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4.4  Shortest Paths in a Graph 

shortest path from Princeton CS department to Einstein's house 
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Shortest Path Problem 

Input: Weighted connected graph <G = (V, E), ℓ:EàR+>; Source s in V 
          (Length ℓe = length of edge e) 

Feasible Solution: Any set of simple paths from s to t, for all t in V. 
Goal: for any t in V, minimize the cost of the s-t path  

Cost of path s-2-3-5-t 
     =  9 + 23 + 2 + 16 
     = 50. 

cost of path = sum of edge costs in path 
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Shortest Path Trees 

Theorem. For any Input [<G = (V, E), ℓ:E!R+>; s in V], there always 
exists an optimal solution that forms a Spanning Tree for G. 

Proof. Easy consequence of the Principle of Sub-Optimality of 
Shortest Paths in a graph with positive weights: 

 
 “Any sub-path of a shortest path is a shortest path.” 
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If path is an s-t’ shortest path 
Then sub-path s-t must be a shortest 
path as well ! the s-t path can be 
 removed from the optimal solution 
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Dijkstra's Algorithm 

Dijkstra's algorithm. 
■  Maintain a set of explored nodes S for which we have determined 

the shortest path distance d(u) from s to u. 
■  Initialize S = { s }, d(s) = 0. 
■  Repeatedly choose unexplored node v which minimizes 

 
 
add v to S,  set d(v) = π(v), and  

   store the father of v (i.e u) 
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Dijkstra's Algorithm 

Dijkstra's algorithm (Overall Scheme). 
■  Maintain a set of explored nodes S for which we have determined 

the shortest path distance d(u) from node s to node u. 
■  Initialize S = { s }, d(s) = 0. 
■  Repeatedly choose unexplored node v which minimizes 

 
 
add v to S,  set d(v) = π(v), and  

   store the father of v (i.e u) 
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How to do it? 
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Dijkstra's Algorithm:  Proof of Correctness 

THM 1.  For each node u ∈ S, d(u) is the length of the shortest s-u path. 
Pf.  (by induction on |S|) 
Base case:  |S| = 1 is trivial. 
Inductive hypothesis:  Assume true for |S| = k  ≥  1. 
■  Let v be next node added to S, and let u-v be the chosen edge. 
■  The shortest s-u path plus (u, v) is an s-v path of length π(v). 
■  Consider any s-v path P. We'll see that it's no shorter than π(v). 
■  Let x-y be the first edge in P that leaves S, 

and let P' be the subpath to x. 
■  P is already too long as soon as it leaves S. 

 ℓ (P)  ≥ ℓ (P') + ℓ (x,y)  ≥  d(x) + ℓ (x, y)  ≥  π(y)  ≥  π(v) 

nonnegative 
weights 

inductive 
hypothesis 

defn of π(y) Dijkstra chose v 
instead of y 
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Dijkstra's Algorithm:  Property of its execution 

Corollary. For any t=0,...,n, let v(t) be the t-th node selected by D.’s 
Algorithm. Then, v(t) is the t-th  closest node to the source node s. 
 
Proof.  
By induction on t (similar to proof of THM 1).  
Do as excercise. 
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Dijkstra's Algorithm:  Implementation 

For each unexplored node, explicitly maintain  
 
■  Next node to explore = node with minimum π(v). 
■  When exploring v, for each incident edge e = (v, w), update 

Efficient implementation.  Maintain a priority queue of unexplored 
nodes, prioritized by π(v). 

†  Individual ops are amortized bounds 

PQ Operation 
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π(v)= min
e = (u,v): u∈ S

d(u)+ ℓ e  .
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π(w) = min { π(w), π(v)+ ℓe}.
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Edsger W. Dijkstra 

The question of whether computers can think is like the 
question of whether submarines can swim. 
 
Do only what only you can do. 
 
In their capacity as a tool, computers will be but a ripple 
on the surface of our culture.  In their capacity as 
intellectual challenge, they are without precedent in the 
cultural history of mankind. 
 
The use of COBOL cripples the mind; its teaching should, 
therefore, be regarded as a criminal offence.  

APL is a mistake, carried through to perfection. It is the 
language of the future for the programming techniques 
of the past:  it creates a new generation of coding bums. 


