
1

Chapter 4

Greedy
Algorithms

Slides by Kevin Wayne.
Copyright © 2005 Pearson-Addison Wesley.
All rights reserved.

4.4 Shortest Paths in a Graph

shortest path from Princeton CS department to Einstein's house

3

Shortest Path Problem

Input: Weighted connected graph <G = (V, E), ℓ:EàR+>; Source s in V
 (Length ℓe = length of edge e)

Feasible Solution: Any set of simple paths from s to t, for all t in V.
Goal: for any t in V, minimize the cost of the s-t path

Cost of path s-2-3-5-t
 = 9 + 23 + 2 + 16
 = 50.

cost of path = sum of edge costs in path

s

3

t

2

6

7

4

5

23

18

2

9

14

15
5

30

20

44

16

11

6

19

6

Shortest Path Trees

Theorem. For any Input [<G = (V, E), ℓ:E!R+>; s in V], there always
exists an optimal solution that forms a Spanning Tree for G.

Proof. Easy consequence of the Principle of Sub-Optimality of
Shortest Paths in a graph with positive weights:

 “Any sub-path of a shortest path is a shortest path.”

4

t
t’

If path is an s-t’ shortest path
Then sub-path s-t must be a shortest
path as well ! the s-t path can be
 removed from the optimal solution

s

5

Dijkstra's Algorithm

Dijkstra's algorithm.
■  Maintain a set of explored nodes S for which we have determined

the shortest path distance d(u) from s to u.
■  Initialize S = { s }, d(s) = 0.
■  Repeatedly choose unexplored node v which minimizes

add v to S, set d(v) = π(v), and

 store the father of v (i.e u)

,)(min)(
:),(eSuvue

udv ℓ+=
∈=

π

s

v

u
d(u)

S

ℓe

shortest path to some u in explored
part, followed by a single edge (u, v)

v’

v’’

6

Dijkstra's Algorithm

Dijkstra's algorithm (Overall Scheme).
■  Maintain a set of explored nodes S for which we have determined

the shortest path distance d(u) from node s to node u.
■  Initialize S = { s }, d(s) = 0.
■  Repeatedly choose unexplored node v which minimizes

add v to S, set d(v) = π(v), and

 store the father of v (i.e u)

,)(min)(
:),(eSuvue

udv ℓ+=
∈=

π

s

v

u
d(u)

shortest path to some u in explored
part, followed by a single edge (u, v)
How to do it?

S

ℓe

7

Dijkstra's Algorithm: Proof of Correctness

THM 1. For each node u ∈ S, d(u) is the length of the shortest s-u path.
Pf. (by induction on |S|)
Base case: |S| = 1 is trivial.
Inductive hypothesis: Assume true for |S| = k ≥ 1.
■  Let v be next node added to S, and let u-v be the chosen edge.
■  The shortest s-u path plus (u, v) is an s-v path of length π(v).
■  Consider any s-v path P. We'll see that it's no shorter than π(v).
■  Let x-y be the first edge in P that leaves S,

and let P' be the subpath to x.
■  P is already too long as soon as it leaves S.

 ℓ (P) ≥ ℓ (P') + ℓ (x,y) ≥ d(x) + ℓ (x, y) ≥ π(y) ≥ π(v)

nonnegative
weights

inductive
hypothesis

defn of π(y) Dijkstra chose v
instead of y

S

s

y

v

x

P

u

P'

Dijkstra's Algorithm: Property of its execution

Corollary. For any t=0,...,n, let v(t) be the t-th node selected by D.’s
Algorithm. Then, v(t) is the t-th closest node to the source node s.

Proof.
By induction on t (similar to proof of THM 1).
Do as excercise.

8

9

Dijkstra's Algorithm: Implementation

For each unexplored node, explicitly maintain

■  Next node to explore = node with minimum π(v).
■  When exploring v, for each incident edge e = (v, w), update

Efficient implementation. Maintain a priority queue of unexplored
nodes, prioritized by π(v).

† Individual ops are amortized bounds

PQ Operation

Insert

ExtractMin

ChangeKey

Binary heap

log n
log n
log n

Array

n
n
1

IsEmpty 1 1

Priority Queue

Total m log n n2

Dijkstra

n
n
m
n

€

π(v)= min
e = (u,v): u∈ S

d(u)+ ℓ e .

€

π(w) = min { π(w), π(v)+ ℓe}.

10

Edsger W. Dijkstra

The question of whether computers can think is like the
question of whether submarines can swim.

Do only what only you can do.

In their capacity as a tool, computers will be but a ripple
on the surface of our culture. In their capacity as
intellectual challenge, they are without precedent in the
cultural history of mankind.

The use of COBOL cripples the mind; its teaching should,
therefore, be regarded as a criminal offence.

APL is a mistake, carried through to perfection. It is the
language of the future for the programming techniques
of the past: it creates a new generation of coding bums.

