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In this note we prove a weak form of the Prime Number Theorem due to P. Chebyshev:

Theorem. (Chebyshev 1850) There exist constants c, c′ ∈ R>0 for which

c′
x

lnx
< π(x) < c

x

lnx
, for all x� 0.

This version of the Prime Number Theorem is sufficient for properly estimating the running
times of several algorithms. The proof is based on arithmetical properties of the binomial
coefficients

(
2n
n

)
. For any real number x > 0 let π(x) denote the number of primes smaller

than x.

Lemma 1. Let n ∈ Z>0 and let
(
2n
n

)
=
∏

p p
ep the decomposition of

(
2n
n

)
into prime

factors. Then pep ≤ 2n. In particular, for p >
√

2n we have ep ≤ 1;

Proof. Let p be a prime and let ep = ordp

(
2n
n

)
. For every m ∈ Z>0 we have ordpm! =∑

i≥1[mpi ]. It follows that

ep = ordp

(
2n

n

)
=
∑
i≥1

(
[
2n

pi
]− 2[

n

pi
]

)
.

Since for every t ∈ R the integer [2t]− 2[t] is either 0 or 1, the summands are at most 1.
Therefore ep is not larger than the number of non-zero summands, which is at most
ln 2n/ ln p. It follows that pep is at most 2n as required.

Remark 2. . For the binomial coefficient
(
2n
n

)
one has the estimates

22n

2n+ 1
<

(
2n

n

)
< 22n, for all n ≥ 1.

Proof. One has 22n = (1 + 1)2n =
∑2n

k=0

(
2n
k

)
. Hence

(
2n
n

)
< 22n. The above also shows

that 22n is the sum of 2n + 1 positive terms, of which
(
2n
n

)
is the largest one. Hence(

2n
n

)
> 22n

2n+1 .

Proposition 2. There exists c > 0 for which π(x) < c x
ln x for all x� 0.

Proof. We begin by proving that ∑
p≤x

ln p ≤ 4x ln 2.
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The binomial coefficient
(
2n
n

)
is divisible by all primes p between n and 2n. Then by

Remark 2 we get the inequality∏
n<p≤2n

p < 22n, for all n ≥ 1. (a)

Let x ∈ R>0 and 2k be the smallest power of 2 for which x ≤ 2k. We have 2k < 2x.
Relation (a) yields ∏

2i−1<p<2i

p < 22i.

Taking logarithms and summing up the inequalities for n = 1, 2, 22, . . . , 2k−1 we find∑
p<x

ln p ≤
∑
p≤2k

ln p =
∑

1<p≤2

ln p+
∑

2<p≤22
ln p+ . . .+

∑
2k−1<p≤2k

ln p ≤

≤ 2 ln 2 + 22 ln 2 + . . .+ 2k ln 2 = (2k − 2) ln 2 < 2k+2 ln 2 < 4x ln 2.

On the other hand we have trivially∑
p<x

ln p >
∑

√
x<p<x

ln p > (π(x)−
√
x) ln

√
x.

Combining the two inequalities gives

(π(x)−
√
x) ln

√
x <

∑
p<x

ln p ≤ 4x ln 2

and
π(x) < 8 ln 2

x

lnx
+
√
x.

Since for x � 0 the term 8 ln 2 x
ln x on the right hand side is dominant over

√
x, the

proposition follows.

Proposition 3. There exists c′ > 0 for which π(x) > c′ x
ln x for all x� 0.

Proof. Let n ∈ Z>0. By Lemma 1 we have(
2n

n

)
=

∏
p≤2n

pep ≤ 2n
√
2n

∏
√
2n<p≤2n

p ≤ 2n
√
2n
∏
p≤2n

p.

Combining the above inequality with Remark 2 we get

22n

2n+ 1
< 2n

√
2n
∏
p≤2n

p,
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and, taking logarithms,∑
p≤2n

ln p ≥ n ln 4− ln(2n+ 1)−
√

2n ln(2n).

Since
∑

p≤2n ln p ≤ π(2n) ln(2n), we obtain the inequality

π(2n) ≥ 2n ln 2− ln(2n+ 1)−
√

2n ln(2n)

ln 2n
. (1)

Observe that x ≤ 2n ≤ x+ 2, for some integer n. This fact togeteher with (1) implies

π(x) ≥ π(2n)− 1 ≥ 2n ln 2− ln(2n+ 1)−
√

2n ln(2n)

ln 2n
− 1

≥ ln 2
x

lnx
− ln(x+ 1)

ln(x)
−
√
x− 1

≥ c′ x
lnx

, for x� 0.

Hence the proposition follows.
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