every SAT formula  to instances of CG A1() 

- A2 that maps every NE S of A1() to a satisfying assignment A2(S) of ,    
   if one exists, or to the string “no” otherwise.  

Then NP=CoNP.  
Let  be unsatisfiable SAT formula, S be a NE of A1(). 

S is a short, efficiently verifiable proof of the unsatisfiability of   

A poly-time verifier: 
-compute A1()  
-verify that S is a NE of A1() 

-verify that A2(S) returns “no” 

Note: we’re using only the fact that every instance of CG has a NE 



TFNP (total FNP): problems in FNP for which every instance 
has at least one witness. 

If a TFNP problem is FNP-complete then NP=coNP. 

Theorem 



FNP 

TFNP 

-CG-NE  
-problem of finding a mixed-strategy NE 
for a finite game 

-factoring 
-… 

can we prove that CG-NE is TFNP-complete? 

no: no complete problem is known for TFNP  
(and people think no one can exist) 

Syntactic  
classes 

Semantic  
classes 

vs 



FNP 

TFNP 

-CG-NE  
-problem of finding a mixed-strategy NE 
for a finite game 

-factoring 
-… 

no: no complete problem is known for TFNP  
(and people think no one can exist) 

which is the right class for CG-NE? 

PLS: abstract local search problems 

PLS 

can we prove that CG-NE is TFNP-complete? 



Maximum Cut problem 

 Input:  
 an undirected graph 

G=(V,E,w) with non-
negative edge weights 

 Solution:  
 a cut (X,Y), where X and Y 

are a partition of V 

 Measure (to miximize):  
 the weight of the cut,     

∑  w(x,y) 
(x,y)E: 
xX,yY 
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A natural heuristic: Local search algorithm 

improving local move:  
move a single vertex v from one side of the cut to the other 
side, if this improves the weight of the current cut.   

- initialize with  an arbitrary cut (X,Y) 

- while there is an improving local move do 
 take an arbitrary such move 

local optimum: cut with no improving local move available. 



local optimum vs global optimum 
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local optimum vs global optimum 
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local optimum vs global optimum 

is finding a local opt easier than finding a global opt? 

sometimes strictly easier: unweighted graphs 

- max cut is still NP-hard for unweighted graphs 

- local search algorithm converges in poly-time 

facts: 

- no known poly-time local search alg for finding local opt 

              for general weights 

- no known poly-time alg for computing a local opt for   
                                                                general weights 



 
Given an instance of Max Cut, find any local opt. 
  

local Max-Cut problem 

….this problem is PLS-complete. 



Ingredients of an Abstract Local Search Problem 

The first polynomial-time algorithm takes as input an 
instance and outputs an arbitrary feasible solution. 

The second polynomial-time algorithm takes as input an 
instance and a feasible solution, and returns the 
objective function value of the solution. 

The third polynomial-time algorithm takes as input an 
instance and a feasible solution, and either reports  
“locally optimal” or produces a solution with better 
objective function value. 

1. 

2. 

3. 



A PLS reduction from L1 to L2 

Two polynomial-time algorithms:  

- A1 mapping instances xL1 to instances A1(x) of L2 

-A2 mapping every local optimum of A1(x) to local optimum of x 

Notice: if L2 is solvable in poly-time then L1 is solvable in poly-
time as well. 



Definition.  
A problem L is PLS-complete if LPLS and every problem in PLS reduces 
to it. 

Computing a local maximum of a maximum cut instance with general 
non-negative edge weights is a PLS-complete problem. 

Theorem (Johnson, Papadimitriou, Yannakakis ’85, Schaffer, Yannakakis 91) 

Computing a local maximum of a maximum cut instance with general 
non-negative edge weights using local search can require an exponential 
(in |V|) number of iterations, no matter how an improving local move is 
chosen in each iteration. 

Theorem (Johnson, Papadimitriou, Yannakakis, ’85, Schaffer, Yannakakis 91) 



CG-NE is PLS-complete. 

Theorem (Fabrikant, Papadimitriou, Talwar 2004) 

proof 

CG-NE  PLS 

3 algorithms of the formal definition: 
Alg 1: given the instance, returns any strategy profile S 

Alg 2: given a strategy profile S, compute (S) 

Alg 3: given a strategy profile S, computes a better    
          response for any player, if any, or report “S is a NE”.  

completeness: reduction from MaxCut 



proof 
a player for each vertex v 

two resources re and re for each edge e 

two strategies for player v:  Sv = {re : e (v)} 

Sv = {re : e (v)} 

cost of a resource r  {re , re}: 
cr(1)=0   and cr(2)=w(e) 

bijection between 2|V| strategy profiles and cuts of the graph 

cut corresponding to strategy profile S: 

(XS:={v : v plays Sv in S}, YS:=V\XS) 

rR 

(S) =     cr(i) i=1 

kr(S) 

=W-W(XS,YS) 

eE 

W =  w(e) 

(XS,YS) is a local maximum cut iff S local minimum for (S)  



what about the problem  
of computing mixed Nash Equilibria? 



 
Given an instance of a 2-player game in normal 
form (bimatrix game), find any mixed NE 
  

MNE problem 

Nash’s theorem guarantees that a mixed NE always exists 

MNE TFNP 

no polynomial time algorithm is known for MNE 

what is the right class for MNE problem? 



PLS: abstract local search problems 

nodes: feasible solutions 

edges: improving moves 

witnesses 

generic reason of membership: 
solvable by local search, i.e. by 
following a directed path to a 
sink vertex. 



PPAD 

in- & out-degree  
at most 1 

witnesses 

generic reason of membership: 
solvable by following a directed 
path from the source to the 
sink vertex. 

canonical  
source 

s 



PPAD: polynomial parity argument in a directed graph 

in- & out-degree  
at most 1 

witnesses 

generic reason of membership: 
solvable by following a directed 
path from the source to the 
sink vertex. 

canonical  
source 

s 

class PPAD introduced in 94  
by Christos H. Papadimitriou 



FNP 

TFNP 

PLS PPAD 

Computing any MNE of a bimatrix game is PPAD-
complete 

Theorem (Daskalakis, Godberg, Papadimitriou 06, Chen,Deng,Teng 06) 


