
Integer factorization,

part 1: the Q sieve

D. J. Bernstein

Sieving small integers
�

0

using primes 2 � 3 � 5 � 7:

1
2 2
3 3
4 2 2
5 5
6 2 3
7 7
8 2 2 2
9 3 3

10 2 5
11
12 2 2 3
13
14 2 7
15 3 5
16 2 2 2 2
17
18 2 3 3
19
20 2 2 5

etc.

Sieving
�

and 611 +
�

for small
�

using primes 2 � 3 � 5 � 7:

1
2 2
3 3
4 2 2
5 5
6 2 3
7 7
8 2 2 2
9 3 3

10 2 5
11
12 2 2 3
13
14 2 7
15 3 5
16 2 2 2 2
17
18 2 3 3
19
20 2 2 5

612 2 2 3 3
613
614 2
615 3 5
616 2 2 2 7
617
618 2 3
619
620 2 2 5
621 3 3 3
622 2
623 7
624 2 2 2 2 3
625 5 5 5 5
626 2
627 3
628 2 2
629
630 2 3 3 5 7
631

etc.

Have complete factorization of

the “congruences”
�
(611 +

�
)

for some
�
’s.

14 � 625 = 21305471.

64 � 675 = 26335270.

75 � 686 = 21315273.

14 � 64 � 75 � 625 � 675 � 686

= 28345874 = (24325472)2.

gcd 611 � 14 � 64 � 75 � 24325472

= 47.

611 = 47 � 13.

Why did this find a factor of 611?

Was it just blind luck:

gcd 611 � random = 47?

No.

By construction � divides � 2 � � 2

where � = 14 � 64 � 75

and � = 24325472.

So each prime 7 dividing �

divides either � � � or � + � .

Not terribly surprising

(but not guaranteed in advance!)

that one prime divided � � �

and the other divided � + � .

Why did the first three

completely factored congruences

have square product?

Was it just blind luck?

Yes. The exponent vectors

(1 � 0 � 4 � 1) � (6 � 3 � 2 � 0) � (1 � 1 � 2 � 3)

happened to have sum 0 mod 2.

But we didn’t need this luck!

Given long sequence of vectors,

quickly find nonempty subsequence

with sum 0 mod 2.

This is linear algebra over F2.

Guaranteed to find subsequence

if number of vectors

exceeds length of each vector.

e.g. for � = 671:

1(� + 1) = 25315071;

4(� + 4) = 22335270;

15(� + 15) = 21315173;

49(� + 49) = 24325172;

64(� + 64) = 26315172.

F2-kernel of exponent matrix is

gen by (0 1 0 1 1) and (1 0 1 1 0);

e.g., 1(� +1)15(� +15)49(� +49)

is a square.

Plausible conjecture: Q sieve can

separate the odd prime divisors

of any � , not just 611.

Given � and parameter :

1. Try to completely factor
�
(� +

�
)

for
�

1 � 2 � 3 � � � � �
2

into products of primes .

2. Look for nonempty set of
�
’s

with
�
(� +

�
) completely factored

and with
�

�
(� +

�
) square.

3. Compute gcd �
� � � � where

� =
�

�
and � =

�

�
(� +

�
).

How large does have to be

for this to find a square?

Let’s aim for number of

completely factored congruences

to exceed length of each vector,

guaranteeing a square.

(This is somewhat pessimistic;

smaller numbers usually work.)

Vector length log .

Will there be log

completely factored congruences

out of 2 congruences?

What’s chance of random
�
(� +

�
)

being -smooth, i.e., completely

factored into primes ?

Consider, e.g., =
� � 1 � 10 � .

Uniform random integer in [1 �
2]

has -smoothness chance 0 � 306;

uniform random integer in [1 �
�]

has chance 2 � 77 � 10 � 11.

Plausible conjecture:

-smoothness chance of
�
(� +

�
)

is 8 � 5 � 10 � 12.

Find 8 � 5 � 10 � 12 2

fully factored congruences.

If � 2340 and =
� � 1 � 10 � then

8 � 5 � 10 � 12 2 3 log , and

approximations seem fairly close,

so conjecturally the Q sieve

will find a square.

Find many independent squares

with negligible extra effort.

If gcd turns out to be 1,

try the next square.

Conjecturally always works:

splits odd � into

prime-power factors.

How about � 1 ���

for larger � ?

Uniform random integer in [1 �
�]

has � 1 ��� -smoothness chance

roughly � � � .

Plausible conjecture:

Q sieve succeeds

with =
� � 1 ��� �

for all � � (1+ � (1)) � 2
;

here � (1) is as � .

How about letting � grow with � ?

Given � , try sequence of ’s

in geometric progression

until Q sieve works;

e.g., increasing powers of 2.

Plausible conjecture: final

exp 1
2 + � (1) log � log log � ,

� (2 + � (1))log � log log � .

Cost of Q sieve is a power of ,

hence subexponential in � .

More generally, if

exp 1
2 � + � (1) log � log log � ,

conjectured -smoothness chance

is 1 � + � (1).

Find enough smooth congruences

by changing the range of
�
’s:

replace 2 with � +1+ � (1) =

exp
(� +1)2+ � (1)

2 � log � log log � .

Increasing � past 1

increases number of
�
’s but

reduces linear-algebra cost.

So linear algebra never dominates

when is chosen properly.

Improving smoothness chances

Smoothness chance of
�
(� +

�
)

degrades as
�

grows.

Smaller for
� 2 than for

�
.

Crude analysis:
�
(� +

�
) grows.

� if
�

;
2 � if

� 2.

More careful analysis:
� +

�
doesn’t degrade, but

�
is always smooth for

�
,

only 30% chance for
� 2.

Can we select congruences

to avoid this degradation?

Choose � , square of large prime.

Choose a “ � -sublattice” of
�
’s:

arithmetic progression of
�
’s

where � divides each
�
(� +

�
).

e.g. progression � � (� mod �),

2 � � (� mod �), 3 � � (� mod �),

etc.

Check smoothness of

generalized congruence
�
(� +

�
) �

for
�
’s in this sublattice.

e.g. check whether
�

� (� +
�
) � are

smooth for
�
= � � (� mod �) etc.

Try many large � ’s.

Rare for
�
’s to overlap.

e.g. � = 314159265358979323:

Original Q sieve:
� � +

�

1 314159265358979324

2 314159265358979325

3 314159265358979326

Use 9972-sublattice,
�

802458 + 994009Z:
�

(� +
�
) 9972

802458 316052737309

1796467 316052737310

2790476 316052737311

Crude analysis: Sublattices

eliminate the growth problem.

Have practically unlimited supply

of generalized congruences

(� � (� mod �))
� + � � (� mod �)

�
between 0 and � .

More careful analysis: Sublattices

are even better than that!

For � � 1 � 2 have
�

(� +
�
) � � 1 � 2 � � 2

so smoothness chance is roughly

(� 2) � � � 2(� 2) � � � 2 = 2 � � � ,

2 � times larger than before.

Even larger improvements

from changing polynomial
�
(� +

�
).

“Quadratic sieve” (QS) uses
� 2 � � with

� � ;

have
� 2 � � � 1 � 2+ � (1),

much smaller than � .

“MPQS” improves � (1)

using sublattices: (
� 2 � �) � .

But still � 1 � 2.

“Number-field sieve” (NFS)

achieves � � (1).

Fast linear algebra

Given � matrix over F2

specifying linear : F
�
2 F

�
2 .

“Solving linear equations”:

given F
�
2 ,

find some � F
�
2 with � = .

Using an algorithm for that:

Choose uniform random � F
�
2 ;

compute = � ; use algorithm

to find � with � = .

This produces uniform random

kernel element, namely � � � .

“Elimination”

solves linear equations

using (3) bit operations.

“Series denominators”

solve linear equations

using 2+ � (1) bit operations

if the equations are sparse.

“Sparse”: can evaluate

using 1+ � (1) bit operations.

Certainly true in Q sieve

with usual choices of .

What’s the denominators method?

Consider nontrivial relation

0 + 1 + � � � + �
�

= 0.

I’ll assume 0 = 1 for simplicity,

so = �
1

�
� � �

� �
�

= � where � = �
1

�
� � � .

Consider series in F
�
2 [[�]]:

+ () � + (2) � 2 + � � � .

Multiplying series by poly

0
� �

+ 1
� �

� 1 + � � � + � � 0

in F2[�] produces

poly in F
�
2 [�] of degree .

Save time by projecting

from F
�
2 [[�]] to F2[[�]].

Choose linear � : F
�
2 F2.

Series � () + � () � + � � �

has denominator dividing

0
� �

+ 1
� �

� 1 + � � � + � � 0.

Compute denominator of series

from first 2 terms of series

via continued fractions.

Repeat for three random � ’s,

compute lcm of denominators.

Obtain 0 � 1 � � � �

with probability close to 1.

