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Greedy Algorithms 
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4.5  Minimum Spanning Tree 
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Il problema del calcolo di un Minimum Spanning Tree (MST) 

Input:  
■  un grafo non orientato e pesato G=(V,E,w) 

Soluzione ammissibile:  
■  un albero di copertura (uno spanning tree) di G, ovvero un albero T=(V,F) 

con F⊆E 
Misura della soluzione (da minimizzare):  

■  costo di T: Σe∈F w(e) 
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Minimum Spanning Tree 

Minimum spanning tree.  Given a connected graph G = (V, E) with real-
valued edge weights ce, an MST is a subset of the edges T ⊆ E such 
that T is a spanning tree whose sum of edge weights is minimized. 
 
 
 
 
 
 
 
 
 

Cayley's Theorem.  There are nn-2 spanning trees of Kn. 
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G = (V, E) T,  Σe∈T ce = 50 

can't solve by brute force 
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Applications 

MST is fundamental problem with diverse applications. 

■  Network design. 
–  telephone, electrical, hydraulic, TV cable, computer, road 

■  Approximation algorithms for NP-hard problems. 
–  traveling salesperson problem, Steiner tree 

■  Indirect applications. 
–  max bottleneck paths 
–  LDPC codes for error correction 
–  image registration with Renyi entropy 
–  learning salient features for real-time face verification 
–  reducing data storage in sequencing amino acids in a protein 
–  model locality of particle interactions in turbulent fluid flows 
–  autoconfig protocol for Ethernet bridging to avoid cycles in a network 

■  Cluster analysis. 
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Greedy Algorithms 

Kruskal's algorithm.  Start with T = φ. Consider edges in ascending 
order of cost. Insert edge e in T unless doing so would create a cycle. 
 
Reverse-Delete algorithm.  Start with T = E.  Consider edges in 
descending order of cost. Delete edge e from T unless doing so would 
disconnect T. 
 
Prim's algorithm.  Start with some root node s and greedily grow a tree 
T from s outward.  At each step, add the cheapest edge e to T that has 
exactly one endpoint in T. 
 
 
Remark.  All three algorithms produce an MST. 
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Riepilogo: regole del taglio e del ciclo 

    Scegli un taglio del grafo che non è 
attraversato da archi blu. Tra tutti gli archi non 
ancora colorati che attraversano il taglio, 
scegline uno di costo minimo e coloralo di blu 
(cioè, aggiungilo alla soluzione). 

    Scegli un ciclo nel grafo che non contiene archi 
rossi. Tra tutti gli archi non ancora colorati del 
ciclo, scegline uno di costo massimo e coloralo di 
rosso (cioè, scartalo per sempre). 
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Greedy Algorithms 

Simplifying assumption.  All edge costs ce are distinct. 
 
Cut property.  Let S be any subset of nodes, and let e be the min 
cost edge with exactly one endpoint in S.  Then the MST contains 
e. 
 
Cycle property.  Let C be any cycle, and let f be the max cost edge 
belonging to C.  Then the MST does not contain f. 

f  
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S 

e is in the MST 

e 

f is not in the MST 
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Cycles and Cuts 

Cycle.  Set of edges the form a-b, b-c, c-d, …, y-z, z-a.  
 
 
 
 
 
 
 
 
Cutset.  A cut is a subset of nodes S.  The corresponding cutset D 
is the subset of edges with exactly one endpoint in S. 

Cycle C  =  1-2, 2-3, 3-4, 4-5, 5-6, 6-1 
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Cut S       =  { 4, 5, 8 } 
Cutset  D =  5-6, 5-7, 3-4, 3-5, 7-8 
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Cycle-Cut Intersection 

Claim.  A cycle and a cutset intersect in an even number of edges. 
 
 
 
 
 
 
 
 
Pf.  (by picture) 
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V - S 
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Cycle  C = 1-2, 2-3, 3-4, 4-5, 5-6, 6-1 
Cutset D = 3-4, 3-5, 5-6, 5-7, 7-8  
Intersection = 3-4, 5-6 
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Greedy Algorithms 

Simplifying assumption.  All edge costs ce are distinct. 
 
Cut property.  Let S be any subset of nodes, and let e be the min cost 
edge with exactly one endpoint in S. Then the MST T* contains e. 
 
Pf.  (exchange argument) 
■  Suppose e does not belong to T*, and let's see what happens. 
■  Adding e to T* creates a cycle C in T*. 
■  Edge e is both in the cycle C and in the cutset D corresponding to S  
⇒  there exists another edge, say f, that is in both C and D. 

■  T' = T* ∪ { e } - { f } is also a spanning tree. 
■  Since ce < cf, cost(T') < cost(T*). 
■  This is a contradiction.   ▪ 

f  
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Greedy Algorithms 

Simplifying assumption.  All edge costs ce are distinct. 
 
Cycle property.  Let C be any cycle in G, and let f be the max cost edge 
belonging to C. Then the MST T* does not contain f. 
 
Pf.  (exchange argument) 
■  Suppose f belongs to T*, and let's see what happens. 
■  Deleting f from T* creates a cut S in T*. 
■  Edge f is both in the cycle C and in the cutset D corresponding to S  
⇒  there exists another edge, say e, that is in both C and D. 

■  T' = T* ∪ { e } - { f } is also a spanning tree. 
■  Since ce < cf, cost(T') < cost(T*). 
■  This is a contradiction.   ▪ 

f  

 T* 
e 

S 



14 

Prim's Algorithm:  Proof of Correctness 

Prim's algorithm.  [Jarník 1930, Dijkstra 1957, Prim 1959] 
■  Initialize S = any node. 
■  Apply cut property to S. 
■  Add min cost edge in cutset corresponding to S to T, and add one 

new explored node u to S. 

S 
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Implementation:  Prim's Algorithm 

Prim(G, c) { 
   foreach (v ∈ V) a[v] ← ∞ 
   Initialize an empty priority queue Q 
   foreach (v ∈ V) insert v onto Q 
   Initialize set of explored nodes S ← φ 
 
   while (Q is not empty) { 
      u ← delete min element from Q 
      S ← S ∪ { u } 
      foreach (edge e = (u, v) incident to u) 
          if ((v ∉ S) and (ce < a[v])) 
             decrease priority a[v] to ce 
} 

Implementation.  Use a priority queue ala Dijkstra. 
■  Maintain set of explored nodes S. 
■  For each unexplored node v, maintain attachment cost a[v] = cost of 

cheapest edge v to a node in S. 
■  O(n2) with an array; O(m log n) with a binary heap. 
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Kruskal's Algorithm:  Proof of Correctness 

Kruskal's algorithm.  [Kruskal, 1956] 
■  Consider edges in ascending order of weight. 
■  Case 1:  If adding e to T creates a cycle, discard e according to 

cycle property. 
■  Case 2:  Otherwise, insert e = (u, v) into T according to cut 

property where S = set of nodes in u's connected component.  

Case 1 

v 

u 

Case 2 

e 

e S 
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Implementation:  Kruskal's Algorithm 

Kruskal(G, c) { 
   Sort edges weights so that c1 ≤ c2 ≤ ... ≤ cm. 
   T ← φ 
 
   foreach (u ∈ V) make a set containing singleton u 
 
   for i = 1 to m 
      (u,v) = ei 
      if (u and v are in different sets) { 
         T ← T ∪ {ei} 
         merge the sets containing u and v 
      } 
   return T 
} 

Implementation.  Use the union-find data structure. 
■  Build set T of edges in the MST. 
■  Maintain set for each connected component. 
■  O(m log n) for sorting and  O(m α (m, n)) for union-find. 

are u and v in different connected components? 

merge two components 

m ≤ n2 ⇒ log m is O(log n) essentially a constant 



NEW DATA STRUCTURE!  

 
 
 
 
WE  NOW NEED A NEW DATA STRUCTURE TO MANAGE  
SUBSET OPERATIONS EFFICIENTLY! 
 
THIS PART FOLLOWS THE BOOK : 
 

Demetrescu et Al, 
Algoritmi e Strutture Dati 
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Lexicographic Tiebreaking 

To remove the assumption that all edge costs are distinct:  perturb all 
edge costs by tiny amounts to break any ties. 
 
Impact.  Kruskal and Prim only interact with costs via pairwise 
comparisons.  If perturbations are sufficiently small, MST with 
perturbed costs is MST with original costs.  
 
 
 
Implementation.  Can handle arbitrarily small perturbations implicitly 
by breaking ties lexicographically, according to index. 

boolean less(i, j) { 
   if      (cost(ei) < cost(ej)) return true 
   else if (cost(ei) > cost(ej)) return false 
   else if (i < j)               return true 
   else                          return false 
} 

e.g., if all edge costs are integers, 
perturbing cost of edge ei by i / n2 



 Small perturbations of edge costs have no impacts! 

Assume c(e) ≥ 1 for all e € E and fix  b = 1/n^2. Now, consider the 
new instance Ib = <G(V,E), cb:E àR+>  such that: 

                cb(e) = c(e) ± b and c(e) ≠ c(e’) for any e ≠ e’  (all distinct!) 
THM. Let Tb be any MST for Ib then Tb is also a MST for the original 

instance I = <G(V,E), c:E àR+>  
Proof. By contradiction. Absurd hyp:exists T* better than Tb for I,  
We use the following facts: 
 

  I) C(T*, Ib) <  C(T*,I) + 1/n     (since b=1/n^2) 
  II) C(T*,I) ≤ C(Tb,I) -1          (absurd hyp.) 
  III) C(Tb,I) < C(Tb, Ib) + 1/n    (since b=1/n^2) 

 (I) ß (II) à   IV) C(T*,Ib) < C(Tb,I) -1  + 1/n  
 (IV)ß(III) à  C(T*,Ib) < C(Tb, Ib) + 1/n -1 + 1/n   (for n > 2) 

    <  C(Tb, Ib)  (absurd!) 
        ¤ 
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EXCERCISE N.1 (MST Properties) 

Input: Connected Graph G(V,E);  e  ∈ E. 
Output:  Decide whether an MST T exists s.t. e  ∈ T 
 

 Provide an algorithm working in O(m+n) time. 
 
Hint:   Combine the CUT Property and the CYCLE one to decide 
         whether e   is a MINIMAL BRIDGE. 
 
See this next lesson! 



Let e := (u,w) and c(e) := c 
I) case: there is a Path (forming a cycle with e)  where e is the most 
expensive! 
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e 

Then, by the cycle property à e cannot belong to any MST 



S 

23 23 

C(e)=x 

Then, by the cut  property à e  belongs to any MST 

II case: the Set S of all nodes reachable from u with edges cheaper than x 
does not contain w and, so, the set V-S contains w and all nodes reachable from 
w with edges cheaper than x 

V-S c(e’)>x 
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Excersise n.2 

Prove or Confute the following Statements: 
 
a) Let <G(V,E) w> be s.t. G is connected and all edges have distinct 

weights. Let e* be the edge of minimal weight.  Does e* always 
belong to an MST ? 

 
b) Let T be an MST for <G(V,E),w> and consider the NEW instance          

< G(V,E),w2 > where 
  
   for any  e ∈ E : w2 (e) = (w(e))2 

 
  Is T an MST for < G(V,E),w2 >  as well? 



Shortest Path Tree vs Minimum Spanning Tree 

•  Consider an instance of the MST problem: <G(V,E);c: E à R+> 

•  FACT 1: The  MST T(s) computed by Prim’s Algorithm may depend 
by the source node s. But T(s) is  a feasible and optimal solution for 
instance <G(V,E);c: E à R+>, for any choice of s’ in V. 

•  Consider an instance of the SPT problem: <G(V,E);c: E à R+;s> 

•  FACT 2: The SPT T(s) (and its cost) computed by any correct 
algorithm may depend on the choice of s 
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4.7  Clustering 

Outbreak of cholera deaths  in London in 1850s. 
Reference: Nina Mishra, HP Labs 
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Clustering 

Clustering.  Given a set U of n objects labeled p1, …, pn, classify into 
coherent groups. 
 
 
Distance function.  Numeric value specifying "closeness" of two objects: 

   distance(pi, pj) 
 
 
 
Fundamental problem.  Divide into clusters so that points in different 
clusters are far apart. 
■  Routing in mobile ad hoc networks. 
■  Identify patterns in gene expression. 
■  Document categorization for web search. 
■  Similarity searching in medical image databases 
■  Skycat:  cluster 109 sky objects into stars, quasars, galaxies. 

photos, documents. micro-organisms 

number of corresponding pixels whose 
intensities differ by some threshold 
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Clustering of Maximum Spacing 

k-clustering.  Divide objects into k non-empty groups. 
 
Distance function.  Assume it satisfies several natural properties. 
■  d(pi, pj) = 0 iff pi = pj   (identity of indiscernibles) 
■  d(pi, pj) ≥ 0    (nonnegativity) 
■  d(pi, pj) = d(pj, pi)   (symmetry) 

 
Spacing.  Min distance between any pair of points in different clusters. 
 
Clustering of maximum spacing.  Given an integer k, find a k-clustering 
of maximum spacing. 

spacing 

k = 4 
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Greedy Clustering Algorithm 

Single-link k-clustering algorithm. 
■  Form a graph on the vertex set U, corresponding to n clusters. 
■  Find the closest pair of objects (p,p’) such that  p & p’ are not in the 

same  cluster, and add an edge between them: so merging 2 clusters. 
■  Repeat n-k times until there are exactly k clusters. 

Key Obs. 1.  This procedure is precisely Kruskal's algorithm 
(except we stop when there are k connected components). 

Key Obs. 2.  Equivalent to finding an MST T and deleting the k-1 most 
expensive edges from T (thus forming k connected components). 
 
(Proofs of 1 and 2:  Excercises for STAGE STUDENTS - CFU F) 
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Greedy Clustering Algorithm:  Analysis 

Theorem. Let C* denote the clustering C*1, …, C*k formed by deleting 
the k-1 most expensive edges of an MST. Then, C* is a k-clustering of 
maximal  spacing. 
 
Pf.  Let C denote some other clustering C1, …, Ck. 
■  The spacing of C* is the length d* of the (k-1)st most expensive 

edge. 
■  Let p, p’ be in the same cluster in C*, say C*r, but different clusters 

in C, say Cs and Ct. 
■  Some edge (q, q’) on p-->p’ path in C*r spans two diff. clusters in C. 
■  All edges on   p-->p’ path have length ≤ d* 

since Kruskal chooses them. 
■  Spacing of C is ≤ d* since q and q’ 

are in different clusters of C.  ▪ 
q q’ p p’ 

Cs Ct 

C*r 



Applications: Genetic 
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Dendrogram 

Dendrogram.  Scientific visualization of hypothetical sequence of 
evolutionary events. 
■  Leaves = genes. 
■  Internal nodes = hypothetical ancestors. 

 

Reference:  http://www.biostat.wisc.edu/bmi576/fall-2003/lecture13.pdf 
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Dendrogram of Cancers in Human 

Tumors in similar tissues cluster together. 
 

Reference:  Botstein & Brown group 

Gene 1 

Gene n 

gene expressed 
gene not expressed 



Exercise 1 (KT p. 188) 

INPUT: G(V,E);c:EàR+ (all distinct); an edge e in E; 
QUESTION: Decide whether e belongs to some MST. 
 
Apply the two main properties of MST: 
 
1) CUT PROPERTY: if e is the cheapest bridge in some cut (S,V-S) 
then e belongs to some MST 
 
2) CYCLE PROPERTY: if e belongs to some cycle formed by edges, all 
cheaper than e, then e does not belong to any MST 
 
How can we combine (1) and (2) to set the question? 
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How  detect which is the case for input G(V,E);c:EàR+; e=(u,w) in E ? 
 
Simple Idea: 
 
1) Remove all edges from E which are more expensive than e and 
remove also e. Set G’(V,E’) as this new graph. 
 
2) Start a BFS (or a DFS) from u (or from w) over G’(V,E’)  
 
3) If the computed Tree T(u) contains w then return: e does not belong 
to any MST, otherwise return: it does! 
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