Let G be a cyclic group with n elements, and let $a \in G$ be a generator of the group. It means that $G = \{a, a^2, \ldots, a^n = e\}$. In particular, every $x \in G$ can be written as $x = a^s$, for some $s \in \mathbb{Z}$. The exponent s, which by Lagrange's theorem it is only well defined modulo n, is by definition the discrete logarithm of x in base a

$$s := \log_a(x) \mod n.$$

The Baby-Step-Giant-Step algorithm is a deterministic algorithm for computing the discrete logarithm in an arbitrary finite cyclic group. It exploits the fact that every element $x \in G$ can be written as

$$x = a^{j+mi},\tag{1}$$

for integers m, i, j satisfying $m \sim \sqrt{n}$, and $0 \leq i$, $j \leq m$. Equation (1) can be rewritten as $a^i = xa^{-mj}$. Then the logarithm $\log(x)_a$ is obtained by comparing two lists: the baby steps a^i and the giant steps xa^{-mj} , for $0 \leq i, j \leq m$. When a coincidence is found between the two lists, namely one has $a^{i_0} = xa^{-mj_0}$, for some i_0 and j_0 , then the desired logarithm is given by $i_0 + mj_0 = \log(x)_a$.

Computing at most $2m \sim 2\sqrt{p}$ powers modulo p and comparing the two lists, one surely obtains the desired logarithm. Note that with the naif method one could possibly have to compute up to p powers modulo p, before obtaining the desired result.

Example. Fix p = 433 and let a = 7 be a primitive root in \mathbb{Z}_p^* . We want to calculate the discrete logarithm of x = 166 in base a. In this case, $m = 21 \sim \sqrt{433}$.

We first produce the list of the **Baby-Steps** $a^i \mod p$, for $0 \le i \le m-1$:

 $a^0 = 1$ $a^1 = 7$ $a^{2} = 49$ $a^3 = 343$ $a^4 = 236$ $a^5 = 353$ $a^{6} = 306$ $a^{7} = 410$ $a^8 = 272$ $a^9 = 172$ $a^{10} = 338$ $a^{11} = 201$ $a^{12} = 108$ $a^{13} = 323$ $a^{14} = 96$ $a^{15} = 239$ $a^{16} = 374$ $a^{17} = 20$ $a^{18} = 140$ $a^{19} = 114$ $a^{20} = 365$

 $a^{-m} = a^{-21} = 292$

Next we produce the list of the **Giant-Steps** $xa^{-mj} \mod p$, for $0 \le j \le m-1$, and each time we check whether the value the new Giant-Step already appears in the list of the Baby-Steps. When that is the case, we are done.

 $\begin{aligned} x \cdot a^0 &= 166\\ x \cdot a^{-21} &= 409 \end{aligned}$

$x \cdot a^{-42} = 353 \; !!!$

We have found a coincidence between the two lists: $a^5 = x \cdot a^{-42}$. This means that

$$x = a^{5+42} = a^{47}$$
 and $\log_7(166) = 47$.

Indeed one can check that $7^{47} = 166 \mod 433$.