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4.4 Shortest Paths in a Graph
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shortest path from Princeton CS department to Einstein's house



Shortest Path Problem

Input: Weighted connected graph <G = (V, E), £:E>R+>; Source s in V
(Length £, = length of edge e)

Feasible Solution: Any set of simple paths from s to t, for all t+ in V.

Goal: for any t in V, minimize the cost of the s-t path

\

cost of path = sum of edge costs in path

Cost of path s-2-3-5-1
= 9+23+2+16
= 50.




Shortest Path Trees

Theorem. For any Input [<G = (V, E), £:E>R+>; s in V], there always
exists an optimal solution that forms a Spanning Tree for 6.

Proof. Easy consequence of the Principle of Sub-Optimality of
Shortest Paths in a graph with positive weights:

“"Any sub-path of a shortest path is a shortest path."
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If path is an s-1' shortest path

Then sub-path s-t must be a shortest
path as well > the s-t path can be
removed from the optimal solution



Dijkstra's Algorithm

Dijkstra's algorithm.
« Maintain a set of explored nodes S for which we have determined
the shortest path distance d(u) from s to u.
= Initialize S={s}, d(s) = 0.
» Repeatedly choose unexplored node v which minimizes

7(v)= min du)+/_,
( ) e=(u,v): ues ( ) ¢
addvto S set d(V) - J'C(V) and shortest path to some u in explored

. part, followed by a single edge (u, v)
store the father of v (i.e u)




Dijkstra’'s Algorithm

Dijkstra's algorithm (Overall Scheme).
« Maintain a set of explored nodes S for which we have determined

the shortest path distance d(u) from node s to node w.
= Initialize S={s}, d(s) = 0.
» Repeatedly choose unexplored node v which minimizes

7(v)= min du)+/_,
( ) e=(u,v): ues ( ) ¢
addvto S set d(V) - J'C(V) and shortest path to some u in explored

. part, followed by a single edge (u, v)
store the father of v (i.e u) How to do it?




Dijkstra's Algorithm: Proof of Correctness

THM 1. For each nodeu € S, d(u) is the length of the shortest s-u path.
Pf. (by induction on |S])
Base case: |S| =1is trivial.
Inductive hypothesis: Assume true for |S| =k = 1.

« Let v be next node added to S, and let u-v be the chosen edge.

« The shortest s-u path plus (u, v) is an s-v path of length =(v).

« Consider any s-v path P. We'll see that it's no shorter than ni(v).

» Let x-y be the first edge in P that leaves S,
and let P' be the subpath to x.
P is already too long as soon as it leaves S.

£ (P) - LY+ £ (xy) : dx) + ¢ (x, Y)f (y) 1 (V)

nonnegative inductive defn of ni(y) Dijkstra chose v
weights hypothesis instead of y



Dijkstra's Algorithm: Property of its execution

Corollary. For any t=0,..., n, let v(t) be the t-th node selected by D.'s
Algorithm. Then, v(t) is the t-th closest node to the source node s.

Proof.

By induction on t (similar to proof of THM 1).
Do as excercise.



Dijkstra's Algorithm: Implementation

For each unexplored node, explicitly maintain #(v)=  min  d(u)+¢

e=(u,v):ues

» Next node to explore = node with minimum m(v).
= When exploring v, for each incident edge e = (v, w), update

m(w) = min {x(W), 7(V)+Le}.

Efficient implementation. Maintain a priority queue of unexplored
nodes, prioritized by m(v). >
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Edsger W. Dijkstra

The question of whether computers can think is like the
question of whether submarines can swim.

Do only what only you can do.

In their capacity as a tool, computers will be but a ripple
on the surface of our culture. In their capacity as
intellectual challenge, they are without precedent in the
cultural history of mankind.

The use of COBOL cripples the mind; its teaching should,
therefore, be regarded as a criminal offence.

APL is a mistake, carried through to perfection. It is the
language of the future for the programming techniques
of the past: it creates a new generation of coding bums.
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