
Integer factorization,

part 1: the Q sieve

Integer factorization,

part 2: detecting smoothness

D. J. Bernstein

The Q sieve factors �

by combining enough

-smooth congruences
�
(� +

�
).

“Enough” “ log .”

Plausible conjecture: if

exp 1
2 + � (1) log � log log �

then 2+ � (1) congruences

have enough smooth congruences.

Linear sieve, quadratic sieve,

number-field sieve: similar.

How to figure out

which congruences are smooth?

Could use trial division:

For each congruence,

remove factors of 2,

remove factors of 3,

remove factors of 5,

etc.; use all primes .

3+ � (1) bit operations:
1+ � (1) for each congruence.

Want something faster!

Textbook answer: Sieving.

Generate in order of ,

then sort in order of
�
,

all pairs (
� �

) with
�

in range and
�
(� +

�
) Z.

Pairs for one are

(
�

), (2
�

), (3
�

), etc.

and (� (� mod)
�

) etc.

(lg) (1) bit operations

for each congruence.

Do record-setting factorizations

use the textbook answer? No!

Sieving has two big problems.

First problem:

Sieving needs large
�

range,
1+ � (1) consecutive values.

Limits number of sublattices,

so limits smoothness chance.

Can eliminate this problem

using “remainder trees.”

Given �
1

� �
2

� � � � � ��� ,

together having (lg) (1) bits:

Can compute �
1
�
2 � � � ���

with (lg) (1) operations.

Actually compute

“product tree” of �
1

� �
2

� � � � � ��� .

Root: �
1
�
2 � � � ��� .

Left subtree if 2:

product tree of �
1

� � � � � � � � �
2 � .

Right subtree if 2:

product tree of � � � �
2 � +1

� � � � � � � .

e.g. tree for 23
�
29

�
84

�
15

�
58

�
19:

926142840

56028

=={{{
16530

hhQQQQQ

667

=={{{
84

XX111

870

=={{{
19

XX111

23

FF

29

XX111

15

FF

58

XX111

Obtain each level of tree

with (lg) (1) operations

by multiplying lower-level pairs.

Use FFT-based multiplication.

Remainder tree

of
� �

1
� �

2
� � � � � ��� has one

node mod for each node

in product tree of �
1

� �
2

� � � � � ��� .

e.g. remainder tree of

223092870
�
23

�
29

�
84

�
15

�
58

�
19:

223092870
||zz

z
((RRRRRR

45402
||zz

z
��2

22
3990

||zz
z

��2
22

46
����� ��2

22
42 510

����� ��2
22

0

0 17 0 46

Use product tree to compute

product of primes .

Use remainder tree to compute

mod �
1

�
mod �

2
� � � � .

Now �
1 is -smooth

iff 2 � mod �
1 = 0 for

minimal 0 with 22 � �
1.

Similarly �
2 etc.

Total (lg) (1) operations

if �
1

� �
2

� � � � together

have (lg) (1) bits.

Second problem with sieving,

not fixed by remainder trees:

Need 1+ � (1) bits of storage.

Real machines don’t have much

fast memory: it’s expensive.

Effect is not visible for

small computations on

single serial CPUs,

but becomes critical in

huge parallel computations.

How to quickly find primes

above size of fast memory?

The rho method

Define 0 = 0, � +1 = 2
� + 11.

Every prime 220 divides =

(1
�

2)(2
�

4)(3
�

6)

� � � (3575
�

7150).

Also many larger primes.

Can compute gcd � �
using

214 multiplications mod � ,
very little memory.

Compare to 216 divisions

for trial division up to 220.

More generally: Choose � .

Compute gcd � �
where =

(1
�

2)(2
�

4) � � � (� �
2 �).

How big does � have to be

for all primes to divide ?

Plausible conjecture: 1
�
2+ � (1);

so 1
�
2+ � (1) mults mod � .

Reason: Consider first collision in

1 mod
�

2 mod
� � � � .

If � mod = � mod

then � mod = 2 � mod

for (�
�
)Z [

� �
] [

�
].

The � 1 method

Have built an integer

divisible by all primes .

Less costly way to do this?

First attempt:

Define 1 = 2
�
(�) � 1 where

(�) = lcm 1
�
2

�
3

� � � � �
� .

If (�) (� 1)Z then 1 Z.

Can tweak to find more ’s:

e.g., could instead use product

of 2
�
(�) � 1 and 2

�
(�) � � 1

for all primes � [� + 1
�

� log �];

could replace (�) by (�)2.

e.g. � = 20:

(�) = 24 � 32 � 5 � 7 � 11 � 13 � 17 � 19

= 232792560.

1 = 2
�
(�) � 1 has prime divisors

3, 5, 7, 11, 13, 17, 19, 23, 29, 31,

37, 41, 43, 53, 61, 67, 71, 73, 79,

89, 97, 103, 109, 113, 127, 131,

137, 151, 157, 181, 191, 199, etc.

Compute 1 with 34 mults.

As � : (1 � 44 � � � + � (1)) �

multiplications to compute 1.

Dividing (�) is stronger

than � -smoothness but not much.

Plausible conjecture: if �

exp 1
2 + � (1) log log log

then � 1 divides (�)

with chance 1 � 1+ � (1)

for uniform random prime .

So method finds some primes

at surprisingly high speed.

What about the other primes?

The + 1 method

Second attempt:

Define � 0 = 2, � 1 = 10,

� 2 � = � 2� � 2,

� 2 � +1 = � � � � +1
� � 1.

Define 2 = � �
(�)

� 2.

Point of � � formulas:

� � = �
�
+ � �

�

in Z[�] (� 2 � 10 � + 1).

If (�) (+ 1)Z

and 102 � 4 non-square in F �

then F � [�] (� 2 � 10 � + 1)

is a field so 2 Z.

e.g. � = 20, (�) = 232792560:

2 = � �
(�)

� 2 has prime divisors

3, 5, 7, 11, 13, 17, 19, 23, 29, 37,

41, 43, 53, 59, 67, 71, 73, 79, 83,

89, 97, 103, 109, 113, 131, 151,

179, 181, 191, 211, 227, 233, 239,

241, 251, 271, 307, 313, 331, 337,

373, 409, 419, 439, 457, 467, 547,

569, 571, 587, 593, 647, 659, 673,

677, 683, 727, 857, 859, 881, 911,

937, 967, 971, etc.

The elliptic-curve method

Fix � 6
�
10

�
14

�
18

� � � � .

Define � 1 = 2, 1 = 1,

� 2 � = (� 2� � 2�)2,

2 � = 4 � � � (� 2� + � � � � + 2�),

� 2 � +1 = 4(� � � � +1
� � � +1)

2,

2 � +1 = 8(� � � +1
� � � � +1)

2.

Define � = �
(�).

Have now supplemented 1
�

2

with 6, 10, 14, etc.

Variability of � is important.

Point of � �
�

� formulas:

If � (� 2 � 4)(4 � + 10) Z

then
�
th multiple of (2

�
1)

on the elliptic curve

(4 � + 10) 2 = � 3 + � � 2 + �

over F � is (� � �
� � � �).

If (� 2 � 4)(4 � + 10) Z

and (�) (order of (2
�
1))Z

then � Z.

Order of elliptic-curve group

depends on � but is always

in [+ 1 � 2
�

+ 1 + 2].

Consider smallest �

such that product of �

for first � choices of �

is divisible by every .

Plausible conjecture: �

exp 1
2 + � (1) log log log .

Computing this product

takes 12 � 2 mults; i.e.

exp (2 + � (1))log log log .

Early aborts

Neverending supply
of congruences

initial selection��
Smallest congruences

��
Partial factorizations
using primes 1

�
2

early abort��
Smallest unfactored parts

��
Partial factorizations

using primes

final abort��
Smooth congruences

Say we use trial division.

Time 1
�
2+ � (1) for 1

�
2.

Time 1+ � (1) for .

Say we choose “smallest”

so that each congruence

has chance 1
�
2+ � (1) 1+ � (1)

of surviving early abort.

Fact: A -smooth congruence

has chance � 1
�
4+ � (1)

of surviving early abort.

Have reduced trial-division

time by factor 1
�
2+ � (1).

Have reduced identify-a-smooth

time by factor 1
�
4+ � (1).

More generally, can abort at
1
� �

, 2
� �

, etc.

to reduce trial-division

time by factor 1 � 1
� � + � (1).

This reduces identify-a-smooth

time by factor (1 � 1
� �)

�
2+ � (1).

Generalize beyond trial division

to sieving, remainder trees,

trial division, rho, ECM.

Use many aborts to combine

many methods into one

grand unified method

for smoothness detection.

Are all primes small?

Instead of using these methods

to find smooth congruences � ,
can apply them directly to � .

Worst case: � is product

of two primes � .

Take � .

Number of mults mod �

in elliptic-curve method:

exp (2 + � (1))log log log =

exp (1 + � (1))log � log log � .

Faster than Q sieve.

Comparable to quadratic sieve,

using much less memory.

Slower than number-field sieve

for sufficiently large � .

One elliptic-curve computation

found a prime 2219

in 3 � 1012 Opteron cycles.

Fairly lucky in retrospect.

