- (1.A) Siano $\mathbf{x} = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$ e $\mathbf{y} = \begin{pmatrix} -1 \\ -3 \end{pmatrix}$.
 - (i) Calcolare e disegnare i vettori \mathbf{x} , $2\mathbf{x}$, $-\mathbf{x}$, $0\mathbf{x}$.
 - (ii) Calcolare e disegnare i vettori $\mathbf{x} + \mathbf{y}$, $\mathbf{x} \mathbf{y}$, $3\mathbf{y}$ e $3\mathbf{x} \mathbf{y}$.
 - (iii) Calcolare $\|\mathbf{x}\|$, $\|\mathbf{y}\|$, $\|\mathbf{x} + \mathbf{y}\|$ e $\|\mathbf{x} \mathbf{y}\|$.

Sol.

(i)
$$2\mathbf{x} = \begin{pmatrix} 2\\4 \end{pmatrix}$$
, $-\mathbf{x} = \begin{pmatrix} -1\\-2 \end{pmatrix}$, $0\mathbf{x} = \begin{pmatrix} 0\\0 \end{pmatrix}$.

(ii)
$$\mathbf{x} + \mathbf{y} = \begin{pmatrix} 0 \\ -1 \end{pmatrix}$$
, $\mathbf{x} - \mathbf{y} = \begin{pmatrix} 2 \\ 5 \end{pmatrix}$, $3\mathbf{y} = \begin{pmatrix} -3 \\ -9 \end{pmatrix}$, $3\mathbf{x} - \mathbf{y} = \begin{pmatrix} 4 \\ 9 \end{pmatrix}$.

(iii)
$$\|\mathbf{x}\| = \sqrt{5}$$
, $\|\mathbf{y}\| = \sqrt{10}$, $\|\mathbf{x} + \mathbf{y}\| = 1$, $\|\mathbf{x} - \mathbf{y}\| = \sqrt{29}$.

(1.B) (Trigonometria elementare) Sia $\varphi \in \mathbf{R}$ un angolo. Il seno ed il coseno di φ sono, per definizione, le coordinate del vettore \mathbf{x} di norma $\|\mathbf{x}\| = 1$, che forma un angolo φ con l'asse delle ascisse positive.

$$\mathbf{x} = \begin{pmatrix} \cos \varphi \\ \sin \varphi \end{pmatrix}.$$

- (i) Dimostrare che $|\sec \varphi| \le 1$ e $|\cos \varphi| \le 1$.
- (ii) Dimostrare che $\cos^2 \varphi + \sin^2 \varphi = 1$.

Sol. Per definizione di norma di un vettore, $1 = \|\mathbf{x}\|^2 = \cos^2 \varphi + \sin^2 \varphi$, il che prova (ii) e, come conseguenza immediata, anche (i).

- (1.C) (La regola del coseno) Sia ABC un triangolo con lati di lunghezza a, b c ed angoli $\alpha, \beta \in \gamma$. Sia Q la proiezione ortogonale di C sul lato AB.
 - (i) Far vedere che $|CQ| = b \operatorname{sen} \alpha e |AQ| = b \cos \alpha$.
 - (ii) Applicare il Teorema di Pitagora al triangolo CQB e dedurre la relazione

$$a^2 = b^2 + c^2 - 2bc\cos\alpha.$$

Sol. (i) E' immediato dalla definizione di seno e coseno di un angolo e dal fatto che triangoli con angoli uguali sono simili.

(ii) Abbiamo

$$\overline{BC}^2 = \overline{BO}^2 + \overline{OC}^2 = (\overline{AB} - \overline{AO})^2 + \overline{OC}^2$$

da cui

$$a^{2} = (c - b\cos\alpha)^{2} + (b\sin\alpha)^{2} = c^{2} + b^{2}(\cos^{2}\alpha + \sin^{2}\alpha) - 2bc\cos\alpha = b^{2} + c^{2} - 2bc\cos\alpha.$$

- (1.D) Siano $\mathbf{x} = \begin{pmatrix} 1 \\ 4 \end{pmatrix} e \mathbf{y} = \begin{pmatrix} 4 \\ 1 \end{pmatrix}$.
 - (i) Calcolare il coseno dell'angolo φ fra i vettori \mathbf{x} e \mathbf{y} .
 - (ii) Calcolare il coseno dell'angolo φ fra i vettori $\mathbf{x} \in -\mathbf{y}$.
 - (iii) Calcolare il coseno dell'angolo φ fra i vettori $\mathbf{x} \in -2\mathbf{y}$.
 - Sol. (i) Dalla formula

$$\cos \varphi = \frac{\mathbf{x} \cdot \mathbf{y}}{\|\mathbf{x}\| \cdot \|\mathbf{y}\|}$$

1

si ottiene immediatamente $\cos \varphi = 8/17$.

- (ii) $\cos \varphi = -8/17$.
- (iii) $\cos \varphi = -8/17$.
- (1.E) Sia $\mathbf{x} = \begin{pmatrix} 1 \\ 4 \end{pmatrix}$. Trovare un vettore $\mathbf{y} \in \mathbf{R}^2$ tale che l'angolo fra \mathbf{x} e \mathbf{y} sia uguale a $\pi/3$.

Sol. Indichiamo con φ l'angolo formato dal vettore \mathbf{x} con l'asse delle ascisse, di modo che $\mathbf{x} = (\|\mathbf{x}\| \cos \varphi, \|\mathbf{x}\| \sin \varphi)$. Dato che $\|\mathbf{x}\| = \sqrt{17}$, otteniamo $(1, 4) = (\sqrt{17} \cos \varphi, \sqrt{17} \sin \varphi)$, da cui

$$\begin{cases} \cos \varphi = 1/\sqrt{17} \\ \sin \varphi = 4/\sqrt{17} \end{cases}$$

I vettori che fomano con ${\bf x}$ un angolo di $\pi/3$ sono tutti e soli quelli della forma

$$\mathbf{y} = (\rho \cos(\varphi + \pi/3), \rho \sin(\varphi + \pi/3)), \qquad \rho > 0$$

Ma

$$\cos(\varphi + \pi/3) = \cos\varphi\cos(\pi/3) - \sin\varphi\sin(\pi/3) = \left(1 - 4\sqrt{3}\right)/(2\sqrt{17})$$

$$\operatorname{sen}(\varphi + \pi/3) = \operatorname{sen}\varphi \cos(\pi/3) + \cos\varphi \operatorname{sen}(\pi/3) = \left(4 + \sqrt{3}\right)/(2\sqrt{17})$$

Se prendiamo $\rho = 2\sqrt{17}$ troviamo il vettore

$$\mathbf{y} = (1 - 4\sqrt{3}, 4 + \sqrt{3})$$

- (1.F) Trovare $\mathbf{x}, \mathbf{y} \in \mathbf{R}^2$ non nulli tali che
 - (i) $\|\mathbf{x} + \mathbf{y}\| = \|\mathbf{x}\| + \|\mathbf{y}\|$.
 - (ii) $\|\mathbf{x} + \mathbf{y}\| = 0$.
 - (iii) $\|\mathbf{x}\| = \|\mathbf{y}\| = \|\mathbf{x} + \mathbf{y}\|.$
- Sol. (i) I vettori \mathbf{x} e \mathbf{y} devono essere allineati e concordi.
- (ii) L'unico vettore di norma zero è il vettore nullo: deve essere y = -x.
- (iii) La regola del parallelogramma mostra che \mathbf{x} e \mathbf{y} devono essere due vettori della stessa lunghezza che formano un angolo di $2\pi/3$.
- (1.G) Siano $\mathbf{x}, \mathbf{y} \in \mathbf{R}^2$ e sia \mathbf{p} il vettore

$$\mathbf{p} = \begin{pmatrix} (x_1 + y_1)/2 \\ (x_2 + y_2)/2 \end{pmatrix}.$$

- (i) Calcolare la distanza $\|\mathbf{x} \mathbf{p}\|$ di \mathbf{p} da \mathbf{x} e la distanza $\|\mathbf{y} \mathbf{p}\|$ di \mathbf{p} da \mathbf{y} .
- (ii) Calcolare la distanza $\|\mathbf{x} \mathbf{y}\|$ da \mathbf{x} a \mathbf{y} . Far vedere che

$$\|\mathbf{x} - \mathbf{p}\| + \|\mathbf{v} - \mathbf{p}\| = \|\mathbf{x} - \mathbf{v}\|.$$

- (iii) Dedurre che \mathbf{p} è il punto medio fra \mathbf{x} e \mathbf{y} .
- Sol. (i) Si calcola facilmente

$$\mathbf{x} - \mathbf{p} = \begin{pmatrix} (x_1 - y_1)/2 \\ (x_2 - y_2)/2 \end{pmatrix} = \frac{1}{2} (\mathbf{x} - \mathbf{y}),$$

da cui $\|\mathbf{x} - \mathbf{p}\| = (1/2)\|\mathbf{x} - \mathbf{y}\| = (1/2)\sqrt{x_1^2 + y_1^2 + x_2^2 + y_2^2 - 2x_1y_1 - 2x_2y_2}$. In modo analogo

$$\mathbf{y} - \mathbf{p} = \begin{pmatrix} (-x_1 + y_1)/2 \\ (-x_2 + y_2)/2 \end{pmatrix} = -\frac{1}{2}(\mathbf{x} - \mathbf{y}),$$

da cui $\|\mathbf{y} - \mathbf{p}\| = (1/2)\|\mathbf{x} - \mathbf{y}\| = (1/2)\sqrt{x_1^2 + y_1^2 + x_2^2 + y_2^2 - 2x_1y_1 - 2x_2y_2}$.

- (ii) E' immediato da quanto calcolato nel punto (i).
- (iii) Dal punto (ii) segue che i tre punti x, y e p sono allineati. Inoltre le due equazioni

$$\|\mathbf{x} - \mathbf{p}\| = (1/2)\|\mathbf{x} - \mathbf{y}\|$$

$$\|\mathbf{y} - \mathbf{p}\| = (1/2)\|\mathbf{x} - \mathbf{y}\|$$

implicano che \mathbf{p} è il punto medio fra \mathbf{x} e \mathbf{y} .

(1.H) Sia
$$\mathbf{x} = \begin{pmatrix} \cos \varphi \\ \sin \varphi \end{pmatrix}$$
 e sia $\mathbf{y} = \begin{pmatrix} \cos \psi \\ \sin \psi \end{pmatrix}$.

- (i) Calcolare x · y
- (ii) Dimostrare che

$$\cos(\varphi - \psi) = \cos\varphi\cos\psi + \sin\varphi\sin\psi.$$

Sol. (i) Si ha

$$\mathbf{x} \cdot \mathbf{y} = \cos \varphi \cos \psi + \sin \varphi \sin \psi.$$

(ii) L'angolo compreso tra i vettori ${\bf x}$ e ${\bf y}$ è $\varphi-\psi$, da cui

$$\cos(\varphi - \psi) = \frac{\mathbf{x} \cdot \mathbf{y}}{\|\mathbf{x}\| \cdot \|\mathbf{y}\|} = \mathbf{x} \cdot \mathbf{y}$$

in quanto \mathbf{x} e \mathbf{y} hanno entrambi norma uguale ad uno.

(1.I) Sia $\mathbf{x} \in \mathbf{R}^2$ un vettore non nullo. Dimostrare che $\mathbf{x}/\|\mathbf{x}\|$ è un vettore di norma 1. Sol. Poiché il prodotto scalare è bilineare, per ogni vettore \mathbf{x} e ogni scalare $\lambda \in \mathbf{R}$ si ha

$$(\lambda \mathbf{x}) \cdot (\lambda \mathbf{x}) = \lambda^2 \mathbf{x} \cdot \mathbf{x} = \lambda^2 ||\mathbf{x}||^2,$$

da cui

$$\|\lambda \mathbf{x}\| = |\lambda| \|\mathbf{x}\|.$$

Prendendo $\lambda = 1/\|x\|$ otteniamo

$$\left\| \frac{\mathbf{x}}{\|\mathbf{x}\|} \right\| = \frac{1}{\|\mathbf{x}\|} \|\mathbf{x}\| = 1.$$

- (2.A) Siano $\mathbf{x} = \begin{pmatrix} 1 \\ -2 \\ 3 \end{pmatrix}$ e $\mathbf{y} = \begin{pmatrix} 2 \\ -1 \\ 3 \end{pmatrix}$ due vettori in \mathbf{R}^3 .
 - (i) Calcolare $\mathbf{x} \mathbf{y}$, $\mathbf{x} + 3\mathbf{y} = -2\mathbf{x} + \mathbf{y}$.
 - (ii) Calcolare le lunghezze di questi vettori.

Sol. (i)

$$\mathbf{x} - \mathbf{y} = \begin{pmatrix} -1 \\ -1 \\ 0 \end{pmatrix}, \quad \mathbf{x} + 3\mathbf{y} = \begin{pmatrix} 7 \\ -5 \\ 12 \end{pmatrix}, \quad -2\mathbf{x} + \mathbf{y} = \begin{pmatrix} 0 \\ -5 \\ -3 \end{pmatrix}.$$

(ii)

$$\|\mathbf{x} - \mathbf{y}\| = \sqrt{2}, \quad \|\mathbf{x} + 3\mathbf{y}\| = \sqrt{218}, \quad \|-2\mathbf{x} + \mathbf{y}\| = \sqrt{34}.$$

- (2.B) Siano **x** e **y** i vettori dell'Eserc.2.A.
 - (i) Calcolare i prodotti scalari $\mathbf{x} \cdot \mathbf{y}$, $\mathbf{x} \cdot \mathbf{x}$ e anche $\mathbf{x} \cdot (5\mathbf{x} + 7\mathbf{y})$.
 - (ii) Calcolare il coseno dell'angolo fra \mathbf{x} e \mathbf{y} .
 - (iii) Calcolare il coseno dell'angolo fra $\mathbf{x} \in \mathbf{x} + \mathbf{y}$.

Sol. (i)

$$\mathbf{x} \cdot \mathbf{y} = 13;$$
 $\mathbf{x} \cdot \mathbf{x} = 14;$ $\mathbf{x} \cdot (5\mathbf{x} + 7\mathbf{y}) = 5\mathbf{x} \cdot \mathbf{x} + 7\mathbf{x} \cdot \mathbf{y} = 161.$

(ii) Se indichiamo con φ l'angolo tra \mathbf{x} e \mathbf{y} , si ha

$$\cos \varphi = \frac{\mathbf{x} \cdot \mathbf{y}}{\|\mathbf{x}\| \cdot \|\mathbf{y}\|} = \frac{13}{14}$$

(ii) Se indichiamo con ψ l'angolo tra \mathbf{x} e $\mathbf{x} + \mathbf{y}$, si ha

$$\cos \psi = \frac{\mathbf{x} \cdot (\mathbf{x} + \mathbf{y})}{\|\mathbf{x}\| \cdot \|\mathbf{x} + \mathbf{y}\|} = \frac{3\sqrt{21}}{14}$$

- (2.C) Sia x il vettore dell'Eserc.2.A.
 - (i) Trovare un vettore $\mathbf{v} \neq \mathbf{0}$ tale che $\mathbf{v} \cdot \mathbf{x} = 0$.
 - (ii) Trovare un vettore $\mathbf{w} \neq \mathbf{0}$ tale che

$$\begin{cases} \mathbf{x} \cdot \mathbf{w} &= 0, \\ \mathbf{v} \cdot \mathbf{w} &= 0. \end{cases}$$

Sol. (i) Se

$$\mathbf{v} = \begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix}$$

allora $\mathbf{v} \cdot \mathbf{x} = v_1 - 2v_2 + 3v_3$ e dunque i vettori \mathbf{v} soluzioni di $\mathbf{v} \cdot \mathbf{x} = 0$ sono tutti e soli quelli per cui $v_1 - 2v_2 + 3v_3 = 0$. Una soluzione non banale di quest'equazione è

$$\mathbf{v} = \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix}$$

(ii) Il vettore \mathbf{w} deve essere ortogonale sia a \mathbf{x} che a \mathbf{v} . Una soluzione possibile è $\mathbf{w} = \mathbf{v} \times \mathbf{x}$. Se indichiamo con \mathbf{i} , \mathbf{j} , \mathbf{k} la base canonica di \mathbf{R}^3 , allora

$$\mathbf{v} \times \mathbf{x} = \det \begin{pmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 1 & 2 & 1 \\ 1 & -2 & 3 \end{pmatrix} = 8\mathbf{i} - 2\mathbf{j} - 4\mathbf{k} = \begin{pmatrix} 8 \\ -2 \\ -4 \end{pmatrix}$$

- (2.D) Sia $\mathbf{v} \in \mathbf{R}^3$ un vettore non nullo. Sia $\lambda = \|\mathbf{v}\|$.
 - (i) Calcolare la lunghezza di $\frac{1}{\lambda}$ **v**.
 - (ii) Trovare un vettore parallelo a \mathbf{v} che abbia lunghezza $1/\lambda$.
 - Sol. (i) Il vettore $\frac{1}{\lambda}\mathbf{v}$ ha lunghezza 1 (vedi la soluzione dell'esercizio (1.I)).
 - (ii) Un vettore parallelo a \mathbf{v} ha la forma $t\mathbf{v}$ per qualche $t \in \mathbf{R}$. Dobbiamo perciò determinare t in modo che si abbia $||t\mathbf{x}|| = 1/\lambda$. Poiché

$$||t\mathbf{v}|| = |t| \, ||\mathbf{v}|| = \lambda \, |t|,$$

ricaviamo $|t| = 1/\lambda^2$, da cui $t = \pm 1/\lambda^2$.

(2.E) Siano \mathbf{x} e \mathbf{y} due vettori in \mathbf{R}^3 . Sia

$$\mathbf{v} = \begin{pmatrix} (x_1 + y_1)/2 \\ (x_2 + y_2)/2 \\ (x_3 + y_3)/2 \end{pmatrix}.$$

- (i) Calcolare le distanze $\|\mathbf{x} \mathbf{y}\|$, $\|\mathbf{x} \mathbf{v}\|$ e $\|\mathbf{y} \mathbf{v}\|$.
- (ii) Far vedere che \mathbf{v} è il punto medio fra \mathbf{x} e \mathbf{y} .

Sol. L'esercizio è completamente analogo all'esercizio (1.G).

- (2.F) Siano x e y i due vettori dell'Eserc.2.A.
 - (i) Calcolare $\mathbf{x} \times \mathbf{y}$.
 - (ii) Calcolare $\mathbf{x} \times (-\mathbf{y})$.
 - (iii) Calcolare l'area del triangolo di vertici 0, x e y.
- Sol. (i) Si ha

$$\mathbf{x} \times \mathbf{y} = \det \begin{pmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 1 & -2 & 3 \\ 2 & -1 & 3 \end{pmatrix} = -3\mathbf{i} + 3\mathbf{j} + 3\mathbf{k} = \begin{pmatrix} -3 \\ 3 \\ 3 \end{pmatrix}$$

(ii) Il prodotto vettoriale è bilineare, dunque

$$\mathbf{x} \times (-\mathbf{y}) = -(\mathbf{x} \times \mathbf{y}) = \begin{pmatrix} 3 \\ -3 \\ -3 \end{pmatrix}$$

(iii) L'area del triangolo in questione è $(1/2)\|\mathbf{x} \times \mathbf{y}\| = (3/2)\sqrt{3}$

(2.G) Siano
$$\mathbf{x} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$
 e $\mathbf{y} = \begin{pmatrix} 0 \\ 2 \\ -1 \end{pmatrix}$.

- (i) Trovare un vettore \mathbf{v} perpendicolare sia a \mathbf{x} che a \mathbf{y} .
- (ii) Trovare un vettore come nella parte (i), di lunghezza 1.

Sol. (i)

$$\mathbf{v} = \mathbf{x} \times \mathbf{y} = \det \begin{pmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 1 & 1 & 1 \\ 0 & 2 & -1 \end{pmatrix} = -3\mathbf{i} + \mathbf{j} + 2\mathbf{k} = \begin{pmatrix} -3 \\ 1 \\ 2 \end{pmatrix}$$

(ii) Basta dividere v per la sua norma:

$$\frac{\mathbf{v}}{\|\mathbf{v}\|} = \begin{pmatrix} -3/\sqrt{14} \\ 1/\sqrt{14} \\ 2/\sqrt{14} \end{pmatrix}$$

(2.H) Siano \mathbf{x} , \mathbf{y} e \mathbf{z} i vettori in \mathbf{R}^3 dati da

$$\begin{pmatrix} 6 \\ -2 \\ 3 \end{pmatrix}, \quad \begin{pmatrix} -2 \\ 3 \\ 6 \end{pmatrix}, \quad \begin{pmatrix} 3 \\ 6 \\ -2 \end{pmatrix}.$$

(i) Calcolare le lunghezze di x, y e z e i coseni degli angoli fra x, y e z.

Sol. (i) Si ha $\|\mathbf{x}\| = \|\mathbf{y}\| = \|\mathbf{z}\| = 7$. Indichiamo con $\varphi_{\mathbf{v},\mathbf{w}}$ l'angolo compreso tra i vettori \mathbf{v} e \mathbf{w} . Si calcola

$$\cos \varphi_{\mathbf{x}, \mathbf{y}} = \frac{\mathbf{x} \cdot \mathbf{y}}{\|\mathbf{x}\| \cdot \|\mathbf{y}\|} = 0$$

$$\cos \varphi_{\mathbf{y}, \mathbf{z}} = \frac{\mathbf{y} \cdot \mathbf{z}}{\|\mathbf{y}\| \cdot \|\mathbf{z}\|} = 0$$

$$\cos \varphi_{\mathbf{z}, \mathbf{x}} = \frac{\mathbf{z} \cdot \mathbf{x}}{\|\mathbf{z}\| \cdot \|\mathbf{x}\|} = 0$$

(2.I) Siano
$$\mathbf{x} = \begin{pmatrix} 1 \\ 0 \\ -2 \end{pmatrix} e \mathbf{y} = \begin{pmatrix} 0 \\ -1 \\ 3 \end{pmatrix} e \mathbf{z} = \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix}.$$

- (i) Calcolare i vettori $(\mathbf{x} \times \mathbf{y}) \times \mathbf{z}$ ed $\mathbf{x} \times (\mathbf{y} \times \mathbf{z})$.
- (ii) Calcolare $(\mathbf{x} \times \mathbf{y}) \cdot \mathbf{z}$ ed $\mathbf{x} \cdot (\mathbf{y} \times \mathbf{z})$.

Sol. (i) Indichiamo con i, j, k la base canonica di \mathbb{R}^3 . Si ha

$$\mathbf{x} \times \mathbf{y} = \det \begin{pmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 1 & 0 & -2 \\ 0 & -1 & 3 \end{pmatrix} = -2\mathbf{i} - 3\mathbf{j} + \mathbf{k} = \begin{pmatrix} -2 \\ -3 \\ 1 \end{pmatrix}$$

da cui

$$(\mathbf{x} \times \mathbf{y}) \times \mathbf{z} = \det \begin{pmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ -2 & -3 & 1 \\ -1 & 0 & 1 \end{pmatrix} = -3\mathbf{i} + \mathbf{j} - 3\mathbf{k} = \begin{pmatrix} -3 \\ 1 \\ -3 \end{pmatrix}$$

Analogamente

$$\mathbf{y} \times \mathbf{z} = \det \begin{pmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 0 & -1 & 3 \\ -1 & 0 & 1 \end{pmatrix} = -\mathbf{i} - 3\mathbf{j} - \mathbf{k} = \begin{pmatrix} -1 \\ -3 \\ -1 \end{pmatrix}$$

da cui

$$\mathbf{x} \times (\mathbf{y} \times \mathbf{z}) = \det \begin{pmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 1 & 0 & -2 \\ -1 & -3 & -1 \end{pmatrix} = -6\mathbf{i} - 3\mathbf{j} + 3\mathbf{k} = \begin{pmatrix} -6 \\ 3 \\ -3 \end{pmatrix}$$

Si noti come il prodotto vettoriale non sia associativo.

(ii) Si ha

$$(\mathbf{x} \times \mathbf{y}) \cdot \mathbf{z} = \mathbf{x} \cdot (\mathbf{y} \times \mathbf{z}) = \det \begin{pmatrix} 1 & 0 & -2 \\ 0 & -1 & 3 \\ -1 & 0 & 1 \end{pmatrix} = 3$$