Integer factorization,
part 1: the Q sieve

D. J. Bernstein



Sieving small integers © > 0
using primes 2, 3,5, 7:
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Sieving 7 and 611 + 2 for small 2

using primes 2, 3,5, 7:
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Have complete factorization of
the “congruences” (611 + 2)
for some 17's.

14 - 625 = 21305471

64 - 675 = 26335270

75 - 686 = 21315273

14 -64 -75 - 625 - 675 - 686

— 28345874 — (24325472)2.
gcd{611,14 - 64 - 75 — 24325472}
— 47.

611 =47 -13.



Why did this find a factor of 6117
Was it just blind luck:
gcd{611, random} = 477

No.

By construction n divides s2 — 2

where s =14 -64 - 75

and t = 24325472

So each prime > 7 dividing n
divides either s — t or s + t.

Not terribly surprising

(but not guaranteed in advance!)

that one prime divided s — ¢
and the other divided s + t.



Why did the first three
completely factored congruences

have square product?
Was it just blind luck?

Yes. The exponent vectors
(1,0,4,1),(6,3,2,0),(1,1,2,3)
happened to have sum 0 mod 2.

But we didn't need this luck!
Given long sequence of vectors,
quickly find nonempty subsequence
with sum 0 mod 2.



This is linear algebra over F».
Guaranteed to find subsequence
if number of vectors

exceeds length of each vector.

e.g. forn = 671:
1(n+ 1) =2°315071;
(n+ 4) = 22335279,
15(n + 15) = 21315173,
(n + 49) = 24325172
(n 4+ 64) = 20315172,

F->-kernel of exponent matrix is
gen by (01011)and (10110);

e.g., 1(n+1)15(n+ 15)49(n +49)
IS a square.



Plausible conjecture: Q sieve can
separate the odd prime divisors
of any n, not just 611.

Given n and parameter y:

1. Try to completely factor 2(n+1)
fori € {1,2,3,...,y%}
into products of primes < y.

2. Look for nonempty set of 2's
with 2(n + 1) completely factored

and with | |2(n + 2) square.
1

3. Compute gcd{n, s — t} where

s:|:\z'andt:\/|:\i(n+z').




How large does y have to be
for this to find a square?

Let's aim for number of
completely factored congruences
to exceed length of each vector,
guaranteeing a square.

(This is somewhat pessimistic;
smaller numbers usually work.)

Vector length =~ y/logy.
Will there be > y/logy
completely factored congruences

out of y? congruences?



What's chance of random %(n + 1)
neing y-smooth, i.e., completely

factored into primes < y?

Consider, e.g., y = |n!/19].
Uniform random integer in [1, y]

has y-smoothness chance ~ 0.306;

uniform random integer in [1, n]
has chance ~ 2.77 - 10711,
Plausible conjecture:
y-smoothness chance of i(n + 1)
is ~~ 8.5-10712.

Find ~ 8.5 - 1071242

fully factored congruences.



If n > 23%0 and y = |n1/10] then
8.5-1071%y? > 3y/log y, and
approximations seem fairly close,
so conjecturally the Q sieve

will find a square.

Find many independent squares
with negligible extra effort.

If gcd turns out to be 1,

try the next square.

Conjecturally always works:
splits odd 7 Into
prime-power factors.



How about y ~ nl/%

for larger u?

Uniform random integer in [1, n]

has nl/%-smoothness chance
u

roughly u™".

Plausible conjecture:

Q sieve succeeds

with y = [nl/%|

for all n > u(Ho(l))uz;

here o(1) is as u — ©0.



How about letting u grow with n?

Given n, try sequence of y's

In geometric progression

until Q sieve works:

e.g., increasing powers of 2.

Plausible conjecture: final y €

exp \/(% o(1))

og n loglogn,

u € +/(2+ o(1))

ogn/loglogn.

Cost of Q sieve is a power of v,

hence subexponential in n.



More generally, if y €

exp \/(2% + o(l)) log n log log n,
conjectured y-smoothness chance

i 1/,yc—|-0(1)_

Find enough smooth congruences
by changing the range of 7's:
replace y2 with yctltoll) —

exp \/( (CH);C"O(D) log n log log n.

Increasing ¢ past 1

increases number of 2's but
reduces linear-algebra cost.

So linear algebra never dominates

when vy 1s chosen properly.



Improving smoothness chances

Smoothness chance of #(n + 2)
degrades as 1 grows.
Smaller for 7 ~ y? than for i ~ v.

Crude analysis: 2(7n + ) grows.
~yn if 1~ y;
~ yln if 1 & y°.

More careful analysis:

n + 1 doesn't degrade, but

1 is always smooth for 72 < v,

only 30% chance for 7 ~ y°.

Can we select congruences
to avoid this degradation?



Choose g, square of large prime.

Choose a “g-sublattice” of 7's:
arithmetic progression of 7's
where g divides each 2(n + 1).
e.g. progression ¢ — (n mod q),
2g — (n mod g), 3¢ — (n mod q),
etc.

Check smoothness of
generalized congruence i1(n +1)/q
for 2's In this sublattice.

e.g. check whether 2, (n+1)/q are
smooth for 2 = ¢ — (n mod q) etc.

Try many large g's.
Rare for 2's to overlap.



e.g. n = 314159265358979323:

Original Q sieve:

1 n+1

1  314159265353979324
2  314159265358979325
3  314159265358979326

Use 9972-su olattice,
1 € 802458 + 9940097 :

i (n+1)/997°
802458 316052737309
1796467 316052737310
2790476 316052737311




Crude analysis: Sublattices
eliminate the growth problem.
Have practically unlimited supply

of generalized congruences
n+qg—(n mod q)

q

(9—(n mod q))

between 0 and n.

More careful analysis: Sublattices

are even better than that!
For g ~ n1/2 have
1x (n+1)/grn
so smoothness chance Is roughly
(w/2)"%/2(u/2) 4% = 2% [u®,

2% times larger than before.

1/2 /2



Even larger improvements
from changing polynomial 2(n+1).

“Quadratic sieve” (QS) uses
2 —n with 1 ~ /n;
have 12 — n ~ nl/2to(l)

much smaller than n.

"MPQS" improves o(1)
using sublattices: (i° —n)/q.
But still ~ nl/2.

“Number-field sieve” (NFS)
achieves n°l).




Fast linear algebra

Given y X y matrix over F»
specifying linear M : Fg —> Fg.

“Solving linear equations’:
given w € FJ,
find some v € Fg with Mv = w.

Using an algorithm for that:
Choose uniform random r € FZ:
compute w = Mr; use algorithm
to find v with Mv = w.

This produces uniform random
kernel element, namely v — 7.



“Elimination”
solves linear equations
using O(y>) bit operations.

“Series denominators”

solve linear equations

using y21°(1) bit operations
if the equations are sparse.

“Sparse”’: can evaluate M
using y1To(l) b |
gy IT operations.
Certainly true in Q sieve
with usual choices of v.



What's the denominators method?

Consider nontrivial relation
pow +p1Mw+---+pyMIw = 0.

I'll assume pg = 1 for simplicity,
sow =—p Mw—---—p,MIw
= Mv where v = —pjw — - - -.

Consider series in F3[[t]]:
w+ (Mw)t + (M?w)t? + - - -.

Multiplying series by poly
pot¥ + p1t¥=1 + - + pyt!
in F>[t] produces

poly in Fg[t] of degree < v.



Save time by projecting
from Fg[[t]] to Fo[[t]].

Choose linear 7 : Fg — F>.
Series r(w) + r(Mw)t 4 - - -
has denominator dividing
potY + plty_l + pyto.

Compute denominator of series
from first 2y terms of series
via continued fractions.

Repeat for three random r’s,
compute lcm of denominators.
Obtain pg, »1, . . .

with probability close to 1.



