Cantor-Zassenhaus algorithm

Let p be a prime number. The Cantor-Zassenhanhaus algorithm is an algorithm for factoring polynomials with integer coefficients over \mathbf{Z}_p , under the assumption that all its zeroes are in \mathbf{Z}_p . It is based on the following principles:

1. \mathbf{Z}_p coincides with the zeros of the polynomial $\chi = x^p - x$ over \mathbf{Z}_p . More precisely, if we write

$$x^{p} - x = x(x^{p-1} - 1) = x(x^{(p-1)/2} - 1)(x^{(p-1)/2} + 1),$$

we see that the zeros of the three factors are x = 0, the squares in \mathbf{Z}_p^* and the non-squares in \mathbf{Z}_p^* , respectively.

2. Let f be a polynomial with integer coefficients. Denote by the same symbol f also its projection to $\mathbf{Z}_p[X]$ (i.e. taking the coefficients modulo p). Then $\alpha \in \mathbf{Z}_p$ is a zero of f over \mathbf{Z}_p if and only if $(x - \alpha)$ divides $gcd(f, x^p - x)$.

Note that for $p \gg 0$, the polynomial $x^p - x$ has a very high degree. To reduce the computation to polynomials of lower degree, we use the following tricks:

3. We compute either $gcd(f, x^{(p-1)/2} - 1)$ or $gcd(f, x^{(p-1)/2} + 1)$, namely we search for the zeros of f which are squares and the ones which are non-squares. To compute $gcd(f, x^{(p-1)/2} - 1)$, we exploit the fact that if

$$x^{(p-1)/2} - 1 = q(x)f(x) + r(x), \quad \text{with } \deg(r) < \deg(f), \tag{*}$$

then

$$\gcd(f(x), x^{(p-1)/2} - 1) = \gcd(f(x), r(x)).$$
(**)

Note that r(x) is nothing but $x^{(p-1)/2} - 1 \mod f$. Relation (*) can be obtained by division with remainder between polynomials with coefficients in a field. To compute r(x) efficiently, we compute the power $x^{(p-1)/2}$ in the ring $\mathbf{Z}_p[x]/(f(x))$ and then subtract 1. This can be done in time $O(d^2 \log^3 p)$, where $d = \deg f$,

In this way (**) is reduced to a gcd between two polynomials of degree $\leq \deg(f)$. What we get is

$$s(x) := \gcd(f, r(x)) = \prod_{\alpha_i} (x - \alpha_i),$$

where α_i runs over the zeros of f in \mathbf{Z}_p , which are squares in \mathbf{Z}_p .

(Analogous statements hold for $x^{(p-1)/2} + 1$).

Obtaining a zero of f is equivalent to produce a degree one factor of $gcd(f, x^{(p-1)/2} - 1)$ (or of $gcd(f, x^{(p-1)/2} + 1)$).

4. Letting t = 1, 2, 3..., we compute

$$gcd(r(x+1), s(x)), gcd(r(x+2), s(x)), \dots$$

until we get a non-trivial polynomial, i.e. different from constant and s(x) (it is likely that only a few gcd's are sufficient...)

Assume $t(x) = \gcd(r(x + t_0), s(x))$ non-trivial, for some t_0 . Then

$$t(x) = \prod_{\alpha_i} (x - \alpha_i),$$

where α_i runs over the zeros of f in \mathbf{Z}_p , with the property that both α_i and $\alpha_i + t_0$ are a squares in \mathbf{Z}_p .

The degrees of t(x) and of s(x)/t(x) are strictly smaller than the degree of s(x). Now the procedure can be iterated until we get to degree 1.