Definizione. Siano l, ed m due rette in \mathbb{P}^2 e sia R un punto esterno ad esse. Per definizione, la prospettività di centro R è l'applicazione $\pi_R: l \longrightarrow m$ che associa ad un punto $X \in l$ il punto di intersezione di m con la retta passante per R e per X

$$\pi_R(X) = m \cap \overline{RX}.$$

Osserviamo innanzitutto che l'applicazione π_R è biunivoca. Ricordiamo inoltre che fissare due punti distinti $P = (p_0 : p_1 : p_2)$, $Q = (q_0 : q_1 : q_2)$ su una retta r in \mathbb{P}^2 equivale a fissare una identificazione di r con \mathbb{P}^1 .

Scriviamo il piano α per l'origine in \mathbb{R}^3 ad essa corrispondente in forma parametrica

$$X = t \begin{pmatrix} p_0 \\ p_1 \\ p_2 \end{pmatrix} + s \begin{pmatrix} q_0 \\ q_1 \\ q_2 \end{pmatrix}, \quad t, s \in \mathbb{R}.$$

Al variare $t,\ s,$ non entrambi nulli, i punti della retta r hanno coordinate omogenee in \mathbb{P}^2

$$(tp_0 + sq_0 : tp_1 + sq_1 : tp_2 + sq_2).$$

Poiché P e Q sono distinti in \mathbb{P}^2 , i vettori $\begin{pmatrix} p_0 \\ p_1 \\ p_2 \end{pmatrix}$ e $\begin{pmatrix} q_0 \\ q_1 \\ q_2 \end{pmatrix}$ sono linearmente indipendenti in \mathbb{R}^3 e

formano una base di α . Questa base induce una identificazione di α con \mathbb{R}^2

$$t \begin{pmatrix} p_0 \\ p_1 \\ p_2 \end{pmatrix} + s \begin{pmatrix} q_0 \\ q_1 \\ q_2 \end{pmatrix} \qquad \leftrightarrow \qquad \begin{pmatrix} t \\ s \end{pmatrix}.$$

e di α privato dell'origine con $\mathbb{R}^2 \setminus \{O\}$. Applicando la proiezione canonica ad α privato dell'origine, otteniamo una identificazione di r con \mathbb{P}^1 :

$$\pi(\binom{t}{s}) = (t:s).$$

Proposizione. Siano l, m due rette in \mathbb{P}^2 e sia $R \in \mathbb{P}^2$ un punto esterno ad esse. Fissate identificazioni di l ed m con \mathbb{P}^1 , la prospettività di centro R

$$\pi_R \!\!:\! l \cong \mathbb{P}^1 \longrightarrow m \cong \mathbb{P}^1$$

è una trasformazione proiettiva.

Dim. Fissata l'identificazione di l con \mathbb{P}^1 associata a due punti distinti P, Q, fissiamo l'identificazione di m con \mathbb{P}^1 associata ai punti $S = \pi_R(P)$ e $T = \pi_R(Q)$. Poiché π_R è biunivoca, anche $S = \pi_R(P)$ e $T = \pi_R(Q)$ sono punti distinti in m. Sia $X = (x_0 : x_1 : x_2)$ un punto arbitrario di $l \cong \mathbb{P}^1$, di coordinate omogenee $(\alpha : \beta)$ rispetto a P, Q. Indichiamo con $X' = (x'_0 : x'_1 : x'_2)$ il punto

 $\pi_R(X) \in m \cong \mathbb{P}^1$ e siano $(\gamma : \delta)$ le coordinate omogenee di X' rispetto a S, T. Faremo vedere che, rispetto a queste coordinate, la proiezione π_R è data da

$$\pi_R(\alpha:\beta) = (-a\alpha:b\beta),$$

dove $a, b \in \mathbb{R} \setminus \{0\}$. In altre parole, π_R è indotta da una matrice invertibile $\begin{pmatrix} -a & 0 \\ 0 & b \end{pmatrix}$. Se $R = (r_0 : r_1 : r_2)$ è il centro della prospettività, i punti R, X, X' sono allineati e vale

$$\det \begin{pmatrix} r_0 & r_1 & r_2 \\ x_0 & x_1 & x_2 \\ x'_0 & x'_1 & x'_2 \end{pmatrix} = 0.$$
 (1)

Poiché per costruzione $R, P, S \in R, Q, T$ sono terne di punti allineati, vale anche

$$\det \begin{pmatrix} r_0 & r_1 & r_2 \\ p_0 & p_1 & p_2 \\ s_0 & s_1 & s_2 \end{pmatrix} = \det \begin{pmatrix} r_0 & r_1 & r_2 \\ q_0 & q_1 & q_2 \\ t_0 & t_1 & t_2 \end{pmatrix} = 0.$$
 (2)

Sostituendo adesso nella (1)

 $X = (\alpha p_0 + \beta q_0 : \alpha p_1 + \beta q_1 : \alpha p_2 + \beta q_2)$ e $X' = (\gamma s_0 + \delta t_0 : \gamma s_1 + \delta t_1 : \gamma s_2 + \delta t_2)$, per le proprietà del determinante e le relazioni (2), troviamo

$$\det \begin{pmatrix} r_0 & r_1 & r_2 \\ x_0 & x_1 & x_2 \\ x'_0 & x'_1 & x'_2 \end{pmatrix} = \det \begin{pmatrix} r_0 & r_1 & r_2 \\ \alpha p_0 + \beta q_0 & \alpha p_1 + \beta q_1 & \alpha p_2 + \beta q_2 \\ \gamma s_0 + \delta t_0 & \gamma s_1 + \delta t_1 & \gamma s_2 + \delta t_2 \end{pmatrix}$$

$$= \alpha \delta \det \begin{pmatrix} r_0 & r_1 & r_2 \\ p_0 & p_1 & p_2 \\ t_0 & t_1 & t_2 \end{pmatrix} + \beta \gamma \det \begin{pmatrix} r_0 & r_1 & r_2 \\ q_0 & q_1 & q_2 \\ s_0 & s_1 & s_2 \end{pmatrix} = 0.$$
(3)

Definiamo

$$a = \det \begin{pmatrix} r_0 & r_1 & r_2 \\ p_0 & p_1 & p_2 \\ t_0 & t_1 & t_2 \end{pmatrix}, \qquad b = \det \begin{pmatrix} r_0 & r_1 & r_2 \\ q_0 & q_1 & q_2 \\ s_0 & s_1 & s_2 \end{pmatrix}.$$

Poiché i punti delle terne R, P, T e R, Q, S non sono allineati, $a \neq 0$ e $b \neq 0$. La (3) diventa

$$\frac{\alpha}{\beta}a = -\frac{\gamma}{\delta}b \quad \Leftrightarrow \quad (\gamma:\delta) = (-a\alpha:b\beta)$$

come richiesto.

Proposizione. Siano l, m due rette in \mathbb{P}^2 e sia $S = l \cap m$ il loro punto di intersezione. Una proiettività $f: l \longrightarrow m$ è una prospettività se e solo se f(S) = S.

Dim. Osserviamo innanzitutto che date due rette in \mathbb{P}^2 , una qualunque prospettività $\pi_R \colon l \longrightarrow m$ fissa il punto di intersezione $S = l \cap m$. Dimostriamo che vale il viceversa: una proiettività $f \colon l \longrightarrow m$ che fissa il punto di intersezione $S = l \cap m$ è una prospettività. Siano P, Q punti distinti su l e siano anche distinti da S. Poiché f è biunivoca, f(P) ed f(Q) sono punti distinti su m e sono anche distinti da S. Sia r_1 la retta passante per P ed f(P) e sia r_2 la retta passante per Q ed f(Q). Le rette r_1 ed r_2 sono distinte e si intersecano in un punto R. Per costruzione,

$$f(P) = \pi_R(P)$$
 e $f(Q) = \pi_R(Q)$, $f(S) = \pi_R(S)$.

Poiché due trasformazioni proiettive della retta proiettiva che coincidono su tre punti distinti coincidono dappertutto, si ha che $f = \pi_R$ come richiesto.