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1. Introduction

The written history of distinguishing prime numbers from composites goes back
to Eratosthenes who came up with the first recorded algorithm for primality
testing, in the 3rd century BC. He showed how to efficiently generate the set of
primes from 1 to N in O(N ln ln N) arithmetic steps.

Starting in the 17th century, mathematicians (Fermat, Euler, Legendre, and
Gauss, to name a few) began to study primality once more. Their work laid the
foundation for a new age in primality testing, which began in the 1970’s. In this
early work (see, for example, Brillhart et al. [1975] and Williams [1978]),
factoring and primality testing were intimately related. Consequently, the algo-
rithms were quite slow or worked for numbers of a special form (Brillhart et al.
[1988] follows up on this work on factoring numbers of a particular form). Then,
using elementary results from number theory, Miller [1976], Solovay-Strassen
[1977], and Rabin [1980] developed efficient (polynomial time) algorithms for
these problems.

Solovay-Strassen [1977] and Rabin [1980] give randomized primality tests. On
an input N, these tests flip a sequence of coins, and compute its answer based on
N and the outcome of these coins. If N is composite, the tests will with high
probability output a proof (witness) that N is composite. If N is prime, they will
fail to produce a witness of compositeness, giving probabilistic support to the
assertion that N is prime, but no definitive proof.

Miller [1976] gives a deterministic polynomial-time algorithm for primality
testing based on the Extended Riemann Hypothesis (ERH). On input N, the
algorithm searches for a proof that N is composite. If it finds one, it stops and
reports that N is composite, along with its proof of compositeness. If it doesn’t
find a proof of compositeness, the algorithm reports that either N is prime or the
ERH is false. Hence, a proof of the ERH implies the existence of an efficient
deterministic primality test; unfortunately, this proof is not currently within
reach.

Adleman et al. [1983] and Cohen-Lenstra [1984] give nearly polynomial-time
deterministic primality tests that do not rely on any unproven assumptions. They
require ku (ln ln k) computational steps on an input N of length k. Furthermore,
they do not provide any succinct proof of the primality number of a number it
declares prime.

Given the previous success at producing proofs of compositeness, a natural
question is whether one can produce short proofs of primality. We call such a
short proof a certificate of primality. Pratt [1975] has shown that such a short
certificate of primality always exists (and hence that primes are in NP), but while
his method is constructive it requires one to factor large integers and thus does
not run in polynomial time. Wunderlich [1983] discusses a heuristic that will
efficiently find certificates for some primes; however, the set of primes certifiable
in this manner is sparse, and indeed has not been proven to be infinite. However,
it turns out that these techniques, albeit in much more general form, are useful in
the efficient generation of certificates of primality for most (probably all) primes.
This is the topic of our work.

We present a simple methodology for applying group theory to the problem of
prime certification. We use this methodology, in conjunction with the theory of
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elliptic curves, to develop an algorithm for prime certification. This algorithm
has the following three properties.

(1) Given an input of length k, the algorithm produces a certificate of primality
that is of length O(k2), and requires O(k4) steps to verify.

(2) The algorithm terminates in expected polynomial time on every prime
number, provided that the following conjecture is true:

CONJECTURE 1. ~?c1 , c2 . 0!p~ x 1 Îx! 2 p~ x! $
c2 Îx

logc1 x
,

for x sufficiently large.

Here, p(n) denotes the number of prime numbers that are less than n. This
conjecture is very believable, for reasons that will be discussed later.

(3) There exist constants c1 and c2 such that for all k sufficiently large, the
algorithm will terminate in expected c1k11 time for all but at most,

2k

2kc2/ln ln k ,

of the inputs. In other words, the algorithm can be proved to run quickly on
all but a vanishingly small fraction of the prime numbers.

A corollary to the above result is a method to efficiently generate large
certified primes. Previous to our work, no method was known which provably
produced more than a finite number of certified primes. Since we can certify
most primes as prime, we can use the following simple algorithm to generate a
k-bit certified prime with close to uniform distribution.

(1) Uniformly generate a random k-bit integer, n. Using a standard probabilistic
test, attempt to prove it composite. If the attempt succeeds, repeat Step (1).

(2) Using our test, attempt to quickly (using only kc steps, for some constant c)
find a certificate of primality. If this succeeds, output n with its certificate.
Otherwise, go to Step (1).

In other words, we randomly generate probable primes until we find one we can
quickly certify. Since we can certify nearly all primes in expected polynomial
time, and a random k-bit number will be prime with probability O(1/k) (by the
prime-number theorem), the above algorithm will terminate in expected polyno-
mial time. The distribution on k-bit certified primes will be statistically very close
to the uniform distribution on k-bit primes.

We note that the primality test we will describe has by now (subsequent to its
appearance in conference proceedings [Goldwasser and Kilian 1986]) been
implemented and incorporated in other algorithms (see below). We thus empha-
size here the full and rigorous proof that for almost all primes the algorithm will
terminate in expected polynomial time. This proof entails a careful analysis of
the trade-off between the frequency of small intervals with no primes in them,
and the number of primes that depend on these intervals for certification. The
proof need not resort to any unproven assumptions on the distribution of primes
in small intervals.
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1.1. TECHNIQUES USED. Perhaps the most interesting aspect of our algorithm
is the techniques it uses. In addition to using previous probabilistic primality tests
as subroutines to guide our search for the primality certificate, we need to resort
to the theory of elliptic curves and algorithms that compute the number of points
on such curves over finite fields, and to the best known results on the density of
primes in small intervals. We detail these usages below.

1.1.1. Previous Primality Tests used in the Algorithm. We use the previous
state of the art in primality testing, both the randomized algorithms, the
deterministic algorithms, and Pratt’s proof that primes have short certificates.
These three results are used in the following different ways.

Both Pratt’s existential result and Wunderlich’s heuristic successively reduces
the primality of p to the primality of a set of smaller primes, {qi}, by considering
the order of elements of the group Z*p. We apply similar ideas, using groups
generated by considering elliptic curves over Zp, to reduce the primality of p to
the primality of a significantly smaller prime q. For this step to be useful, it is
important to be sure that q is indeed prime; this may be determined efficiently
and with high confidence using the probabilistic tests of Solovay–Strassen and
Miller–Rabin. Finally, we stop the recursion when q is small enough so that the
deterministic algorithms of Adleman–Pomerance–Rumely and Cohen–Lenstra
only require polynomial time in the size of the original input.

1.1.2. The Theory of Elliptic Curves. Given a prime p $ 5 and a pair ( A, B)
where A, B [ GF( p) and 4A3 1 27B2 Ó 0 mod p, we consider solutions ( x, y)
to the equation

y2 ; x3 1 Ax 1 B mod p.

These sets of ordered pairs, when augmented by an extra point I, are the points
of an elliptic curve over GF( p). There is a natural addition operation under
which the points of an elliptic curve form an Abelian group. Elliptic curves have
been studied extensively from the standpoint of pure mathematics, and have
been recently used in the development of algebraic algorithms.

Our algorithm uses Schoof’s [1985] deterministic polynomial time algorithm
for computing the number of points on an elliptic curve. The analysis of our
algorithm uses a theorem of Lenstra [1987] concerning the distribution of the
orders of elliptic curves.

We note that elliptic curves have been used earlier in the context of primality
testing [Bosma 1985; Chudnovsky and Chudnovsky 1986].

1.1.3. Results on the Density of Primes in Small Intervals. The running-time
analysis of our algorithm depends on the frequency of primes in intervals of the
form [ x, x 1 =x], that is, on the value of p( x 1 =x) 2 p( x). The Prime
Number Theorem states that for sufficiently large x, p( x) will approach x/ln x,
suggesting (but not implying) our conjecture (with c1 5 1). A famous, widely
believed conjecture of Cramer states that for sufficiently large x, p( x 1 ln2 x) 2
p( x) . 0, implying our conjecture, with c1 5 2.

While no one has been able to prove our conjecture for all numbers,
Heath-Brown [1978] have shown that our conjecture is true for most intervals.
One of their technical lemmas implies the following result (communicated to us
by H. Maier and C. Pomerance).
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THEOREM [HEATH-BROWN]. Call an integer y sparse if there are less than
=y/2ln y primes in the interval [ y, y 1 =y]. Then there exist a constant a such
that for sufficiently large x,

u$ y:y [ @ x, 2x# , y is sparse% u , x5/6 lna x.

Heath-Brown’s theorem allow us to analyze our algorithm for uniformly
distributed inputs.

1.2. SUBSEQUENT RESEARCH. Our methodology has been used in two more
recent algorithms. First, and foremost, Adleman and Huang [1987; 1992] have
developed an algorithm that is guaranteed to find short certificates for all prime
numbers. To do this, they first sharpen the analysis of an extended version of our
algorithm [Goldwasser and Kilian 1986] to bound above the fraction of “bad”
k-bit primes, which the elliptic curve based algorithms could not quickly certify,
down to 22V(k). Another exposition of this result will be given in Lenstra et al.
[to appear]. This by itself is not of great interest, but turns out to be crucial to
their next, much larger step. They then apply our methodology to a different
class of groups, those generated by hyperelliptic curves. This yields an algorithm
which first reduces the proof of primality for a prime p to a proof of primality for
a sufficiently randomized prime q. Second, the sharpened version of the elliptic
curve algorithm is used to prove that q prime. It can be shown that q is
sufficiently random so that it will be certifiable with high probability.

Unfortunately, both the algorithm presented here and the algorithm of
Adleman–Huang are quite slow in practice. Our algorithm takes O(k11) ex-
pected time on most k-bit primes and the Adleman–Huang is even slower.

Our algorithm may be speeded up by using faster algorithms for computing the
number of points on an elliptic curve over GF( p). In practice, Schoof’s
algorithm has been made significantly more efficient [Atkin 1986a; 1988; 1992;
Elkies 1998]. A survey of these results, many still unpublished, is given in Schoof
[1995]. The current record for these techniques is the computation of the size of
a group modulo a 500-digit prime (c.f. Morain [1995]).

Furthermore, Atkin [1986b] has developed a variant of our method, in which
groups and their order are picked at the same time, that runs much quicker in
practice. This is due to the fact that Schoof’s algorithm for computing the
number of points on the curve need not be run. This algorithm has been further
improved in Kaltofen et al. [1989] and Atkin and Morain [1993]. Further
discussions of elliptic curves and primality testing may be found in Morain
[1990]. This class of algorithms has been used to certify primes of over 2,000
digits. We note that for numbers of a few thousand digits, a superpolynomial-
time algorithm based on cyclotomy, due to Mihăilescu [1994], appears to be
faster in practice; however, verifying these proofs is not much faster than
generating them.

Unfortunately, the modification necessary to improve these algorithms’ run-
ning times has frustrated attempts at rigorous analysis. A rigorous algorithm
which is provably fast (in the practical sense of the word) still eludes us, as does
a polynomial-time deterministic primality test. As partial progress on the latter
problem, deterministic algorithms have been found that prove primality for
infinite sets of primes [Pintz et al. 1989; Konyagin and Pomerance 1997].
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Along a different line of research, Pomerance has used these techniques to
prove the existence of very short certificates of primality [Pomerance 1987].

A more detailed discussion of using elliptic curves to finding small factors is
(or will be) given in Lenstra [1993; to appear; to appear].

1.2.1. Outline of the paper. In Section 2, we give a quick introduction to
elliptic curves. In Section 3, we give our new primality criterion and primality
proving algorithm. In Section 4, we analyze the running time of the main step of
our algorithm, as a function of the number of primes in certain small intervals. In
Section 5, we show that our algorithm produces certificates for all primes in
expected polynomial time, modulo a number-theoretic conjecture. We then
extend this argument to show that our algorithm produces certificates for almost
all primes in expected polynomial time. This last theorem depends on no
unproven assumptions.

2. An Introduction to Elliptic Curves

For those unfamiliar with the basic theory of elliptic curves, we present a brief
introduction to this field; more complete introductions appear in, for example,
Silverman [1986], Tate [1974], and Lenstra and Lenstra [1987].

2.1. DEFINITION. First, we define an elliptic curve, represented in Weierstrass
normal form.

Definition 1. Let ^ be a field whose characteristic is not 2 or 3. An elliptic
curve is an ordered pair ( A, B), where A, B [ ^, and 4A3 1 27B2 Þ 0.

Definition 2. Let ^ be a field whose characteristic is not 2 or 3, and let ( A,
B) be an elliptic curve over ^. We define the points of ( A, B) to be the set of
ordered pairs ( x, y) such that y2 5 x3 1 Ax 1 B, and an additional element, I,
called “the point at infinity.” We denote these points by EA, B(F). If F 5 GF( p),
we use the abbreviation EA, B( p) to denote EA, B(GF( p)).

2.2. ADDING POINTS ON AN ELLIPTIC CURVE. There is a natural way of
defining addition for the points on an elliptic curve. First, we define a 1 I 5 I 1
a 5 a (I the identity). For the rest of this discussion, we write L 5 ( x1, y1) and
M 5 ( x2, y2).

For elliptic curves over the reals, we can interpret our addition operation as
illustrated in Figure 1 (this is known as the “tangent and chord” method). For
the “general case”, given points L and M, we first consider the line connecting L
and M, and locate the third intersection point of the line with the points on curve
( A, B). We then reflect this third point over the x-axis, and define the resulting
point as L 1 M.

Some degenerate cases remain. If L 5 M, instead use the line tangent to the
elliptic curve at L. If L and M are on a vertical line, we define L 1 M 5 I.
Finally, if the line L and M fails to intersect the curve any other point, it can be
shown that the line will be tangent to the curve at one of the two points of
intersection. We treat this tangency as a double point of intersection, and use it
as the “third” point.

Expressing these geometric operations algebraically, the resulting algorithm is
given in Figure 2. This algorithm works for arbitrary fields such that 2, 3 Þ 0.

455Primality Testing Using Elliptic Curves



We define qL, where L is a point and q is an integer, by repeated addition in
the natural manner. The value of qL may be efficiently computed via repeated
doubling. That is,

qL 5 5 L for q 5 1,
~L 1 L! p q/ 2 for q even,
L 1 ~q 2 1! L for q odd.

2.3. APPLYING ADD OVER ZN. Algorithm ADD may be formally applied to
points L and M on an elliptic curve over the ring Zn; we use L 1 M as
shorthand for ADD(L, M). However, the requisite inverse elements may not
exist, or it may be that x1 5 x2 but y1 Þ 6y2, in which case L 1 M is undefined.
These failures simply give a witness that n is composite, and indeed, yield
nontrivial factors of n. We next observe that, when defined, ADD(L, M) “makes
sense” when the coordinates of the point are taken mod p, where p is a prime
divisor of n.

Let p . 3, p un and let 4A3 1 27B2 Þ 0 (mod p) (we can view A and B mod
p as well as mod n, since p un). Given x [ Zn we define xp to be the natural
projection from x to GF( p). Given a point L 5 ( x, y) [ EA, B(Zn) we define
Lp 5 ( xp, yp), and we define Ip 5 I. Note that Lp [ EA, B( p).

FIG. 1. Pictorial description of addition of points on an elliptic curve.

FIG. 2. Algorithm for adding two points on an elliptic curve.

456 S. GOLDWASSER AND J. KILIAN



LEMMA 1. If L 1 M is defined, then (L 1 M)p 5 Lp 1 Mp.

PROOF. The lemma trivially holds if L or M is the identity; for the rest of the
proof we write L 5 ( x1, y1) and M 5 ( x2, y2). First, note that for any rational
function R over Zn, either R( x1, x2, . . .) is undefined or

~R~ x1 , x2 , · · ·!p!p 5 R~~ x1!p , ~ x2!p , · · ·! ,

Where in computing R(( x1)p, ( x2)p, . . .) the coefficients of R are taken mod p
instead of mod n.

Algorithm ADD considers 3 cases:

(1) x1 5 x2 and y1 5 2y2, in which case ADD returns I.
(2) x1 5 x2 and y1 5 y2, in which case ADD returns

SP~ x1 , x2 , y1 , y2 , A, B!

~2y1!
3

,
Q~ x1 , x2 , y1 , y2 , A, B!

~2y1!
3 D .

(3) x1 Þ x2, in which case ADD returns

SR~ x1 , x2 , y1 , y2 , A, B!

~ x2 2 x1!
3

,
S~ x1 , x2 , y1 , y2 , A, B!

~ x2 2 x1!
3 D .

Here, P, Q, R, and S are polynomials. If (L, M) and (Lp, Mp) both fall into the
same case, then ADD will compute the same rational function on x1, x2, y1, y2 as
it computes on ( x1)p, ( x2)p, ( y1)p, ( y2)p, and the lemma follows. It remains to
show that whenever (L, M) and (Lp, Mp) fall into different cases, L 1 M is
undefined. This event can happen if either

(1) x1 5 x2, but y1 Þ 6y2 or
(2) x1 Þ x2, but ( x1)p 5 ( x2)p

(The other “possibilities” can be eliminated since a 5 b implies ap 5 bp and
a 5 2b implies ap 5 2bp.) In the former case, ADD is undefined. In the latter
case, p u( x1 2 x2), and ADD will thus be unable to compute the inverse of x1 2
x2. e

2.4. THE GROUP STRUCTURE OF CURVES OVER GF( P). We use some classical
results about curves over Zp, as well as some more recent results. First, the set of
points of the elliptic curve ( A, B) over Zp form an Abelian group under the
point addition operation defined above. This group is isomorphic to Zm1

1 3 Zm2

1

for some m1, m2, where m1um2 and Zmi

1 denotes the cyclic additive group of
integers mod mi.

We next consider the size of these groups. Given an elliptic curve ( A, B), we
denote by #p( A, B) the number of points on ( A, B) over GF( p). For the rest
of our discussion, we assume that p Þ 2, 3. The well-known Riemann Hypothesis
for Finite Fields implies that

p 1 1 2 2 Îp # #p~ A, B! # p 1 1 1 2 Îp .

The following theorem of Lenstra [1987] considers the distribution of #p( A, B)
when ( A, B) is uniformly distributed. This result is crucial to our analysis.
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THEOREM 1 [LENSTRA]. Let p . 5 be a prime. Let,

S # @ p 1 1 2  Îp , p 1 1 1  Îp# .

If curve ( A, B) over Zp is chosen uniformly, then,

prob~#p~ A, B! [ S! .
c

ln p
z

uS u 2 2

2 Îp 1 1
,

where c is some fixed constant.

Essentially, the size of a random group is at most O(1/ln p) times less likely to
have a particular property as a randomly selected integer in

@ p 1 1 2  Îp , p 1 1 1  Îp# ,

provided that uS u . 2.
Given a curve ( A, B) over GF( p), where p is a k-bit prime, there is an

algorithm due to Schoof [1985] that deterministically computes #p( A, B) in
O(k9) steps. Improvements to Schoof’s algorithm may be found in Atkin [1986a;
1988; 1992] and Elkies [1991].

3. The Primality Proving Algorithm

We present a new primality criterion using elliptic curves, and use it to create a
new algorithm for proving primality.

3.1. A PRIMALITY CRITERION USING ELLIPTIC CURVES. Using Lemma 1, we
can prove the following primality criterion. Theorem 2 is the heart of this paper;
the remainder shows how to implement, use and analyze it in detail.

THEOREM 2. Let n be an integer, not divisible by 2 or 3. Let A, B [ Zn, and
(4A3 1 27B2, n) 5 1 and let L [ EA,B(Zn), with L Þ I. If qL 5 I, for some prime
q . n1/2 1 2n1/4 1 1, then n is prime.

Formally, qL is shorthand for performing the repeated doubling algorithm
described in Section 2.

PROOF. Our proof is by contradiction. If n is composite, then there exists a
prime divisor p such that p # =n and p Þ 2, 3. Furthermore, 4A3 1 27B Þ 0
mod p. Thus Lp [ EA, B( p) and qLp 5 I, by repeated application of Lemma 1.
Hence, the order of Lp must divide q and since Lp Þ I and q is prime, its order
must be equal to q. However, clearly, the order of Lp is at most #p( A, B) #
p 1 2=p 1 1 , q, a contradiction. e

3.2. OVERVIEW OF THE PRIMALITY PROVING ALGORITHM. We focus on the
problem of proving that a (prime) number is prime; throughout this discussion, p
is prime.

We use our primality criterion to reduce the primality of p to the primality of
a new prime, q, where q # p/ 2 1 o( p), and recursively prove that q is prime.
For technical reasons, we eventually stop when the number to be proven prime is
sufficiently small that it may be deterministically verified as prime. If too much
time passes, the algorithm times out and starts over from scratch.
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3.3. THE BASIC REDUCTION STEP. Our basic reduction works as follows:
Given a prime p, we construct a curve ( A, B) over Zp, and a point L on this
curve with a prime order q, where q ' p/ 2. We use our primality criterion to
reduce the primality of p to the primality of q.

We first uniformly choose A, B such that (4A3 1 27B2, p) 5 1 and its size
#p( A, B) 5 2q for some prime q. We do this by uniformly choosing a pair ( A,
B), checking that (4A3 1 27B2, p) 5 1, computing its size, #p( A, B), using
Schoof’s algorithm, and checking that #p( A, B) 5 2q, where q is a prime. We
check q for primality using a standard primality testing algorithm, with an
exceedingly small probability of error, say, 1/p, where p is the number we initially
wished to prove prime. We repeat the above steps until ( A, B) until it passes
both checks.

More generally, one may allow #p( A, B) 5 rq, where r is smooth or
otherwise easy to factor out of #p( A, B), and q is sufficiently large. Such
considerations only complicate the analysis presented here, without giving stron-
ger results. However, a more sophisticated analysis [Adleman and Huang 1992;
Lenstra et al. to appear] does indeed give stronger results.

Using probabilistic primality tests introduces a small probability of error into
our algorithm. However, as we will see later, it will be possible to correct such
errors before they can cause an incorrect output.

We give the curve generation algorithm in Figure 3.
To choose L, we first independently and uniformly choose x [ Zp until x3 1

Ax 1 B is a quadratic residue, then compute y 5 =x3 1 Ax 1 B, using the
algorithm of Adleman et al. [1977], and uniformly choose which of the two
square roots to take. Note that when x is chosen independently and uniformly,
x3 1 Ax 1 B is a quadratic residue with some constant probability; hence only a
constant expected choices of x are needed. Once x3 1 Ax 1 B is known to be a
quadratic residue, then only an expected polynomial root-extraction algorithm is
needed to ensure that L is generated in expected polynomial time.

We give the point selection algorithm in Figure 4, and the full algorithm for
the main step in Figure 5.

3.4. THE COMPLETE PRIMALITY PROVING ALGORITHM. The full algorithm
essentially iterates the main reduction algorithm until the prime to be proven is
so small that it may be verified prime in time polynomial in k, the number of bits
of the original prime number to be certified. We also have an abort condition, so

FIG. 3. Algorithm for generating a curve of order 2q, where q is prime.
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that the algorithm will restart after sufficiently many steps have taken place. This
mechanism handles the exponentially rare case when a mistake by the probabi-
listic primality test causes the algorithm to get stuck trying to prove a composite
number prime. We give the complete algorithm in Figure 6. For the exposition of
this algorithm, we let constant C to be defined as a positive constant such that
the Cohen–Lenstra primality test takes O(k) time on inputs of size

2(k)C/lg lg k

.

It is easily verified that such a positive constant does exist.

3.5. CHECKING THE CERTIFICATE. We now show that the output of Prove-
Prime( p) constitutes a certificate of p’s primality, that can be deterministically
checked in time O( up u4). Our deterministic checker works as follows: On input

p, ~~ A0 , B0! , L0 , p1! , . . . , ~~ Ai21 , Bi21! , Li21 , pi! ,

the algorithm first checks that pi is small enough to be rapidly verified prime
using the algorithm of Cohen and Lenstra [1984] (and hence does not need a
certificate of primality), and aborts if this is not the case. It then verifies that pi is
prime, and aborts if it is not the case. Then, for j 5 1, . . . , i 2 1, it verifies that

—pj is not divisible by 2 or 3,
—( Aj, Bj) is a curve over Zpj

,
—pj11 . pj

1/ 2 1 2pj
1/4 1 1, and

—Lj Þ Ipj
, qjLj 5 Ipj

.

We give this algorithm in Figure 7.
The following theorem shows that the output of our primality prover is indeed

a certificate of primality.

THEOREM 3. If algorithm CHECK( p, certificate) accepts, then p is prime. For a
prime p, let certificate be an output of algorithm PRIME-PROVE( p). Then check ( p,
certificate) will accept in O( up u4) deterministic time.

FIG. 4. Algorithm for choosing a point on ( A, B) of order q.

FIG. 5. Main reduction step of the primality-proving algorithm.
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Note that this theorem makes no guarantee as to how quickly, if ever,
prime-prover will output a certificate for p, merely that such a certificate will be
valid.

PROOF. Suppose that CHECK accepts an input of the form,

p, ~~ A0 , B0! , L0 , p1! , . . . , ~~ Ai21 , Bi21! , Li21 , pi! .

Then clearly, pi must be prime. Furthermore, by Theorem 2, the checks made for
each value of j ensures that if pj11 prime, then pj is prime. Thus, if check
accepts, then,

pi prime f pi21 prime f · · · f p0 5 p prime.

Thus, p must be prime.

FIG. 6. The Primality Proving Algorithm.

FIG. 7. Algorithm for checking certificates of primality.
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We now show that CHECK will always accept a certificate, of the above form,
presented to it by PROVE-PRIME. We first note that by the definition of PROVE-
PRIME, pi will be prime. By the definition of GENERATE-CURVE, we have (4Aj

3 1
27Bj

2, pj) 5 1. From the definition of GENERATE-CURVE, and the fact that
#pj

( Aj, Bj) $ pj 1 1 2 2=pj, we have

pj11 $
pj 1 1 2 2 Îpj

2

. pj
1/ 2 1 2pj

1/4 1 1,

for pj . 37. By the definition of PROVE-PRIME, pj . 37, unless p # 37, in which
case it is easily verified that the output of PROVE-PRIME will be accepted by
CHECK. Finally, by the definition of SELECT-POINT, Lj Þ Ipj

, and pj11Lj 5 Ipj
.

Therefore, check will accept.
To compute how many steps are required for a k-bit prime, we first note that

pj11 5 pj/ 2 1 o( pj), and therefore i 5 O(lg p) 5 O(k). For each value of j
the checking procedure must perform a constant number of simple arithmetic
operations, a single GCD computation, and must multiply a point Lj by an
integer qj. This all can be done in O(k3), so the total running time of the
checking algorithm is O(k3) z O(k) 5 O(k4) steps.

4. Analyzing the Main Step

We now analyze the running time of MAIN-STEP in terms of the number of
primes in an appropriate interval around p/ 2. Define S( p) by

S~ p! 5 H q:q [ F p 1 1 2  Îp

2
,

p 1 1 1  Îp

2 G , q prime.J .

LEMMA 2. Let p . 5 be a k-bit prime, and suppose that uS( p)u 5 O(=p/lgc p).
Then algorithm MAIN-STEP( p) will run for expected O(kc18) steps before it termi-
nates.

PROOF. We bound the time required by GENERATE-CURVE; the SELECT-POINT

procedure takes comparatively little time. Our procedure for finding a curve ( A,
B) of order 2q will take expected time equal to the expected time necessary to
generate and test a single curve, multiplied by the expected number of curves it
must try. The time necessary to test a curve is dominated by Schoof’s algorithm
which takes O( up u8) steps. The expected time necessary to generate a curve,
compute (4A3 1 27B2, p) and to run the probabilistic primality tests are lower
order polynomials in up u.

We now bound the expected number of curves ( A, B) we must try. For prime
p, and for any value of A, there are at most two bad values of B, 6=24A3/ 27
mod p. Thus, with overwhelming probability, a randomly chosen ( A, B) will
constitute an elliptic curve. To bound the number of curves we must test before
coming up with one whose order is twice a prime, we use Lenstra’s theorem to
relate this number to the size of the set S( p).
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LEMMA 3. Let p . 5 be a prime, and let ( A, B) be chosen uniformly from
curves over Zp. Let S( p) be defined as above. Then

prob~#p~ A, B! is twice a prime! .
c

lg p
z

uS~ p! u 2 2

2 Îp 1 1
,

where c is some fixed constant.

PROOF. There is a trivial bijection between numbers in the interval

@ p 1 1 2  Îp , p 1 1 1  Îp#

which are twice a prime, and elements of S( p). Applying Lenstra’s theorem
immediately gives the desired bound. e

By taking the reciprocal of this bound on the probability, and a simple
calculation, we have that GENERATE-CURVE takes only O(kc19) expected steps.

It remains to verify that SELECT-POINT requires much less than O(kc19)
expected steps. Assume that EA, B( p) is of order 2q, where q is a prime. Recall
that group EA, B( p) is isomorphic to a product of cyclic additive groups, Zm1

3
Zm1

, where m1um2. Since EA, B( p) is of size 2q, we have m1m2 5 2q, and hence
m1 5 1, m2 5 2q, for q . 2. Thus, EA, B( p) will in fact be isomorphic to Z2q.
Since Z2q has q 2 1 points of order q, so must EA, B( p). Now, note that these
points are paired: since ( x, y) and ( x, 2y) are inverse, q( x, y) 5 I iff q( x,
2y) 5 I. Thus, there are at least (q 2 1)/ 2 values of x such that choosing x and
y 5 =x3 1 Ax 1 B will give a point on the curve of order q. Thus, the expected
running time of SELECT-POINT is 2p/(q 2 1) 5 O(1) times the amount of time
it takes to randomly choose x, compute y 5 =x3 1 Ax 1 B, and check that q( x,
y) 5 I. Checking that z 5 x3 1 Ax 1 B is a quadratic residue, and then
computing a square root of z using the algorithm of Adleman et al. [1977] naively
takes O( up u4) time. Note that the algorithm of [8] requires a quadratic nonresi-
due. One can simply choose an element of GF( p) at random until one finds one,
with a 1/2 probability of success each time; this step is a lower order contribution
to the overall running time. Similarly, it takes O(k3) steps to add two points and
O(lg q) 5 O(k) steps to check that qL 5 I using repeated doubling. Thus, at
most O(k4) expected steps are naively required. These naive running times can
be improved, but suffices to show that the time required by SELECT-POINT is a
low-order term. e

5. Analysis of the Primality Proving Algorithm

In the previous section, we exhibited our primality proving algorithm, and
demonstrated that it produced legitimate certificates of primality. We also gave
the running-time analysis of the main step of the algorithm, as a function of the
number of primes in certain intervals.

In this section, we analyze how long it takes for the entire algorithm to
produce proofs of primality. We show that, modulo a conjecture on the distribu-
tion of prime numbers, the algorithm will always halt in expected polynomial
time. We then extend this argument to show that the algorithm will produce
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proofs of primality, in expected polynomial time, for all but a vanishing fraction
of the prime numbers. This latter theorem does not depend on any conjectures.

5.1. ANALYSIS BASED ON A CONJECTURE. Using the machinery of the previous
sections, it is straightforward to analyze the running time of our algorithm under
an assumption about the distribution of primes. In the next section, we consider
a relaxed, provable version of this assumption, under which we can show that our
algorithm runs fast on most prime inputs.

THEOREM 4. Suppose that,

~?c1 , c2 . 0!p~ x 1 Îx! 2 p~ x! $
c2 Îx

logc1 x
.

then algorithm PROVE-PRIME( p) will terminate in expected time O( up uc119) for p
sufficiently large.

PROOF. For ease of exposition, we assume that the probabilistic primality
tester used subroutine never incorrectly identifies a composite number as prime,
and that the time-out feature is never invoked. We then observe that dropping
these assumptions doesn’t significantly affect the analysis.

Let us simplify the expression for S( pj). Setting x 5 ( pj 1 1 2 =pj)/ 2,
and y 5 ( pj 1 1 1 =pj)/ 2, we have,

S~ pj! 5 $q [ @ x, y# , q prime% .

For pj . 37, y . x 1 =x, and thus there must be V(=x/logc1 x) primes in
S( pj). Therefore, by Corollary 2, GENERATE-CURVE( pj) will take expected
O( upju

c118) # O(kc118) steps (where upju denotes the number of bits of pj).
Thus, the algorithm will, in this optimistic scenario, run in expected O(kc119)
time.

We now account for the possibility of a bad event: the algorithm timing-out or
not detecting a composite. In each case, we assume that the algorithm runs for
the maximum number of steps, denoted M, and then restarts. Let r denote the
probability of a bad event, and E denote the expected number of steps the
algorithm takes conditioned on no bad event occurring. Then by a straightfor-
ward analysis, the total expected time of the algorithm will be bounded above by

~r 1 r2 1 · · ·! M 1 E # O~rM 1 E! ,

when r # 1/2. Now, M is bounded by k lg k by design and from the above analysis,
E 5 O(kc119). It remains to bound r. The algorithm will never make more than
M calls to the primality test, and the failure rate on any individual test is at most
1/LOWERBOUND, so the total probability of a primality test failing is M z 22kC/lg lg k

,
which is insignificant (,, 1/M2, for large p). If the algorithm doesn’t make a
mistake in its primality test, then by Markoff’s inequality, the algorithm will take
more than M steps with probability at most E/M. Hence, the algorithm will run
for at most O((E/M 1 o(1/M2)) M 1 E) 5 O(E) expected steps. Indeed, this
analysis is quite weak; the increase in the expected time from these effects is
much smaller. Also, note that if for small p a more reasonable choice of time-out
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limits and error thresholds for the ordinary probabilistic primality tests were
made, then this analysis would work for all p. e

5.2. PROVING OUR ALGORITHM FAST FOR MOST PRIMES. The scenario in the
previous section is optimistic. It assumes that whenever one is attempting to
show a number p prime, there will always be sufficiently many primes in the
interval

F p 1 1 2  Îp

2
,

p 1 1 1  Îp

2 G .

That is, S( p) is assumed to be sufficiently large. This is almost certainly the case
for all primes, but it is currently beyond our ability to prove this fact. However, it
has been shown that intervals that contain a sparse number of primes are rare.
We have the following result, which is implied by a technical lemma of
Heath-Brown [1978] (communicated to us by H. Maier and C. Pomerance).

THEOREM 5 [HEATH-BROWN]. Call an integer y sparse if there are less than
=y/2ln y primes in the interval [ y, y 1 =y]. Then there exist a constant a such
that for sufficiently large x,

u$ y:y [ @ x, 2x# , y is sparse% u , x5/6lnax.

We use this result to show that our algorithm is fast for most prime numbers.
Let BAD(k, T) denote the set of k-bit primes p such that PROVE-PRIME fails to
output a certificate of primality for p in expected T steps. We prove the following
theorem:

THEOREM 6. There exist c1, c2 . 0 such that for k sufficiently large,

BAD~k, c1k11! #
2k

2kc2/lg lg k

PROOF. Given a prime p, we denote by Pi( p) the set of all intermediate
primes that can be generated in step i of the algorithm. In other words, Pi( p)
consists of all primes that could conceivably be equal to pi in the certificate
generated for p. Thus, for instance,

P0~ p! 5 $ p% , P1~ p! # F p 1 1 2 2 Îp

2
,

p 1 1 1 2 Îp

2 G , . . .

These are the only primes that need be considered for proving p prime. If it is
the case that S( pi) is O(=pi/ln pi) for pi [ Pi( p), then by the same analysis as
in the proof of Theorem 4, PROVE-PRIME( p) will terminate in expected time
O(k11). The rest of this proof consists of showing that this will be true for most
primes.

Our proof proceeds in three stages. First, we bound the range in which Pi( p)
falls, and use this bound to derive a simple criterion which implies that S( pi) is
large for pi [ Pi( p). Next, we use a result of Heath-Brown, and a simple
combinatoric argument, to show that our criterion will fail for only a relatively
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small number of values of Pi( p). Finally, we use this result to bound the number
of primes for which our algorithm is slow.

5.2.1. Characterizing Pi( p). We note that for every certificate, pi11 5 pi/ 2 1
o( pi). This would suggest Pi( p) should be clustered around p/ 2 i, as follows:

LEMMA 4. Let p be a prime, and let p/2i be sufficiently large. Then any element
of Pi( p) lies in the range,

S p

2 i
2 7 Îp

2 i
,

p

2 i
1 7 Îp

2 iD .

Remark. The value of 7 that we obtain can be improved on. However, we only
need to establish that some constant exists.

PROOF. Our proof is by induction on i. For i 5 0, the lemma clearly holds.
We can bound the largest and smallest elements of Pi( p) in terms of the largest
and smallest elements of Pi21( p). Specifically, we have

max~Pi~ p!! #
max~Pi21~ p!! 1 1 1 2 Îmax~Pi21~ p!!

2
, and,

min~Pi~ p!! $
min~Pi21~ p!! 1 1 2 2 Îmin~Pi21~ p!!

2
.

By inductive hypothesis, we have,

max~Pi~ p!! #
p/ 2 i21 1 7 Îp/ 2 i21 1 1 1 2 Îp/ 2 i21 1 7 Îp/ 2 i21

2
.

We can simplify the above expression considerably. We note that,

x 1 7 Îx , ~1 1 o~1!! x,

for x sufficiently large,

p/ 2 i21

2
5

p

2 i
,

and,

Î p

2 i21
5 Î2 z Îp

2 i
.
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These simplifications yield,

max~Pi~ p!! ,
p

2 i
1 S 7

Î2
1 Î2 1 o~1!D Îp

2 i
1 1

,
p

2 i
1 7 Îp

2 i
,

For p/ 2 i sufficiently large. The lower bound is similarly established. e

5.2.2. A Condition under which S( pi) Will be Large. We can use Lemma 4 to
give a simple condition under which we can guarantee that S( pi) will be large for
all pi [ Pi( p). To facilitate the discussion, we first define a parameterized family
of intervals, ( i( p).

Definition 3. Let ( i( p) denote the set of intervals of the form

F pi 1 1 2  Îpi

2
,

pi 1 1 1  Îpi

2 G ,

where pi [ Pi( p).

That is, ( i( p) is the set of intervals which are important in our primality
proving algorithm’s search for pi11. If we can show that every interval in ( i( p)
has a large number of primes, then we are guaranteed that our algorithm will
always be able to quickly generate pi11.

Note that the above definition uses a =p instead of a 2=p that one might
expect given the Riemann hypothesis for finite fields. This is due to our
definition of 6( pi), and more fundamentally due to the fact that Lenstra’s result
only holds for the smaller interval.

To bound the number of primes in each interval in ( i( p), we consider a
constant-sized set of intervals, # i( p), as follows.

Definition 4. Let # i( p) be defined as the set of intervals,

H @ xj , xj 1  Îxj#: xj 5  p

2 i11
1

j

3
z Î p

2 i11 , j [ @222, 22#J .

(The value of 22 can probably be reduced, but we only need the fact that some
constant exists.)

LEMMA 5. Let p be a prime, and let p/2i be sufficiently large. Then every interval
in (i( p) contains an interval in #i( p).

Thus, if every interval in # i( p) has enough primes then every interval in ( i( p)
has enough primes.

PROOF. Let [ x, y] [ ( i( p). We have,

y 5 x 1 ~ Î2 1 o~1!! Îx .
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By the same argument as in Lemma 4, we have,

p

2 i11
1 7 Î p

2 i11
$ x $

p

2 i11
2 7 Î p

2 i11
.

Thus, for some j [ [221, 21], xj21 # x # xj, where xj is as in Definition 4. We
claim that [ x, y] contains the interval [ xj, xj 1 =xj] [ # i( p); we must show
that y $ xj 1 =xj.

First, it is easily verified that x, xj 5 (1 1 o(1)) p/ 2 i11 (where the o(1) term
goes to 0 as p/2i grows sufficiently large). Next, xj 2 x # xj 2 xj21 5 =p/2i11/3 1
O(1) (the O(1) compensates for the rounding. Hence, (xj 1 =xj) 2 x 5 (4/3 1
o(1))=p/2i11. However, y 2 x 5 (=2 1 o(1))=p/2i11, hence y $ x for p/2i

sufficiently large. e

5.2.3. A Further Property of #i( p). Lemma 5 is crucial to our analysis. Instead
of having to show that u( i( p) u 5 O(=p/ 2 i11) intervals all have sufficiently
many primes, we need only show that,

u# i~ p! u 5 O~1! ,

intervals have sufficiently many primes (for most primes p). We first extend our
notion of sparseness to # i( p).

Definition 5. Let p be a prime. We say that # i( p) is sparse if any of the
intervals in # i( p) is sparse.

Heath-Brown shows that only a vanishing fraction of the intervals of the form
[ x, x 1 =x] will not have enough primes. But if these “bad” intervals appear
in most sets # i( p) they could destroy a disproportionate number of primes. The
following lemma bounds this effect:

LEMMA 6. Let x be sufficiently large. Then an interval of the form,

@ x, x 1  Îx# ,

can be in # i( p) for at most c z 2 i different values of p , where c is some constant.

PROOF. It suffices to show that there are, for each value of k [ [222, 22],
only O(2 i) values of p which satisfy the equation fk( p) 5 x, where,

fk~ p! 5
p

2 i11
1

k

3
z Î p

2 i11
.

We first eliminate the integer rounding by noting that

z 5 x f x 2 1 # z # x 1 1.

We therefore have to show that there are only O(2 i) integers p which satisfy,

x 2 1 # fk~ p! # x 1 1.

Therefore, if [ x, x 1 =x] is in # i( p) and # i( p9), then ufk( p9) 2 fk( p) u # 2.
We will use this fact to show that p and p9 must be near to each other in value,
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which will in turn give us the desired bound. For the rest of the proof, we assume
without loss of generality that p # p9.

Let us consider fk in the continuous domain. For all p . 0, the derivative
f9k( p) is at least 22(i11). Since fk is clearly monotone increasing, we have
fk( p9) 2 fk( p) # 2. By elementary calculus, we have,

fk~ p9! 2 fk~ p! $
p9 2 p

2 i11
,

from which we can derive,

p9 2 p # 2 z 2 i11.

This clearly implies that only c z 2 i solutions exist, for some constant c. e

5.2.4. The Final Calculation. We now bound the number of primes for which
our algorithm will fail. First, we argue that the number of k-bit primes p such
that # i( p) will be sparse will be small, where c is a positive constant.

LEMMA 7. Let 2k2i be sufficiently large. At most, 2k/2(1/7)(k2i) k-bit primes p are
such that #i( p) is sparse.

Remark. Here, 1/7 may be replaced by any number less than 1/6.

PROOF. First, we note that if [ x, x 1 =x] is in # i( p) for p [ [2k21, 2k],
then x [ [2k2i22, 2k2i11]. This follows from the definition of # i( p) and the
bounds on p. We now use Heath-Brown’s theorem on the intervals [2k2i22,
2k2i21], [2k2i21, 2k2i], and [2k2i, 2k2i11], and sum the results. This bounds
the number of sparse intervals in

ø

p[[2k21, 2k]

# i~ p! ,

to at most,

O
j50

2

2(5/6)(k2i2j) loga2k2i2j # c1 z 2(5/6)(k2i)loga2k2i,

for some constant c1. By Lemma 6, each sparse interval of this form is in # i( p)
for at most c22 i different values of p, where c2 is some constant. Thus, at most

~c2 z 2 i!~c1 z 2(5/6)(k2i)loga2k2i! 5 c1c2

2kloga2k2i

2(1/6)(k2i)

#
2k

2(1/7)(k2i)
,

for 2k2i sufficiently large. e

We now upper-bound the number of k-bit primes that PROVE-PRIME will not
quickly certify as prime. In order for a prime p to not be quickly certified, as per
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the analysis of Theorem 4, it must be the case that # i( p) is sparse for some value
of i. Furthermore, the value of i must be sufficiently small that PROVE-PRIME( p)
could, with nonzero probability, proceed for i steps without pi being so small as
to be verified deterministically. We denote by ik the greatest number of
reduction steps the algorithm could possibly go through on a k-bit prime. Using
Lemma 7, we bound the number of k-bit primes that could conceivably not be
quickly certified by

u$ p [ @2k21, 2k# , p isn’t quickly certified% u # O
j51

ik 2k

2(1/7)(k2i)
,

#
c z 2k

2(1/7)(k2ik)
,

for some constant c, by standard properties of geometric series.
We can use Lemma 4 to bound below the value of 2k2ik. Suppose that, on

some k-bit prime p, the primality proving algorithm proceeded for ik reductions
before hitting its last prime, pik

. Recall that, for k sufficiently large, the algorithm
will stop as soon as,

pik
# 2kC/lg lg k

.

We also have,

pik21 $ 2kC/lg lg k

,

or the algorithm would have stopped after the (ik 2 1)th reduction. Since, pik
$

pik21/3, for pik21 sufficiently large (to give a very weak bound), we have,

pik
$

1

3
z 2kC/lg lg k

,

for k sufficiently large. Since pik
5 p/ 2 ik 1 O(=p/ 2p(i)), by Lemma 4, and k 2

1 # lg p # k, we have,

lg pik
# k 2 ik 1 1,

for k sufficiently large. Hence, we have,

2k2ik #
1

6
z 2kC/lg lg k

.

If follows then that

c z 2k

2(1/7)(k2ik)
# c9 z

2k

2(1/7)(k21)C/lg lg~k 2 1! , for some c9 . 0

#
2k

2(k)C9/lg lg k ,
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for some suitably chosen C9. e
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MIHĂILESCU, P. 1994. Cyclotomy primality proving—Recent developments. In Proceedings of the
3rd International Algorithmic Number Theory Symposium (ANTS). Lecture Notes in Computer
Science, vol. 877. Springer-Verlag, New York, pp. 95–110.

MILLER, G. L. 1976. Riemann’s hypothesis and test for primality. J. Comput. Syst. Sci. 13, 300 –317.
MORAIN, F. 1990. Courbes elliptques et tests de primalité. Ph.D. dissertation. Univ. Claude
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