
1

Chapter 4

Greedy Algorithms

Slides by Kevin Wayne.
Copyright © 2005 Pearson-Addison Wesley.
All rights reserved.

4.5 Minimum Spanning Tree

3

Il problema del calcolo di un Minimum Spanning Tree (MST)

Input:
■  un grafo non orientato e pesato G=(V,E,w)

Soluzione ammissibile:
■  un albero di copertura (uno spanning tree) di G, ovvero un albero T=(V,F)

con F⊆E
Misura della soluzione (da minimizzare):

■  costo di T: Σe∈F w(e)

4

Minimum Spanning Tree

Minimum spanning tree. Given a connected graph G = (V, E) with real-
valued edge weights ce, an MST is a subset of the edges T ⊆ E such
that T is a spanning tree whose sum of edge weights is minimized.

Cayley's Theorem. There are nn-2 spanning trees of Kn.

 5

23

10
21

 14

24

 16

 6

 4

18
9

7

11
 8

 5

 6

 4

9

7

11
 8

G = (V, E) T, Σe∈T ce = 50

can't solve by brute force

5

Applications

MST is fundamental problem with diverse applications.

■  Network design.
–  telephone, electrical, hydraulic, TV cable, computer, road

■  Approximation algorithms for NP-hard problems.
–  traveling salesperson problem, Steiner tree

■  Indirect applications.
–  max bottleneck paths
–  LDPC codes for error correction
–  image registration with Renyi entropy
–  learning salient features for real-time face verification
–  reducing data storage in sequencing amino acids in a protein
–  model locality of particle interactions in turbulent fluid flows
–  autoconfig protocol for Ethernet bridging to avoid cycles in a network

■  Cluster analysis.

6

Greedy Algorithms

Kruskal's algorithm. Start with T = φ. Consider edges in ascending
order of cost. Insert edge e in T unless doing so would create a cycle.

Reverse-Delete algorithm. Start with T = E. Consider edges in
descending order of cost. Delete edge e from T unless doing so would
disconnect T.

Prim's algorithm. Start with some root node s and greedily grow a tree
T from s outward. At each step, add the cheapest edge e to T that has
exactly one endpoint in T.

Remark. All three algorithms produce an MST.

7

Riepilogo: regole del taglio e del ciclo

 Scegli un taglio del grafo che non è
attraversato da archi blu. Tra tutti gli archi non
ancora colorati che attraversano il taglio,
scegline uno di costo minimo e coloralo di blu
(cioè, aggiungilo alla soluzione).

 Scegli un ciclo nel grafo che non contiene archi
rossi. Tra tutti gli archi non ancora colorati del
ciclo, scegline uno di costo massimo e coloralo di
rosso (cioè, scartalo per sempre).

8

Greedy Algorithms

Simplifying assumption. All edge costs ce are distinct.

Cut property. Let S be any subset of nodes, and let e be the min
cost edge with exactly one endpoint in S. Then the MST contains
e.

Cycle property. Let C be any cycle, and let f be the max cost edge
belonging to C. Then the MST does not contain f.

f
C

S

e is in the MST

e

f is not in the MST

9

Riepilogo: regole del taglio e del ciclo

 Scegli un taglio del grafo che non è
attraversato da archi blu. Tra tutti gli archi non
ancora colorati che attraversano il taglio,
scegline uno di costo minimo e coloralo di blu
(cioè, aggiungilo alla soluzione).

 Scegli un ciclo nel grafo che non contiene archi
rossi. Tra tutti gli archi non ancora colorati del
ciclo, scegline uno di costo massimo e coloralo di
rosso (cioè, scartalo per sempre).

10

Cycles and Cuts

Cycle. Set of edges the form a-b, b-c, c-d, …, y-z, z-a.

Cutset. A cut is a subset of nodes S. The corresponding cutset D
is the subset of edges with exactly one endpoint in S.

Cycle C = 1-2, 2-3, 3-4, 4-5, 5-6, 6-1

1
3

8

2

6

7

4

5

Cut S = { 4, 5, 8 }
Cutset D = 5-6, 5-7, 3-4, 3-5, 7-8

1
3

8

2

6

7

4

5

11

Cycle-Cut Intersection

Claim. A cycle and a cutset intersect in an even number of edges.

Pf. (by picture)

1
3

8

2

6

7

4

5

S

V - S

C

Cycle C = 1-2, 2-3, 3-4, 4-5, 5-6, 6-1
Cutset D = 3-4, 3-5, 5-6, 5-7, 7-8
Intersection = 3-4, 5-6

12

Greedy Algorithms

Simplifying assumption. All edge costs ce are distinct.

Cut property. Let S be any subset of nodes, and let e be the min cost
edge with exactly one endpoint in S. Then the MST T* contains e.

Pf. (exchange argument)
■  Suppose e does not belong to T*, and let's see what happens.
■  Adding e to T* creates a cycle C in T*.
■  Edge e is both in the cycle C and in the cutset D corresponding to S
⇒ there exists another edge, say f, that is in both C and D.

■  T' = T* ∪ { e } - { f } is also a spanning tree.
■  Since ce < cf, cost(T') < cost(T*).
■  This is a contradiction. ▪

f

 T*
e

S

13

Greedy Algorithms

Simplifying assumption. All edge costs ce are distinct.

Cycle property. Let C be any cycle in G, and let f be the max cost edge
belonging to C. Then the MST T* does not contain f.

Pf. (exchange argument)
■  Suppose f belongs to T*, and let's see what happens.
■  Deleting f from T* creates a cut S in T*.
■  Edge f is both in the cycle C and in the cutset D corresponding to S
⇒ there exists another edge, say e, that is in both C and D.

■  T' = T* ∪ { e } - { f } is also a spanning tree.
■  Since ce < cf, cost(T') < cost(T*).
■  This is a contradiction. ▪

f

 T*
e

S

14

Prim's Algorithm: Proof of Correctness

Prim's algorithm. [Jarník 1930, Dijkstra 1957, Prim 1959]
■  Initialize S = any node.
■  Apply cut property to S.
■  Add min cost edge in cutset corresponding to S to T, and add one

new explored node u to S.

S

15

Implementation: Prim's Algorithm

Prim(G, c) {
 foreach (v ∈ V) a[v] ← ∞
 Initialize an empty priority queue Q
 foreach (v ∈ V) insert v onto Q
 Initialize set of explored nodes S ← φ

 while (Q is not empty) {
 u ← delete min element from Q
 S ← S ∪ { u }
 foreach (edge e = (u, v) incident to u)
 if ((v ∉ S) and (ce < a[v]))
 decrease priority a[v] to ce
}

Implementation. Use a priority queue ala Dijkstra.
■  Maintain set of explored nodes S.
■  For each unexplored node v, maintain attachment cost a[v] = cost of

cheapest edge v to a node in S.
■  O(n2) with an array; O(m log n) with a binary heap.

16

Kruskal's Algorithm: Proof of Correctness

Kruskal's algorithm. [Kruskal, 1956]
■  Consider edges in ascending order of weight.
■  Case 1: If adding e to T creates a cycle, discard e according to

cycle property.
■  Case 2: Otherwise, insert e = (u, v) into T according to cut

property where S = set of nodes in u's connected component.

Case 1

v

u

Case 2

e

e S

17

Implementation: Kruskal's Algorithm

Kruskal(G, c) {
 Sort edges weights so that c1 ≤ c2 ≤ ... ≤ cm.
 T ← φ

 foreach (u ∈ V) make a set containing singleton u

 for i = 1 to m
 (u,v) = ei
 if (u and v are in different sets) {
 T ← T ∪ {ei}
 merge the sets containing u and v
 }
 return T
}

Implementation. Use the union-find data structure.
■  Build set T of edges in the MST.
■  Maintain set for each connected component.
■  O(m log n) for sorting and O(m α (m, n)) for union-find.

are u and v in different connected components?

merge two components

m ≤ n2 ⇒ log m is O(log n) essentially a constant

NEW DATA STRUCTURE!

WE NOW NEED A NEW DATA STRUCTURE TO MANAGE
SUBSET OPERATIONS EFFICIENTLY!

THIS PART FOLLOWS THE BOOK :

Demetrescu et Al,
Algoritmi e Strutture Dati

18

19

Lexicographic Tiebreaking

To remove the assumption that all edge costs are distinct: perturb all
edge costs by tiny amounts to break any ties.

Impact. Kruskal and Prim only interact with costs via pairwise
comparisons. If perturbations are sufficiently small, MST with
perturbed costs is MST with original costs.

Implementation. Can handle arbitrarily small perturbations implicitly
by breaking ties lexicographically, according to index.

boolean less(i, j) {
 if (cost(ei) < cost(ej)) return true
 else if (cost(ei) > cost(ej)) return false
 else if (i < j) return true
 else return false
}

e.g., if all edge costs are integers,
perturbing cost of edge ei by i / n2

 Small perturbations of edge costs have no impacts!

Assume c(e) ≥ 1 for all e € E and fix b = 1/n^2. Now, consider the
new instance Ib = <G(V,E), cb:E àR+> such that:

 cb(e) = c(e) ± b and c(e) ≠ c(e’) for any e ≠ e’ (all distinct!)
THM. Let Tb be any MST for Ib then Tb is also a MST for the original

instance I = <G(V,E), c:E àR+>
Proof. By contradiction. Absurd hyp:exists T* better than Tb for I,
We use the following facts:

 I) C(T*, Ib) < C(T*,I) + 1/n (since b=1/n^2)
 II) C(T*,I) ≤ C(Tb,I) -1 (absurd hyp.)
 III) C(Tb,I) < C(Tb, Ib) + 1/n (since b=1/n^2)

 (I) ß (II) à IV) C(T*,Ib) < C(Tb,I) -1 + 1/n
 (IV)ß(III) à C(T*,Ib) < C(Tb, Ib) + 1/n -1 + 1/n (for n > 2)

 < C(Tb, Ib) (absurd!)
 ¤

20

21

EXCERCISE N.1 (MST Properties)

Input: Connected Graph G(V,E); e ∈ E.
Output: Decide whether an MST T exists s.t. e ∈ T

 Provide an algorithm working in O(m+n) time.

Hint: Combine the CUT Property and the CYCLE one to decide
 whether e is a MINIMAL BRIDGE.

See this next lesson!

Let e := (u,w) and c(e) := c
I) case: there is a Path (forming a cycle with e) where e is the most
expensive!

22

e

Then, by the cycle property à e cannot belong to any MST

S

23 23

C(e)=x

Then, by the cut property à e belongs to any MST

II case: the Set S of all nodes reachable from u with edges cheaper than x
does not contain w and, so, the set V-S contains w and all nodes reachable from
w with edges cheaper than x

V-S c(e’)>x

24

Excersise n.2

Prove or Confute the following Statements:

a) Let <G(V,E) w> be s.t. G is connected and all edges have distinct

weights. Let e* be the edge of minimal weight. Does e* always
belong to an MST ?

b) Let T be an MST for <G(V,E),w> and consider the NEW instance

< G(V,E),w2 > where

 for any e ∈ E : w2 (e) = (w(e))2

 Is T an MST for < G(V,E),w2 > as well?

Shortest Path Tree vs Minimum Spanning Tree

•  Consider an instance of the MST problem: <G(V,E);c: E à R+>

•  FACT 1: The MST T(s) computed by Prim’s Algorithm may depend
by the source node s. But T(s) is a feasible and optimal solution for
instance <G(V,E);c: E à R+>, for any choice of s’ in V.

•  Consider an instance of the SPT problem: <G(V,E);c: E à R+;s>

•  FACT 2: The SPT T(s) (and its cost) computed by any correct
algorithm may depend on the choice of s

25

2

3

2

3

2 2

4.7 Clustering

Outbreak of cholera deaths in London in 1850s.
Reference: Nina Mishra, HP Labs

27

Clustering

Clustering. Given a set U of n objects labeled p1, …, pn, classify into
coherent groups.

Distance function. Numeric value specifying "closeness" of two objects:

 distance(pi, pj)

Fundamental problem. Divide into clusters so that points in different
clusters are far apart.
■  Routing in mobile ad hoc networks.
■  Identify patterns in gene expression.
■  Document categorization for web search.
■  Similarity searching in medical image databases
■  Skycat: cluster 109 sky objects into stars, quasars, galaxies.

photos, documents. micro-organisms

number of corresponding pixels whose
intensities differ by some threshold

28

Clustering of Maximum Spacing

k-clustering. Divide objects into k non-empty groups.

Distance function. Assume it satisfies several natural properties.
■  d(pi, pj) = 0 iff pi = pj (identity of indiscernibles)
■  d(pi, pj) ≥ 0 (nonnegativity)
■  d(pi, pj) = d(pj, pi) (symmetry)

Spacing. Min distance between any pair of points in different clusters.

Clustering of maximum spacing. Given an integer k, find a k-clustering
of maximum spacing.

spacing

k = 4

29

Greedy Clustering Algorithm

Single-link k-clustering algorithm.
■  Form a graph on the vertex set U, corresponding to n clusters.
■  Find the closest pair of objects (p,p’) such that p & p’ are not in the

same cluster, and add an edge between them: so merging 2 clusters.
■  Repeat n-k times until there are exactly k clusters.

Key Obs. 1. This procedure is precisely Kruskal's algorithm
(except we stop when there are k connected components).

Key Obs. 2. Equivalent to finding an MST T and deleting the k-1 most
expensive edges from T (thus forming k connected components).

(Proofs of 1 and 2: Excercises for STAGE STUDENTS - CFU F)

30

Greedy Clustering Algorithm: Analysis

Theorem. Let C* denote the clustering C*1, …, C*k formed by deleting
the k-1 most expensive edges of an MST. Then, C* is a k-clustering of
maximal spacing.

Pf. Let C denote some other clustering C1, …, Ck.
■  The spacing of C* is the length d* of the (k-1)st most expensive

edge.
■  Let p, p’ be in the same cluster in C*, say C*r, but different clusters

in C, say Cs and Ct.
■  Some edge (q, q’) on p-->p’ path in C*r spans two diff. clusters in C.
■  All edges on p-->p’ path have length ≤ d*

since Kruskal chooses them.
■  Spacing of C is ≤ d* since q and q’

are in different clusters of C. ▪
q q’ p p’

Cs Ct

C*r

Applications: Genetic

32

Dendrogram

Dendrogram. Scientific visualization of hypothetical sequence of
evolutionary events.
■  Leaves = genes.
■  Internal nodes = hypothetical ancestors.

Reference: http://www.biostat.wisc.edu/bmi576/fall-2003/lecture13.pdf

33

Dendrogram of Cancers in Human

Tumors in similar tissues cluster together.

Reference: Botstein & Brown group

Gene 1

Gene n

gene expressed
gene not expressed

Exercise 1 (KT p. 188)

INPUT: G(V,E);c:EàR+ (all distinct); an edge e in E;
QUESTION: Decide whether e belongs to some MST.

Apply the two main properties of MST:

1) CUT PROPERTY: if e is the cheapest bridge in some cut (S,V-S)
then e belongs to some MST

2) CYCLE PROPERTY: if e belongs to some cycle formed by edges, all
cheaper than e, then e does not belong to any MST

How can we combine (1) and (2) to set the question?

34

How detect which is the case for input G(V,E);c:EàR+; e=(u,w) in E ?

Simple Idea:

1) Remove all edges from E which are more expensive than e and
remove also e. Set G’(V,E’) as this new graph.

2) Start a BFS (or a DFS) from u (or from w) over G’(V,E’)

3) If the computed Tree T(u) contains w then return: e does not belong
to any MST, otherwise return: it does!

35

