Factorization of the Eighth Fermat Number

Richard P. Brent; John M. Pollard

Stable URL: http://links.jstor.org/sici?sici=0025-5718%28198104%2936%3A154%3C627%3AFDFN%3E2.0.CO%3B2-2

Mathematics of Computation is currently published by American Mathematical Society.

Your use of the JSTOR archive indicates your acceptance of JSTOR’s Terms and Conditions of Use, available at http://www.jstor.org/about/terms.html. JSTOR’s Terms and Conditions of Use provides, in part, that unless you have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you may use content in the JSTOR archive only for your personal, non-commercial use.

Please contact the publisher regarding any further use of this work. Publisher contact information may be obtained at http://www.jstor.org/journals/ams.html.

Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed page of such transmission.

JSTOR is an independent not-for-profit organization dedicated to creating and preserving a digital archive of scholarly journals. For more information regarding JSTOR, please contact support@jstor.org.

http://www.jstor.org/
Mon Oct 10 07:34:47 2005
Factorization of the Eighth Fermat Number

By Richard P. Brent and John M. Pollard

Abstract. We describe a Monte Carlo factorization algorithm which was used to factorize the Fermat number $F_8 = 2^{256} + 1$. Previously F_8 was known to be composite, but its factors were unknown.

1. Introduction. Brent [1] recently proposed an improvement to Pollard's Monte Carlo factorization algorithm [4]. Both algorithms can usually find a prime factor p of a large integer in $O(p^{1/2})$ operations.

In this paper we describe a modification of Brent's algorithm which is useful when the factors are known to lie in a certain congruence class. To test its effectiveness, the algorithm was applied to the Fermat numbers $F_k = 2^{2^k} + 1$, $5 < k < 13$. The least factors of all but F_8 were known [2], and F_8 was known to be composite. The algorithm rediscovered the known factors and also found the previously unknown factor 1,238,926,361,552,897 of F_8.

2. The Factorization Algorithm and a Conjecture. To factor a number N, we consider a sequence defined by a recurrence relation

$$x_i = f(x_{i-1}) \pmod{N}, \quad i = 1, 2, \ldots,$$

where f is a polynomial of degree at least 2, with some suitable x_0. One variant of Brent's algorithm computes $\gcd(x_i - x_j, N)$ for $i = 0, 1, 3, 7, 15, \ldots$ and $j = i + 1, \ldots, 2i + 1$ until either $x_i = x_j \pmod{N}$ (in which case a different f or x_0 must be tried) or a nontrivial \gcd (and hence a factor of N) is found. As in [1], [4] we can reduce the cost of a \gcd computation essentially to that of a multiplication mod N, and this is assumed below.

If nothing is known about the factors, we normally choose a quadratic polynomial $x^2 + c$ ($c \neq 0, -2$). However, it is conjectured in [4] that the expected number of steps for Pollard's algorithm can be reduced by a factor $\sqrt{m} - 1$ if the factors p are known to satisfy $p = 1 \pmod{m}$ and we use a polynomial of the form $x^m + c$. This conjecture is equally applicable to the algorithms of [1].

We sketch the informal argument leading to the conjecture. Suppose we are given a function $g(x)$ on a set U of p elements and define a sequence of elements by $x_i = g(x_{i-1})$, $i = 1, 2, \ldots$. Suppose that the elements of the set $S = \{x_0, \ldots, x_{n-1}\}$ are distinct. For a random function g, the probability that the next
element \(x_n \) is in \(S \) is just \(n/p \) (from which the formulae of [1], [4] are derived). We require the corresponding probability when \(g \) is chosen at random out of a subset of the functions on our set, namely those producing a graph in which, for each \(i \), a fraction \(q_i \) of nodes have in-degree \(i \): here the \(q_i \) are any given nonnegative numbers with \(\sum_i q_i = \sum_i iq_i = 1 \). (For the application to factorization, the argument could be simplified, but as presented it applies to wider classes of functions such as those of [5], at least in the first approximation.)

Let \(T \) be the set of elements \(y \in U \setminus S \) with \(g(y) \in S \). To estimate the expected size of \(T \), we argue that the probability of any node appearing in \(S \) is proportional to the node's in-degree \(i \). Thus \(T \) has the expected size

\[
n \sum i q_i (i - 1) = n \sum i q_i (i - 1)^2 = n V,
\]

where \(V \) is the variance of the in-degree. If \(x_n \not\in S \), we shall have \(x_{n+1} \in S \) if and only if \(x_n \in T \), an event with probability \(n V / (p - n) \approx n / (p/V) \) (since we are concerned with the situation \(n = O(p^{1/2}), p \) large).

For a random mapping, the in-degree has a Poisson distribution with mean and variance 1, and the two arguments agree. For the application to factorization, we take \(g(x) = f(x) \pmod{p} \), \(f(x) = x^m + c \pmod{N} \). Since \(p = 1 \pmod{m} \), the in-degree is \(m \) for a fraction \(1/m \) of the nodes, and zero for the remainder (neglecting one node, \(c \)), so the variance of the in-degree is essentially \(V = m - 1 \). This motivates the conjecture.

Our conjecture must clearly be applied with discretion. Consider, for example, the function \(g(x) = x + 1 \) or \(x + 2 \pmod{p} \) according as \(x \) is a quadratic residue or a nonresidue of \(p \): since the cycle is of order \(p \) (in fact \(2p/3 + O(p^{1/2} \log^2 p) \)) it benefits us little to compute \(V \approx \frac{1}{2} \).

3. Behavior of the Polynomial \(x^m + 1 \). To illustrate our conjecture, we give some numerical results for the polynomial \(g(x) = x^m + 1 \pmod{p} \), \(m = 2^k \), for \(1 \leq k \leq 10 \). For each \(k \), we give in Table 1 the mean values of \(t(p)/\sqrt{p}/(m - 1) \) and \(c(p)/\sqrt{p}/(m - 1) \) for the \(10^4 \) smallest primes \(p > 10^6 \) satisfying \(p = 1 \pmod{m} \); here \(t(p) \) and \(c(p) \) denote, respectively, the length of the tail (nonperiodic part) and of the cycle (periodic part) of the sequence \((x_i) \), starting with \(x_0 = 1 \). The conjectured expectations are \((\pi/8)^{1/2} \approx 0.627\).

<table>
<thead>
<tr>
<th>(k)</th>
<th>mean (t(p)/\sqrt{p}/(m - 1))</th>
<th>mean (c(p)/\sqrt{p}/(m - 1))</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.619</td>
<td>0.618</td>
</tr>
<tr>
<td>2</td>
<td>0.627</td>
<td>0.619</td>
</tr>
<tr>
<td>3</td>
<td>0.625</td>
<td>0.620</td>
</tr>
<tr>
<td>4</td>
<td>0.625</td>
<td>0.626</td>
</tr>
<tr>
<td>5</td>
<td>0.629</td>
<td>0.619</td>
</tr>
<tr>
<td>6</td>
<td>0.628</td>
<td>0.617</td>
</tr>
<tr>
<td>7</td>
<td>0.629</td>
<td>0.622</td>
</tr>
<tr>
<td>8</td>
<td>0.630</td>
<td>0.618</td>
</tr>
<tr>
<td>9</td>
<td>0.625</td>
<td>0.625</td>
</tr>
<tr>
<td>10</td>
<td>0.619</td>
<td>0.625</td>
</tr>
</tbody>
</table>
A more obvious conjecture replaces our $\sqrt{m - 1}$ by \sqrt{m}; this results from the idea that the recurrence relation corresponding to $g(x) = x^m + 1 \pmod{p}$ operates on a set of $(p - 1)/m$ residues when $p = 1 \pmod{m}$. The difference is important when $m = 2$, as in the standard form of Brent’s and Pollard’s algorithms. The empirical results of Brent [1] (for $m = 2$ and all odd primes $p < 10^8$) and Table 1 discredit this conjecture.

4. Application to Factorization of Fermat Numbers. The factors p_k of a Fermat number $F_k = 2^{2^k} + 1$ $(k > 1)$ satisfy $p_k = 1 \pmod{2^{k+2}}$, so to factorize F_k we took $f(x) = x^{2^{k+2}} + 1 \pmod{F_k}$ and $x_0 = 3$ in the algorithm of Section 2 ($x_0 = 0$ or 1 is not satisfactory here). By the conjecture of Section 2, compared to Brent’s algorithm [1, Section 5], the expected number of steps is reduced by a factor $(2^{k+2} - 1)^{1/2}$, but the number of multiplications $(\text{mod } F_k)$ per step is increased from 2 to $k + 3$. Thus, from [1, Eq. (6.2)], the expected number of multiplications $(\text{mod } F_k)$ to find the least prime factor p_k of F_k is

$$E_k = (k + 3)(\pi p_k/8)^{1/2}(3/\ln 4 + 1)/(2^{k+2} - 1)^{1/2},$$

and for $k = 8$ this is 0.682$p_k^{1/2}$. For the algorithm of [4] (with a quadratic polynomial), the corresponding number is $4(\pi/2)^{5/2}p_k^{1/2}/3 \approx 4.123p_k^{1/2}$, larger by a factor of six.

We did not employ the modification of [1, Section 7] which is not worthwhile unless m is small. Some improvements might have been achieved in other ways, but we preferred to keep the method as simple as possible.

In Table 2, p_k is the least prime factor of F_k, M_k is the number of multiplications $(\text{mod } F_k)$ required to find it (by the algorithm just described), and E_k is given by (1). The computation for F_7 took 6 hours 50 minutes on a Univac 1100/82 computer, comparable to the time required by the continued fraction algorithm [3]; that for F_{13} took 3 hours 20 minutes on the same machine. The factorization of F_8 took 2 hours on a Univac 1100/42 computer (a slightly slower machine). The other computations took only a few seconds.

<table>
<thead>
<tr>
<th>k</th>
<th>p_k</th>
<th>M_k</th>
<th>M_k/E_k</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>641</td>
<td>16</td>
<td>0.45</td>
</tr>
<tr>
<td>6</td>
<td>274,177</td>
<td>855</td>
<td>1.46</td>
</tr>
<tr>
<td>7</td>
<td>59,649,589,127,497,217</td>
<td>2.67 \times 108</td>
<td>1.24</td>
</tr>
<tr>
<td>8</td>
<td>1,238,926,361,552,897</td>
<td>2.29 \times 107</td>
<td>0.95</td>
</tr>
<tr>
<td>9</td>
<td>2,424,833</td>
<td>420</td>
<td>0.51</td>
</tr>
<tr>
<td>10</td>
<td>45,592,577</td>
<td>1,521</td>
<td>0.56</td>
</tr>
<tr>
<td>11</td>
<td>319,489</td>
<td>112</td>
<td>0.65</td>
</tr>
<tr>
<td>12</td>
<td>114,689</td>
<td>30</td>
<td>0.38</td>
</tr>
<tr>
<td>13</td>
<td>2,710,954,639,361</td>
<td>38,896</td>
<td>0.13</td>
</tr>
</tbody>
</table>

The application of more than 100 trials of Rabin’s probabilistic algorithm lead us to suspect that the cofactor $q_8 = F_8/p_8 = 93,461,639,715,357,977,769,163,558,199,606,896,584,051,237,541,638,188,580,280,321$ was prime. Professor H. C.
Williams kindly proved the primality of q_8, using the methods of [7] and the partial factorizations

\[
q_8 - 1 = 2^{11} \cdot 3 \cdot 5 \cdot 7 \cdot 13 \cdot r_1,
\]
\[
q_8 + 1 = 2 \cdot r_2,
\]
\[
q_8^2 + 1 = 2 \cdot 17 \cdot 21649 \cdot 31081 \cdot 2347789 \cdot r_4,
\]
\[
q_8^2 + q_8 + 1 = 3 \cdot r_3,
\]
\[
q_8^2 - q_8 + 1 = 37 \cdot 1459 \cdot 266401 \cdot r_6,
\]

where r_1, r_2, r_3, r_4, r_6 are composite but have no factors less than 5×10^7. (D. H. Lehmer found that their factors exceed 2×10^9, but this is more than is required for the proof of primality of q_8.) Thus, the factorization of F_k is now complete for $k < 8$ (F_k is prime for $1 < k < 4$, composite with two prime factors for $5 < k < 8$).

We are currently applying a slight modification of the algorithm in an attempt to factorize $q_9 = F_9/p_9$, a number of 148 decimal digits which is known to be composite, and F_{14}. The algorithm could also be used to factorize Mersenne numbers $M_k = 2^k - 1$ (k prime), whose prime factors p satisfy $p = 1 \pmod{2k}$.

Acknowledgement. We thank H. C. Williams for proving the primality of q_8, D. H. Lehmer and Daniel Shanks for their assistance, and the Australian National University for the provision of computer time.

Note Added in Proof. A simpler proof of the primality of q_8 is possible, using the factorization $r_1 = 31618624099079 \cdot r'_1$, where r'_1 is a 43-digit prime. The factorization of r_1 was obtained by the method of [1].

Department of Computer Science
Australian National University
Canberra, A. C. T. 2600, Australia

Plessey Telecommunications
Taplow Court, Maidenhead
Berkshire, England