Chapter 4

Greedy
Algorithms

1
|

,ﬂ”wm st

PEARSON Slides by Kevin Wayne.

\
t\ JON KlEINBERG EVA TARDOS

\ === Copyri 9h’r©ZOO5P arson-Addison Wesley.

Addl“sggl All rights reserved.

ey

4.4 Shortest Paths in a Graph

Princeton N, 9%
: i) %_s % 9
2 3 E % %
= \ B <
. S = % o % ¢
(%(’ P e a0 ‘%% % W N
3 W cayat B ™ b %
\4 e % o = A . s %
S % % % PRINCETON 2 y =T . :
o B et W %, CEMETERY. % s 2 2 2
30 (fRe 2§ 3% % R
) %
sottt . T 2 [ie) B B
e & @ IS La 9% %)
RS 5 o g0 % 0 ; % 3
e N et % \37 ’4;% é\?ss %0}
- y W o W &
Cleveland L 4 2\ e & @ g \3 .Lg i ?aw‘\k\' S
@ s s = g . 3
s, b8 } y | e -
af;) %’ 'ﬁ"ﬂge 8 " - \“ﬁ{\sk '%’ 2 e
3 % 2t Mercer X ¢ S Ly 9@6’99
G, “& County’ W
B, 6@9 giuljmall:oud Y =~
%, e e M\?’ 629
% g %’ & ’%‘& %
P Qg' r PRINCETON & — ’*bé/ %%
@ E2)
(604] §é’° s " MNIVERSITY "5% ?’ug,
[)
s R r S é(i
ys‘(o > = A ?% A Mm o
L 2 W a
8 4 e . g
a}é’ i &o‘? ’3 9.
= L
] G5
&
éé‘ y
%, & 54 571
> % %. % /S
,}Q‘ K 5 U N cas
3 \
I & 4;?}- Q%\% SPRINGDALE
< % % GOLF CLUB
%) £ &

shortest path from Princeton CS department to Einstein's house

Shortest Path Problem

Input: Weighted connected graph <G = (V, E), £:E>R+>; Source s in V
(Length £, = length of edge e)

Feasible Solution: Any set of simple paths from s to t, for all t+ in V.

Goal: for any t in V, minimize the cost of the s-t path

\

cost of path = sum of edge costs in path

Cost of path s-2-3-5-1
= 9+23+2+16
= 50.

Shortest Path Trees

Theorem. For any Input [<G = (V, E), £:E>R+>; s in V], there always
exists an optimal solution that forms a Spanning Tree for 6.

Proof. Easy consequence of the Principle of Sub-Optimality of
Shortest Paths in a graph with positive weights:

“"Any sub-path of a shortest path is a shortest path."

w0

If path is an s-1' shortest path

Then sub-path s-t must be a shortest
path as well > the s-t path can be
removed from the optimal solution

Dijkstra's Algorithm

Dijkstra's algorithm.
« Maintain a set of explored nodes S for which we have determined
the shortest path distance d(u) from s to u.
= Initialize S={s}, d(s) = 0.
» Repeatedly choose unexplored node v which minimizes

7(v)= min du)+/_,
() e=(u,v): ues () ¢
addvto S set d(V) - J'C(V) and shortest path to some u in explored

. part, followed by a single edge (u, v)
store the father of v (i.e u)

Dijkstra’'s Algorithm

Dijkstra's algorithm (Overall Scheme).
« Maintain a set of explored nodes S for which we have determined

the shortest path distance d(u) from node s to node w.
= Initialize S={s}, d(s) = 0.
» Repeatedly choose unexplored node v which minimizes

7(v)= min du)+/_,
() e=(u,v): ues () ¢
addvto S set d(V) - J'C(V) and shortest path to some u in explored

. part, followed by a single edge (u, v)
store the father of v (i.e u) How to do it?

Dijkstra's Algorithm: Proof of Correctness

THM 1. For each nodeu € S, d(u) is the length of the shortest s-u path.
Pf. (by induction on |S])
Base case: |S| =1is trivial.
Inductive hypothesis: Assume true for |S| =k = 1.

« Let v be next node added to S, and let u-v be the chosen edge.

« The shortest s-u path plus (u, v) is an s-v path of length =(v).

« Consider any s-v path P. We'll see that it's no shorter than ni(v).

» Let x-y be the first edge in P that leaves S,
and let P' be the subpath to x.
P is already too long as soon as it leaves S.

£ (P) - LY+ £ (xy) : dx) + ¢ (x, Y)f (y) 1 (V)

nonnegative inductive defn of ni(y) Dijkstra chose v
weights hypothesis instead of y

Dijkstra's Algorithm: Property of its execution

Corollary. For any t=0,..., n, let v(t) be the t-th node selected by D.'s
Algorithm. Then, v(t) is the t-th closest node to the source node s.

Proof.

By induction on t (similar to proof of THM 1).
Do as excercise.

Dijkstra's Algorithm: Implementation

For each unexplored node, explicitly maintain #(v)= min d(u)+¢

e=(u,v):ues

» Next node to explore = node with minimum m(v).
= When exploring v, for each incident edge e = (v, w), update

m(w) = min {x(W), 7(V)+Le}.

Efficient implementation. Maintain a priority queue of unexplored
nodes, prioritized by m(v). >

PQ Oper‘a‘rlon Binary heap

log n

n
_- " log n

1

1

Total n2 m log n

log n
1

T Individual ops are amortized bounds

e []

Edsger W. Dijkstra

The question of whether computers can think is like the
question of whether submarines can swim.

Do only what only you can do.

In their capacity as a tool, computers will be but a ripple
on the surface of our culture. In their capacity as
intellectual challenge, they are without precedent in the
cultural history of mankind.

The use of COBOL cripples the mind; its teaching should,
therefore, be regarded as a criminal offence.

APL is a mistake, carried through to perfection. It is the
language of the future for the programming techniques
of the past: it creates a new generation of coding bums.

10

