In this note we prove a weak form of the Prime Number Theorem due to P. Chebyshev:

Theorem. (Chebyshev 1850) There exist constants $c, c' \in \mathbb{R}_{>0}$ for which

$$c'\frac{x}{\ln x} < \pi(x) < c\frac{x}{\ln x}, \quad \text{for all } x \gg 0.$$

This version of the Prime Number Theorem is sufficient for properly estimating the running times of several algorithms. The proof is based on arithmetical properties of the binomial coefficients $\binom{2n}{n}$. For any real number x > 0 let $\pi(x)$ denote the number of primes smaller than x.

Lemma 1. Let $n \in \mathbb{Z}_{>0}$ and let $\binom{2n}{n} = \prod_p p^{e_p}$ the decomposition of $\binom{2n}{n}$ into prime factors. Then $p^{e_p} \leq 2n$. In particular, for $p > \sqrt{2n}$ we have $e_p \leq 1$;

Proof. Let p be a prime and let $e_p = \operatorname{ord}_p\binom{2n}{n}$. For every $m \in \mathbb{Z}_{>0}$ we have $\operatorname{ord}_p m! = \sum_{i>1} [\frac{m}{n^i}]$. It follows that

$$e_p = \operatorname{ord}_p {\binom{2n}{n}} = \sum_{i \ge 1} \left([\frac{2n}{p^i}] - 2[\frac{n}{p^i}] \right).$$

Since for every $t \in \mathbf{R}$ the integer [2t] - 2[t] is either 0 or 1, the summands are at most 1. Therefore e_p is not larger than the number of non-zero summands, which is at most $\ln 2n/\ln p$. It follows that p^{e_p} is at most 2n as required.

Remark 2. . For the binomial coefficient $\binom{2n}{n}$ one has the estimates

$$\frac{2^{2n}}{2n+1} < \binom{2n}{n} < 2^{2n}$$
, for all $n \ge 1$.

Proof. One has $2^{2n} = (1+1)^{2n} = \sum_{k=0}^{2n} \binom{2n}{k}$. Hence $\binom{2n}{n} < 2^{2n}$. The above also shows that 2^{2n} is the sum of 2n + 1 positive terms, of which $\binom{2n}{n}$ is the largest one. Hence $\binom{2n}{n} > \frac{2^{2n}}{2n+1}$.

Proposition 2. There exists c > 0 for which $\pi(x) < c \frac{x}{\ln x}$ for all $x \gg 0$.

Proof. We begin by proving that

$$\sum_{p \le x} \ln p \le 4x \ln 2.$$

The binomial coefficient $\binom{2n}{n}$ is divisible by all primes p between n and 2n. Then by Remark 2 we get the inequality

$$\prod_{n (a)$$

Let $x \in \mathbf{R}_{>0}$ and 2^k be the smallest power of 2 for which $x \leq 2^k$. We have $2^k < 2x$. Relation (a) yields

$$\prod_{2^{i-1}$$

Taking logarithms and summing up the inequalities for $n = 1, 2, 2^2, \ldots, 2^{k-1}$ we find

$$\sum_{p < x} \ln p \le \sum_{p \le 2^k} \ln p = \sum_{1 < p \le 2} \ln p + \sum_{2 < p \le 2^2} \ln p + \dots + \sum_{2^{k-1} < p \le 2^k} \ln p \le 2 \ln 2 + 2^2 \ln 2 + \dots + 2^k \ln 2 = (2^k - 2) \ln 2 < 2^{k+2} \ln 2 < 4x \ln 2.$$

On the other hand we have trivially

$$\sum_{p < x} \ln p > \sum_{\sqrt{x} (\pi(x) - \sqrt{x}) \ln \sqrt{x}.$$

Combining the two inequalities gives

$$(\pi(x) - \sqrt{x}) \ln \sqrt{x} < \sum_{p < x} \ln p \le 4x \ln 2$$

and

$$\pi(x) < 8\ln 2\frac{x}{\ln x} + \sqrt{x}.$$

Since for $x \gg 0$ the term $8 \ln 2 \frac{x}{\ln x}$ on the right hand side is dominant over \sqrt{x} , the proposition follows.

Proposition 3. There exists c' > 0 for which $\pi(x) > c' \frac{x}{\ln x}$ for all $x \gg 0$.

Proof. Let $n \in \mathbb{Z}_{>0}$. By Lemma 1 we have

$$\binom{2n}{n} = \prod_{p \le 2n} p^{e_p} \le 2n^{\sqrt{2n}} \prod_{\sqrt{2n}$$

Combining the above inequality with Remark 2 we get

$$\frac{2^{2n}}{2n+1} < 2n^{\sqrt{2n}} \prod_{p \le 2n} p_{p}$$

and, taking logarithms,

$$\sum_{p \le 2n} \ln p \ge n \ln 4 - \ln(2n+1) - \sqrt{2n} \ln(2n).$$

Since $\sum_{p \leq 2n} \ln p \leq \pi(2n) \ln(2n)$, we obtain the inequality

$$\pi(2n) \ge \frac{2n\ln 2 - \ln(2n+1) - \sqrt{2n}\ln(2n)}{\ln 2n}.$$
(1)

Observe that $x \leq 2n \leq x+2$, for some integer n. This fact together with (1) implies

$$\pi(x) \geq \pi(2n) - 1 \geq \frac{2n \ln 2 - \ln(2n+1) - \sqrt{2n} \ln(2n)}{\ln 2n} - 1$$
$$\geq \ln 2 \frac{x}{\ln x} - \frac{\ln(x+1)}{\ln(x)} - \sqrt{x} - 1$$
$$\geq c' \frac{x}{\ln x}, \quad \text{for } x \gg 0.$$

Hence the proposition follows.