Chapter 6

Dynamic Programming

1
|

i ot Jesig

\
t\ JON KlEINBERG EVA TARDOS

e.
\ === Copyri 9h’r©ZOO5P rson-Addison Wesley.

PEARSON Slides by Kev

Addison
Wesly

ey All rights reserved.

Algorithmic Paradigms

Greedy. Build up a solution incrementally, myopically optimizing some
local criterion.

Divide-and-conquer. Break up a problem into sub-problems, solve each
sub-problem independently, and combine solution to sub-problems to
form solution to original problem.

Dynamic programming. Break up a problem into a series of overlapping
sub-problems, and build up solutions to larger and larger sub-problems.

Dynamic Programming History

Bellman. [1950s] Pioneered the systematic study of dynamic programming.

Etymology.
« Dynamic programming = planning over time.
« Secretary of Defense was hostile to mathematical research.
« Bellman sought an impressive name to avoid confrontation.

"it's impossible to use dynamic in a pejorative sense"
"something not even a Congressman could object to"

Reference: Bellman, R. E. Eye of the Hurricane, An Autobiography.

Dynamic Programming Applications

Areas.

« Bioinformatics.
Control theory.
Information theory.
Operations research.

Some famous dynamic programming algorithms.

« Unix diff for comparing two files.
Viterbi for hidden Markov models.
Smith-Waterman for genetic sequence alignment.
Bellman-Ford for shortest path routing in networks.
Cocke-Kasami-Younger for parsing context free grammars.

Computer science: theory, graphics, AT, compilers, systems, ...

6.1 Weighted Interval Scheduling

Weighted Interval Scheduling

Weighted interval scheduling problem.
. Job j starts at s;, finishes at f;, and has weight or value v; .
= Two jobs compatible if they don't overlap.
« Goal: find maximum weight subset of mutually compatible jobs.

» Time

Unweighted Interval Scheduling Review

Recall. Greedy algorithm works if all weights are 1.
« Consider jobs in ascending order of finish time.

« Add job to subset if it is compatible with previously chosen jobs.

Observation. Greedy algorithm can fail spectacularly if arbitrary
weights are allowed.

weight = 999 b

weight = 1 a

» Time

Weighted Interval Scheduling

Notation. Order jobs by finishing time: f;, = f, <. . . s f,.
Def. p(j) = largestindex i < jsuch that job iis compatible with j.

Ex: p(8)=5,p(7)=3,p(2)=0.

> Tlme

Dynamic Programming: Binary Choice

Notation. OPT(j) = value of optimal solution to the problem consisting
of job requests 1, 2, ..., j.

« Case 1: OPT selects job j.
- collect profit v;
- can't use incompatible jobs{ p(j) + 1, p(j) + 2, ..., j -1}
- must include optimal solution to sub-problem consisting of
remaining compatible jobs 1, 2, ..., p()

optimal substructure

/
» Case 2: OPT does not select job .

- must include optimal solution to sub-problem consisting of
remaining compatible jobs 1, 2, ..., j-1

0 if =0
OPT(j)=
() {max{ v, + OPT(p(j), OPT(j-1)} otherwise

Weighted Interval Scheduling: Brute Force

Brute force algorithm.

10

Weighted Interval Scheduling: Brute Force

Observation. Recursive algorithm fails spectacularly because of
redundant sub-problems = exponential algorithms.

Ex. Number of recursive calls for family of "layered" instances grows
like Fibonacci sequence.

v

p(1) =0, p(j) = j-2

1

Q. How many different subproblems we have?

A.Only n I

Q. Can we fix an ordering to compute them?

A. Yesl!

M[j] needs only M[k] for k< j Il

Weighted Interval Scheduling: Bottom-Up

Bottom-up dynamic programming. Unwind recursion.

Input: n, s,,..,s £,,.,£ VsV

n , n , n

Sort jobs by finish times so that f;, = £, = ... = £ .

Compute p(1), p(2), .., p(n)

Iterative-Compute-Opt {
M[O0] = O
for j

=1 ton
M[j] =

max (v; + M[p(])], M[J-1])

Crucial Issue: Find the correct order for computing the subproblems!

Weighted Interval Scheduling: Finding a Solution

Q. Dynamic programming algorithms computes optimal value “only”.

What if we want the solution itself?
A. Do some post-processing.

Run M-Compute-Opt (n)
Run Find-Solution(n)

Find-Solution(j) {
if (j = 0)
output nothing
else if (v; + M[p(j)] > M[j-1])

print j
Find-Solution(p(j))
else

Find-Solution(j-1)

= # of recursive calls = n = O(n).

Remark. O(n) if iobs are bre-sorted by start and finish times.

14

Weighted Interval Scheduling: Memoization

Memoization. Store results of each sub-problem in a cache;
lookup as needed.

Input: n, s;,..,s, £,,., £ v,.,v,

Sort jobs by finish times so that £, <= £, = ... =< £ .
Compute p(1), p(2), .., p(n)

for =1 ton

M[j] = empty
M[0] = 0 global array

M-Compute-Opt (j) {
if (M[j] is empty)
M[j] = max(vj + M-Compute-Opt(p(j)), M-Compute-Opt(j-1))
return M[]]

15

Weighted Interval Scheduling: Running Time

Claim. Memoized version of algorithm takes O(n log n) time.
« Sort by finish time: O(n log n).
Computing p(-): O(n log n) via sorting by start time.

M-Compute-Opt (j): each invocation takes O(1) time and either
- (i) returns an existing value M[51
- (ii) fills in one new entry M(j1 and makes two recursive calls

Progress measure ® = # nonempty entries of m[].
- initially ® = 0, throughout ® < n.
- (ii) increases ® by 1 = at most 2n recursive calls.

Overall running time of M-Compute-opt (n) is O(n). =

16

Paradigm of Dynamic Programming (Informal Description)

Partition of the initial problem P(n) into a set of subproblems
P,(n), P,(n,), ..., P(n) such that

n.< n foralli=1,.. k

k = poly(n)

P(n) can be computed from P,(n,), P,(n,),, P.(n,) in poly-
Time

There is a natural ordering (from smaller to bigger) of the
subproblems so that recursion can be applied efficiently.

17

6.3 Segmented Least Squares

Segmented Least Squares

Least squares.
« Foundational problem in statistic and numerical analysis.
« Given n points in the plane: (xy, Y1), (X2,Y5), (Xn Yn)-
« Find aliney = ax + b that minimizes the sum of the squared error:

. () SSE = %(yi—azxi—b)2

i=l1

Solution. Calculus = min error is achieved when

(2) n Eixiyi - (E,-xi) (E,-yl-) Eiy,- —a Eixl.
a= : b=
e Eixiz - (2)’ n

19

But for some sequence of points, the approximation given by just one
line might be terrible....

Idea: find a good trade-off between
number of lines and approximation quality

20

Segmented Least Squares

Segmented least squares.
« Points lie roughly on a sequence of several line segments.
» Given n points in the plane (x4, y1), (X2, ¥5) , ..., (X, Y,) With
« X{< X5< .. < X,, find a sequence of lines that minimizes f(x).

Q. What's a reasonable choice for f(x) to balance accuracy and
parsimony?

1

number of lines

goodness of fit

21

Segmented Least Squares

Segmented least squares.
« Points lie roughly on a sequence of several line segments.
» Given n points in the plane (x4, y1), (X2, ¥5) , ..., (X, Y,) With
« X1< X5< .. <X, find a sequence of lines that minimizes:
- the sum of the sums of the squared errors E in each segment
- the number of lines L
« Tradeoff function: E + c L, for some constant ¢ > 0.

R Ll ——

o
O
—.

22

Dynamic Programming: Multiway Choice

Notation.
« OPT(j) = minimum cost for points py,..,p; P;-
« e(i, j) = minimum sum of squares for points p;, pi.1
according to Eq.s (1) and (2)

Observation (Optimal Structure).

Find a possible “recursion”: let [p;, p;] be the rightmost segment in
OPT(j), then

OPT(j) = OPT(i-1) + (1xC)+e(i,j) withl<is]
So the problem is to find the "optimal” i

Try All and get the best = Dynamic Programming!

23

Dynamic Programming: Multiway Choice

Notation.
« OPT(j) = minimum cost for points py, pisg .- - -, P;-
« e(i, j) = minimum sum of squares for points p;, Pi,1 P;.

according to Eq.s (1) and (2)

To compute OPT(;):
« Last segment uses points p;, pi.1, ..., p; for some 1.
« Cost=e(i, j) + ¢ + OPT(i-1).

0 if =0
min { e(i,j) +c+ OPT(i-1)} otherwise

I<si=<j

OPT(j) =

24

Segmented Least Squares: Algorithm

INPUT: n, py,..,Py, C

Segmented-Least-Squares () {
M[0] = O
for =1 ton
for i =1 to j
compute the least square error e;; for

the segment p,,.., py

;5 + C + M[i-1])

return M[n]

.) can be improved to O(n?) by pre-computing various statistics
Running time. O(n3).

. Bottleneck = computing e(i, j) for O(n?) pairs, O(n) per pair using
previous formula.

25

6.4 Knapsack Problem

Knapsack Problem

Knapsack problem.
» Given nobjects and a "knapsack."
« Item iweighs w; > O kilograms and has value v; > O.
« Knapsack has capacity of W kilograms.
« Goal: fill knapsack so as to maximize total SUM of values.

Exi (3,4 has value 40

1 1 1
W= 11 2 6 2
3 18 5
4 22 6
5 28 7

Greedy: repeatedly add item with maximum ratiov; / w;.
Ex: {5, 2,1} achieves only value = 35 = greedy not optimal.

Dynamic Programming: 1st approach

Def. OPT(i) = max profit subset of items 1, .., i.

= Case 1: OPT does not select item /.
- OPT selectsbestof{ 1, 2, ..., i-1}

« Case 2: OPT selects itemi.
- accepting item i does not immediately imply that we will have to
reject other items
- without knowing what other items were selected before i,
we don't even know if we have enough room for i

Conclusion. Need more sub-problems!

28

Dynamic Programming: Adding a New Variable

Def. OPT(i, w) = max profit subset of items 1, ..., i with weight limit w.

= Case 1: OPT does not select item i.
- OPT selectsbest of { 1, 2, .., i-1 } using weight limit w

« Case 2: OPT selects item i.
- new weight limit = w - w,
- OPT selects best of { 1, 2, ..., i-1 } using this new weight limit

[0 if i=0
OPT(i,w)=]OPT(i-1,w) if w,>w
\max{ OPT(i-1,w), v,+ OPT(i-1,w-w;)} otherwise

29

Q. How to fill-up the matrix M(i, w), i =1..n; w= 0..W ?2?

A. Property: Inorder to compute row i you need values of rows j < i only!

Knapsack Problem: Bottom-Up

Knapsack. Fill up an n x W array.
The good ordering for sub-problems

31

¢
{1}
{12}
{1,2,3}
{1,2,3,4}
{1,2,3,4,5)

Knapsack Algorithm

W+1

v

o O O O -

o)
1
1
1
1
1

N N N N =

OPT: {4,63}
value = 22 + 18 = 40

N N N N =

1
7

1
o

1
o

1
-

-19 24 25 25

22 24 28 29
22 28 29 34

18

11

OO A W N~

1
6
18
22
28

L L e LT e L L

1 1
77
25 25

20 ol
34 [40

1

N O O N

32

Knapsack Problem: Running Time

Running time. 6(n W).

« Not polynomial in input size!

- "Pseudo-polynomial."

« Decision version of Knapsack is NP-complete. [Chapter 8]

Knapsack approximation algorithm. There exists a poly-time algorithm
that produces a feasible solution that has value within 0.01% of
optimum. [Section 11.8]

33

6.5 RNA Secondary Structure

RNA Secondary Structure

RNA. String B = b;b,...b, over alphabet { A, C, G, U }.

Secondary structure. RNA is single-stranded so it tends to loop back
and form base pairs with itself. This structure is essential for
understanding behavior of molecule.

C—A
Ex: GUCGAUUGAGCGAAUGUAACAACGUGGCUACGGCGAGA A/ N\ A
AN /7
A==V 6—¢
| | / \
C--—-6—U—A—A G
/ 1 1 1 I
G I I I
U I A—U—U A
7\ I ~N G ~
A Cc G C V)
I I I I G
l | | I I /
C G C G A G--¢C
N 7 | |
G
A--U
|
G

complementary base pairs: A-U, C-G

35

RNA Secondary Structure

Secondary structure. A set of pairs S = { (b, b;) } that satisfy:
« [Watson-Crick.] S is a matching and each pair in S is a Watson-
Crick complement: A-U, U-A, C-G, or G-C.
« [No sharp turns.] The ends of each pair are separated by at least 4
intervening bases. If (b, b))E S, theni<j-4.
- [Non-crossing.] If (b, b;) and (by, b)) are two pairs in S, then we
cannot have i < k< j<|.

Free energy. Usual hypothesis is that an RNA molecule will form the

secondary structure with the optimum total free energy.
\

approximate by number of base pairs

Goal. Given an RNA molecule B = b;b,...b,, find a secondary structure S
that maximizes the number of base pairs.

36

RNA Secondary Structure: Examples

Examples.
6—6 /G\ 6—6
/ N\ G G / N\
C U \ / C U
N\ /7 N\ /
c---6 cC---6 c. v
|| | | | >< |
A---U A---U A G
| | | | | |
U---A U---A U---A
\ .
base pair

>
-
®
C e
D
D
aO e
(9
>
-
>
-
®
Ik,
®
D e
(@Y
>
-
>
®
C
C ¢
e
e
O ¢
(@Y
>
C

ok sharp turn crossing

37

RNA Secondary Structure: Subproblems

First attempt. OPT(j) = maximum number of base pairs in a secondary

structure of the substring bb,...b;.

match b, and b,

Difficulty. Results in fwo sub-problems.
. Finding secondary structure in: b;b,...b, ;. — OPT(-D)
. Finding secondar'y structure in: b‘r+1b‘r+2“-bn-1- «— need more sub-problems

38

Dynamic Programming Over Intervals

Notation. OPT(i, j) = maximum number of base pairs in a secondary

structure of the substring bb,;...b;.

= CGSQ 1 IleJ '4.
- OPT(i, j) = O by no-sharp turns condition.

- Case 2. Base b; is not involved in a pair.
- OPT(i, j) = OPT(, j-1)

- Case 3. Base b; pairs with b, for some i<t«<j - 4.
- non-crossing constraint decouples resulting sub-problems
- OPT(i, j) = 1 + max, { OPT(i, t-1) + OPT(¥+1, j-1) }
\

take max over t such that i < t < j-4 and
b, and b; are Watson-Crick complements

Remark. Same core idea in CKY algorithm to parse context-free grammars.

39

Bottom Up Dynamic Programming Over Intervals

Q. What order to solve the sub-problems?

A.

Do shortest intervals first.

RNA (b,,.., b)) {
for k =5, 6, .., n-1
for i =1, 2, .., n-k
j=1i+k
Compute M[i, j]

\

return M[1, n] using recurrence

Running time. O(n3).

_ D W N

40

Dynamic Programming Summary

Recipe.
« Characterize structure of problem.
« Recursively define value of optimal solution.
» Compute value of optimal solution.
« Construct optimal solution from computed information.

Dynamic programming techniques.
=« Binary choice: weighted interval scheduling. o
)) - Viterbi algorufhm for'.HMM.alsq uses
« Multi-way choice: segmented least squares. DP to optimize a maximum likelihood
tradeoff between parsimony and accuracy
« Adding a new variable: knapsack.

» Dynamic programming over intervals: RNA secondary structure.

CKY parsing algorithm for context-free
grammar has similar structure

Top-down vs. bottom-up: different people have different intuitions.

41

6.6 Sequence Alignment

String Similarity

How similar are two strings?

. Ocurrance

. Occurrence

o

- HH - SR
- 8 - HBEA -

6 mismatches, 1 gap

L] a]]
ccurance

1 mismatch, 1 gap

ol]
ccurre.nc

O mismatches, 3 gaps

43

Edit Distance

Applications.
= Basis for Unix diff.

« Speech recognition.
« Computational biology.

Edit distance. [Levenshtein 1966, Needleman-Wunsch 1970]
= Gap penalty 8 mismatch penalty oy
« Cost = sum of gap and mismatch penalties.

-EANA: - » cB: Bcrcaccrachs
-EEEN: - » cBW: ccrocacBrachs

e+ OgT+ Oag* 20ca 20+ apy

44

Sequence Alignment

Goal: Given two strings X = x; X, ... X,and Y =y, y, ...y, find
alignment of minimum cost.

Def. Analignment M is a set of ordered pairs x;-y; such that each item
occurs in at most one pair and no crossings.

Def. The pair x;-y; and x;:-y; crossif i<i’, but j>j'.

costtM) = Y « + y o0+ y 0

XiYj
(x;.,y;,)EM i :x; unmatched j:y; unmatched
misgatch g\zip
X; X, X3 X4 Xg X
| c s a o N <
Ex: CTACCG vS. TACATG.

Sol: M = X,-Y;, X2-Y>, Xa-Y=2, Xc-Ya, Xe-Ye.

27Y1. X37Y2, X47Y3, X57Y4, X6~ Ve -T A c“-r G

45

Desighing the Dynamic Programming

FACT. Let M be any Alignment of X and Y.
IF (m,n)is not in M THEN

either x, is not matched in M or y, is not matched in M.

Proof.
Otherwise, a cross would occurllll

46

Sequence Alignment: Problem Structure

Def. OPT(i, j) = min cost of aligning strings x; X, ... x;and y; y, ...Y;.
- Case 1: OPT matches x;-y;.
- pay mismatch for x;-y; + min cost of aligning two strings
X1 Xz ... Xjigandyyys ... Y

« Case 2a: OPT leaves x; unmatched.
- pay gap for x; and min cost of aligning x; x, ... x;.yandy; y, . . . y;

- Case 2b: OPT leaves y; unmatched.
- pay gap for y; and min cost of alighing x; X, ... x;and y; y, . . . yjq

OPT(, j) =

Jjo

min -

(o +OPT(i-1,j-1)

XiYj

5+OPT(i-1, j)

i0

5+O0PT(, j-1)

if 1=0

otherwise

if j=0

47

Sequence Alignment: Algorithm

Sequence-Alignment (m, n, X;X,...X_ , Y;¥Yy---Ya, 0, @) {
for i = 0 tom
M[i, 0] = id
for j =0 ton
M[O, j] = jo

for i =1 tom
for j =1 ton
M[i, j] = min(a[xi,yj] + M[i-1, j-1],
O + M[i-1, 3],
O + M[i, j-11)
return M[m, n]

Analysis. ©(mn) tfime and space.
English words or sentences: m, n < 10.
Computational biology: m = n =100,000. 10 billions ops OK, but 10GB array?

48

6.7 Sequence Alignment in Linear Space

Sequence Alignment: Linear Space

Q. Can we avoid using quadratic space?

Easy. Optimal value in O(m + n) space and O(mn) time.
. Compute OPT(i, *) from OPT(i-1, *).
« No longer a simple way to recover alignment itself.

Theorem. [Hirschberg 1975] Optimal alignment in O(m + n) space and
O(mn) time.

« Clever combination of divide-and-conquer and dynamic programming.

« Inspired by idea of Savitch from complexity theory.

50

Sequence Alignment: Linear Space

Edit distance graph.
. Let f(i, j) be shortest path from (0,0) to (i, j).
» Observation: f(i, j) = OPT(, j).

51

Sequence Alignment: Linear Space

Edit distance graph.
. Let f(i, j) be shortest path from (0,0) to (i, j).
« Can compute f (¢, j) for any j in O(mn) time and O(m + n) space.

52

Sequence Alignment: Linear Space

Edit distance graph.
. Let g(i, j) be shortest path from (i, j) to (m, n).

« Can compute by reversing the edge orientations and inverting the
roles of (0, 0) and (m, n)

53

Sequence Alignment: Linear Space

Edit distance graph.
. Let g(i, j) be shortest path from (i, j) to (m, n).
» Can compute g(¢, j) for any j in O(mn) time and O(m + n) space.

54

Sequence Alignment: Linear Space

Observation 1. The cost of the shortest path that uses (i, j) is
f(i, j) + g0, j).

55

Sequence Alignment: Linear Space

Observation 2. let g be an index that minimizes f(q, n/2) + g(q, n/2).
Then, the shortest path from (0, O) to (m, n) uses (q, n/2).

n/?2

56

Sequence Alignment: Linear Space

Divide: find index q that minimizes f(q, n/2) + g(q, n/2) using DP.
- Aligh x, and y,,.

Conquer: recursively compute optimal alignment in each piece.

n/?2

57

Sequence Alignment: Running Time Analysis Warmup

Theorem. Let T(m, n) = max running time of algorithm on strings of
length at most m and n. T(m, n) = O(mn log n).

T(m,n) <= 2T(m,n/2) + O(mn) = T(m,n) = O(mnlogn)

Remark. Analysis is not tight because two sub-problems are of size
(g, n/2) and (m - q, n/2). In next slide, we save log n factor.

58

Sequence Alignment: Running Time Analysis

Theorem. Let T(m, n) = max running time of algorithm on strings of
length m and n. T(m, n) = O(mn).

Pf. (by induction on n)

« O(mn) time to compute f(+, n/2) and g (*, n/2) and find index q.
T(q, n/2) + T(m - g, n/2) time for two recursive calls.
= Choose constant ¢ so that:

T(m, 2)
T2, n)
T(m, n)

cm
cn
cmn+ 1(q, n/2)+ T(m—-gq, n/2)

NN A

Base cases: m=2orn= 2.
Inductive hypothesis: T(m, n) < 2cmn.

T(m,n) T(g,n/2)y+T(m-q,n/2)+cmn

2cqn/2 +2c(m—-q)n/2 +cmn

NN

cqn + cmn — cqn + cmn

2cmn

59

