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Abstract: We consider the action of a real semisimple Lie group G on the complexification GC/HC of a semisimple
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Introduction.

Let G be a real reductive Lie group and let L and H be the fixed point subgroups of two involutions of G,
acting on G by left and right translations respectively,

(l, h) : G→ G, x 7→ lxh−1, x ∈ G, l ∈ L, h ∈ H.

The L×H-orbit structure of G has been studied by Matsuki [1], Helminck-Schwartz [2] and recently again
by Helminck-Schwartz [3] and Miebach [4] with moment map techniques.

In this note we consider the special case of two commuting involutions of a semisimple connected complex
group GC, the first one being a conjugation σ with real form G, and the second a holomorphic involution τ
with fixed point subgroup HC. This is equivalent to considering the G-action on the complexification GC/HC

of the semisimple symmetric space G/H, where H = G ∩HC.
The action of G on GC/HC is the restriction of an algebraic action of GC on the complex affine algebraic

variety GC/HC × GC/HC, with real structure Σ(z̄1, z̄2) = (σ(z̄2), σ(z̄1)), where σ here denotes the induced
conjugation on GC/HC . In this framework there is a well defined map p:GC/HC → (GC/HC)‖G onto the
parameter space of closed G-orbits in GC/HC, assigning to every x̄ ∈ GC/HC the unique closed G-orbit in
the closure of G · x̄. Each fiber of this map contains a unique closed orbit, which is also the unique orbit of
minimum dimension in the fiber (cf. [5]).

Let x̄ ∈ GC/HC be a point on a closed orbit G · x̄. Denote by T (G · x̄)x̄ the tangent space to G · x̄ at
x̄ and by Nx̄ a complementary subspace to T (G · x̄)x̄ in T (GC/HC)x̄. The isotropy subgroup Gx̄ acts on
T (G · x̄)x̄ via the isotropy representation and on Nx̄ via the slice representation. By Luna’s slice Theorem
([5], Prop. 1.2), there exists an open Gx̄-invariant neighborhood V of 0 in Nx̄ such that the map

G×Gx̄ V → GC/HC, [g,X]→ g exp iXxHC/HC (1)

is a G-equivariant diffeomorphism onto an open G-invariant saturated neighborhood of G · x̄ in GC/HC (see
Sect.4 for the definition of a twisted bundle G×Gx̄ V ). This means that on a slice neighborhood (as above in
(1)) of G · x̄ in GC/HC the G-orbit structure is completely determined by the slice representation of Gx̄ at x̄.
Slice neighborhoods of closed orbits of minimal or locally minimal dimension contain the maximal linearized
information about the orbit structure of the G-action.

Matsuki’s results [1] imply that there are finitely many tori Ti in GC and points pi in GC such that the
union of the Tipi (Cartan subsets), covers the quotient (GC/HC)‖G. By elaborating upon Matsuki’s results,
we obtain a refinement in our situation.

First we give a description of Cartan subsets in terms of the restricted root system of the real symmetric
pair (g, h). Using this description we prove that every Cartan subset admits a base point p in a finite set
S of distinguished points on a compact torus in GC. Every point p ∈ S occurs at specific values of the
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restricted roots, which put severe restrictions on the G-orbit of p̄ in GC/HC. The orbit G · p̄ is closed. If
ZG(p4) = G, then G · p̄ has minimal dimension and is a symmetric space of the same rank, real rank and
dimension as G/H. If ZG(p4) is a proper subgroup of G, then G · p̄ is a Cauchy-Riemann submanifold of
GC/HC of locally minimal dimension. Moreover, the orbit of p̄ under ZG(p4) is a symmetric space of the
same rank and real rank as G/H, but of smaller dimension. In both cases the orbit ZG(p4) · p̄ is totally
real in GC/HC, the isotropy subgroups of p̄ in G and ZG(p4) coincide and the slice representation at p̄ is
equivalent to the isotropy representation of the real reductive symmetric space ZG(p4)/Gp̄.

By taking suitable invariant neighbourhoods of the orbits G · p̄1, . . . , G · p̄m in GC/HC we obtain an
invariant covering of GC/HC consisting of saturated sets whose G-orbit structure is modelled on the isotropy
representation of the symmetric spaces ZG(p4

1)/Gp̄1 , . . . , ZG(p4
m)/Gp̄m , respectively.

Our main addition to Matsuki’s results is the explicit determination of the set S. The fact that ev-
ery Cartan subset admits a base point in S is not a priori obvious, but depends on the combinatorics of
the restricted root system of a semisimple symmetric space. Knowing the set S is a first step towards a
parametrization of all G-orbits in GC/HC. The results of this paper have been used extensively in [6], [7]
and [8] to compute the Cauchy-Riemann structure of G-orbits in GC/HC. This was a motivation to write
them up.

The paper is organized as follows. In Section 1, we fix the notation and recall some general facts about
symmetric spaces. In Section 2, we introduce a set S of distinguished points in GC and we analyze their
G-orbits. In Section 3, we revisit Cartan subsets introduced by Matsuki as cross sections of closed G×HC-
orbits in GC. We show that every Cartan subset admits a base point p in the set S and determines a cross
section of closed Gp̄-orbits in the slice representation at p̄ ∈ GC/HC. In Section 4, we construct a finite
covering of GC/HC consisting of G-invariant sets, whose orbit structure is modelled on the orbit structure of
the isotropy representation of the real reductive symmetric space ZG(p4)/Gp̄, for p ∈ S. Finally, in Section
5 we discuss some applications.

1. Notation and preliminaries.

Throughout the paper, groups are denoted by capital roman letters and their Lie algebras by the correspond-
ing gothic letters. For example, g and gC denote the Lie algebras of G and GC, respectively. An involution
of a group, the derived involution of its Lie algebra and their holomorphic extensions to the corresponding
complex objects are all denoted by the same symbol. If X is a set and φ is a selfmap of X, the fixed point
set of φ in X is denoted by Xφ. If a group G acts on a manifold X and x ∈ X, the isotropy subgroup of x
in G is denoted by Gx and the orbit of x in X by G · x ∼= G/Gx. If L is a subgroup of a group G and x ∈ G,
the centralizer of x in L is denoted by ZL(x). Similarly, if l is a subalgebra of g and X ∈ g, the centralizer
of X in l is denoted by Zl(X).

A semisimple (resp. reductive) symmetric space is a coset space G/L, where G is a real semisimple (resp.
reductive) Lie group and L ⊂ G is an open subgroup of the fixed point subgroup of an involutive automor-
phism of G. Let GC be a connected complex semisimple Lie group GC endowed with a conjugation σ (not a
Cartan involution) and a holomorphic involution τ commuting with σ. Then there exists a Cartan involution
Θ of GC such that the following commutativity relations hold

στ = τσ, Θσ = σΘ, Θτ = τΘ. (2)

Denote by U = GΘ
C and G = GσC the compact and the non-compact real forms of GC corresponding to Θ

and σ respectively, and by HC = GτC the complex fixed point subgroup of τ .
By (2), the restriction θ := Θ|G defines a Cartan involution of G and K = G∩U is a maximal compact

subgroup of G. Similarly, the restriction τ |G defines an involution of G commuting with θ, whose fixed point
subgroup is given by H = G ∩HC. The coset space G/H is a semisimple symmetric space and the complex
manifold GC/HC is its complexification. The commutativity relations (2) ensure that the decompositions
induced by Θ, σ and τ on gC and on g are all compatible with each other. For example, if g = k⊕ p is the
Cartan decomposition of g and g = h⊕ q is the one induced by τ , then both h and q are θ-stable and g has
a combined decomposition

g = h⊕ q = k⊕ p = hk ⊕ hp ⊕ qk ⊕ qp,
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where subscripts stand for intersections. The product involution σc := στ defines a conjugation of GC. The
corresponding real form Gc has Lie algebra gc = h + iq. Since σcτ = τσc, the restriction τ |Gc defines an
involution of Gc with fixed point subgroup Gc ∩ HC = H, and the restriction θc = Θ|Gc defines a Cartan
involution of Gc commuting with τ . In this way, the G-orbit and Gc-orbit of the base point ē ∈ GC/HC

define transversal embeddings

G/H ↪→ GC/HC ←↩ Gc/H

of c-dual symmetric spaces ([9], Sect.1.2.1), as totally real submanifolds of maximal dimension. If τ = θ is
the Cartan involution of G, then G/K is a Riemannian symmetric space, the real form Gc is the compact
real form U and the c-dual symmetric space is the compact dual symmetric space U/K.

If (g = h ⊕ q, τ) is a symmetric algebra, a Cartan subspace of q is by definition a maximal abelian
subspace c ⊂ q consisting of semisimple elements. The rank of a symmetric space G/H is the dimension of
an arbitrary Cartan subspace in q, and its real rank is the dimension of a maximal abelian subspace in qp.
Let a be a maximal abelian subspace of qp. Then the adjoint action of a on g determines a decomposition
of g as

g = Zg(a)⊕
⊕
α∈∆a

gα,

where ∆a = {α ∈ a∗ \{0} | gα 6= {0}} is the restricted root system of g (cf. [10]) and gα = {X ∈ g | [H,X] =
α(H)X, ∀H ∈ a} is the α-root space. In general, a may not be a maximal abelian subspace in p, so ∆a

may not coincide with the usual restricted root system of g. Throughout the paper the image of a subset
S of GC under the canonical projection π:GC → GC/HC is denoted by S. Let p be the quotient map
p :GC/HC → (GC/HC)‖G. A subset D of GC/HC is said to be saturated if p−1(p(D)) = D.

2. A family of distinguished points in GC/HC.

In this section we introduce a finite set S of distinguished points in GC. Each point p ∈ S lies on a compact
torus in GC and the G-orbit of p̄ in GC/HC is closed (cf. [1], Sect.4). We show that the isotropy subgroups of
p̄ in G and in ZG(p4) coincide and that the orbit ZG(p4) · p̄ is a real reductive symmetric space contained in
G·p̄. We also show that the isotropy representation of ZG(p4)/Gp̄ at p̄ is equivalent to the slice representation
of Gp̄ at p̄.

Let (g = h ⊕ q, τ) be the symmetric algebra associated to G/H. Fix a maximal abelian subspace
a ⊂ qp. Then for all a in the compact torus A := exp ia one has σ(a) = τ(a) = a−1 and Θ(a) = a. For
p = eiX ∈ A, define the holomorphic involution τp := AdpτAdp−1 of GC (resp. on gC). Fix a set of simple
roots Πa = {γ1, . . . , γr} in the restricted root system ∆a, where r denotes the real rank of G/H. The
conditions

γ1(X) ≡ 0, . . . , γr(X) ≡ 0 mod π/4, X ∈ a, (3)

determine a finite set of points S = {p1, . . . , pn} in A, due to the periodicity of the exponential map.

Lemma 2.1. Let p = eiA0 ∈ exp ia. Assume that A0 satisfies conditions (3). Then the following facts hold:
(i) 2α(A0) ≡ 0 mod π/2, for all α ∈ ∆a.
(ii) The automorphism Adp8 is the identity on GC; in particular Adp4 is an involution of GC, and it commutes

with σ.
(iii) The fixed point group G+

C := ZGC
(p4) is σ-stable with real form G+ := ZG(p4).

(iv) The G+-orbit of p̄ in GC/HC is a reductive symmetric space with involution τp and symmetric algebra
g+ = g+ ∩ AdphC ⊕ g+ ∩ AdpqC; the fixed point subgroup (G+)τp = G+ ∩ AdpHC coincides with the
isotropy subgroup G+

p̄ of p̄ in G+ and m := g+ ∩ AdpqC can be identified with the tangent space to
G+ · p̄ at p̄.

(v) The isotropy subgroups of p̄ in G+ and G coincide, that is G+
p̄ = Gp̄; the slice representation at p̄ is

equivalent to the isotropy representation of the symmetric space G+/Gp̄, which is given by the adjoint
action of Gp̄ on m.

(vi) The symmetric space G+ · p̄ is embedded in G · p̄ and in GC/HC as a totally real submanifold; in
particular dimG+ · p̄ ≤ dimG/H. Moreover G+ · p̄ has the same rank and the same real rank as G/H.
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(vii) The orbit G · p̄ has locally minimal dimension: for all x̄ in a suitable G-invariant neighborhood of p̄ in
GC/HC, one has dimG · x̄ ≥ dimG · p̄.

Proof. (i) is obvious and (ii) follows from the corresponding statements at Lie algebra level proved in [6],
Lemma 2.14(i)-(ii).

(iii) follows from (ii) and the fact that for every α ∈ ∆a and Z ∈ gα, one has Adp8Z = exp adi8A0
Z =

ei8α(A0)Z. In particular, the fixed point subalgebra of Adp4 is given by

g+
C = ZgC

(p4) = ZgC
(a)⊕

⊕
α(A0)≡0

mod π/2

gα.

(iv) By [6] Lemma 2.14(iii), the involutions σ and τp commute on g+
C and on G+

C . In this way, (G+, τp) is a
real reductive symmetric pair. The corresponding symmetric algebra (g+, τp) decomposes as

g+ = g+ ∩AdphC ⊕ g+ ∩AdpqC,

where g+ ∩AdphC coincides with the isotropy subalgebra of p̄ in g+. The rest of the statement now follows.

(v) The inclusion G+
p̄ ⊂ Gp̄ = G ∩ AdpHC is obvious. Conversely, for g ∈ Gp̄, we have σ(g) = g = τp(g)

which implies (στp)
2(g) = Adp4(g) = g. Hence Gp̄ ⊂ G+

p̄ and Gp̄ = G+
p̄ , as claimed.

Denote by g−C the (−1)-eigenspace of the involution Adp4 on gC. By the results of (ii)-(iv), the tangent space
to GC/HC at p̄ admits a Gp̄-stable decomposition as

T (GC/HC)p̄ = g−C ⊕ g+ ∩AdpqC ⊕ i(g+ ∩AdpqC), (4)

where

g−C ⊕ g+ ∩AdpqC

can be identified with the tangent space T (G · p̄)p̄ to the G-orbit of p̄ at p̄ and i(g+ ∩ AdpqC) with a
complementary subspace. The action of Gp̄ on each component of (4) is the adjoint action. It corresponds to
the isotropy representation at p̄ of the symmetric space G+ · p̄ on the component g+ ∩AdpqC

∼= T (G+ · p̄)p̄
and to the slice representation at p̄ on i(g+ ∩AdpqC).

(vi) The quotient G+/(G+)τp embeds as a totally real submanifold of maximal dimension in its complexi-
fication G+

C/(G
+
C )τp , which in turn is a complex submanifold of GC/(GC)τp . It follows that G+/(G+)τp is

a totally real submanifold of GC/(GC)τp ∼= GC/HC. Since G/H is a totally real submanifold of maximal
dimension of GC/HC, one has dimG+ · p ≤ dimG/H.
Note that the same argument used in (iv) shows that also g+ ∩ AdpqC = g ∩ AdpqC holds. Let t ⊕ a be a
maximally split Cartan subspace of q. Since t⊕ a is contained in g+ ∩AdpqC, the symmetric space G+/G+

p̄

has the same rank and the same real rank as G/H.

(vii) Remark 3.16 in [6] shows that G-orbits of lowest dimension intersect A and that in some open neigh-
bourhood U of p̄ in A, the dimension of the isotropy subalgebra can only increase.

Minimal orbits. The set S defined by conditions (3) contains a subset consisting of points lying on
symmetric orbits in GC/HC. They occur in the following special case of conditions (3)

γ1(X) ≡ 0, . . . , γr(X) ≡ 0 mod π/2, X ∈ a. (5)

The next lemma collects their properties.

Lemma 2.2. Let p = eiA0 ∈ exp ia. Assume that p satisfies conditions (5). Then the following facts hold:
(i) α(A0) ≡ 0 mod π/2, ∀α ∈ ∆a;

(ii) The automorphism Adp4 is the identity on GC and the involutions σ and τp commute on GC. In this
case ZGC

(p4) = GC.
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(iii) The G-orbit of p̄ in GC/HC is a semisimple symmetric space with involution τp, and symmetric algebra
g = g ∩ AdphC ⊕ g ∩ AdpqC; the fixed point subgroup (G)τp = G ∩ AdpHC = Gp̄ coincides with the
isotropy subgroup of p̄ in G and g ∩AdpqC can be identified with the tangent space to G · p̄ at p̄.

(iv) The symmetric space G · p̄ is embedded in GC/HC as a totally real submanifold of the same dimension
as G/H and has the same rank and the same real rank as G/H.

(v) The orbit G · p̄ has minimal dimension among all G-orbits in GC/HC.
(vi) The slice representation at p̄ is equivalent to the isotropy representation of the symmetric space G · p̄.

Proof. We only prove (v). For the rest we refer to Lemma 2.1 and to [6], Lemma 2.11 and Corollary 2.12.
As we already remarked, the isotropy subgroup at p̄ is given by Gp = G∩AdpHC. It follows that Gp̄ has the
largest possible dimension dimGp̄ = dimH if and only if the decomposition gC = AdphC ⊕ AdpqC of gC

under the involution τp is σ-stable. By Remark 3.5 in [6], this happens precisely when the point p̄ satisfies
conditions (5). In that case

dimRG/Gp̄ = dimRG/H = dimCGC/HC.

Remark 2.3. Let G/L be an orbit of minimum dimension dimRG/L = dimCGC/HC.
(i) The orbit G/L intersects A (this fact follows from Remarks 3.5(i) and 3.16(i) in [6]). Let p ∈ A∩G/L.

Then G/Gp̄ ∼= G/L is a symmetric space with symmetry τp.
(ii) If H = K and G/K is a Riemannian symmetric space, then G/L is an ε-symmetric space (cf. [10]).
(iii) If G/L is a compactly causal symmetric space, then G is a group of Hermitian type (cf. [9], Thm.1.3.8).

Remark 2.4. Let p = eA0 ∈ exp ia be a point satisfying conditions (3), but not conditions (5).
(i) The orbit G · p̄ is a homogeneous Cauchy-Riemann submanifold of GC/HC. The complex tangent space

to G · p̄, that is the subspace of the tangent space which is invariant under the complex structure, is
given by TC(G · p̄)p̄ = g−C .

(ii) The G-orbits of points satisfying conditions (3) and not conditions (5) may have different dimensions.
(iii) Once more set G+ = ZG(p4). As we saw in Lemma 2.2 (vii), there exists a neighborhood U of p̄ in

GC/HC consisting of points x̄ whose G-orbits in GC/HC have dimension greater or equal than dimG · p̄.
However, p is the unique point in U for which the symmetric space G+/Gp̄ satisfies

dimG+/Gp̄ = codim G · p̄,

i.e. the isotropy representation of G+/Gp̄ at p̄ is equivalent to the slice representation at p̄. By Lemma
2.2(iv)-(vi), one also has the following inequalities

rank(G/H) < dimG+ · p < dimG/H < dimG · p̄.

(iii) If H = K and G/K is a Riemannian symmetric space, then G+ · p̄ is an ε-symmetric space.

3. Cartan subsets.

Cartan subsets were introduced in [1] as cross-sections for the closed G × HC-orbits in GC. Their images
in GC/HC under the canonical projection GC → GC/HC determine cross sections for the closed G-orbits in
GC/HC. In this section, working out Matsuki’s definition in our case, we give a description of Cartan subsets
in terms of orthogonal systems of restricted root vectors in the real symmetric algebra (g = h ⊕ q, τ). By
means of such description we prove the key result of the paper, namely that every Cartan subset admits a
base point p satisfying conditions (3).

A description of Cartan subsets.

Definition 3.1. ([1], Sect.4) A Cartan subspace in g is an abelian subspace consisting of semisimple elements.
A fundamental Cartan subset in (GC, σ, τ) is a set F = exp i(t⊕a) = exp it exp ia, where t⊕a is a maximally
split θ-stable Cartan subspace in q. A standard Cartan subset in (GC, σ, τ) is a set C = p · exp ic, where
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p ∈ A = exp ia is a base point, and c = ck⊕cp is a θ-stable Cartan subspace in g∩AdpqC with dim c = dim t⊕a,
and inclusions cp ⊂ a and t ⊂ ck.

Two standard Cartan subsets C = exp ick exp icp · p and C ′ = exp ic′k exp ic′p · p′ are said to be conjugate if
there exists an element [(k, h)] ∈ NK×HC∩U (F )/ZK×HC∩U (F ) such that

exp ic′k · p′ = k(exp ick · p)h−1,

where NK×HC∩U (F ) := {(k, h) ∈ K ×HC ∩ U | k(exp ia)h−1 = exp ia} and ZK×HC∩U (F ) := {(k, h) ∈
K ×HC ∩ U | kah−1 = a, ∀a ∈ exp ia}.
By [1], Thm.3, every closed G × HC-orbit in GC intersects an element in a fixed set of representatives of
the conjugacy classes of standard Cartan subsets. Such a Cartan subset is unique if the orbit has maximal
dimension.

Let (g = h ⊕ q, τ) be a symmetric algebra, let a ⊂ qp be a maximal abelian subspace and let ∆a be the
corresponding restricted root system of g. Since the involution τθ is the identity on a, every restricted root
space gα is τθ-stable. Consequently, it admits a basis of root vectors Xα satisfying either τθXα = Xα or
τθXα = −Xα.

Definition 3.2. ([11], p.344) An orthogonal system of restricted root vectors Q = {Xα1 , . . . , Xαm} in (g, τ)
is a set of restricted root vectors Xαj ∈ gαj , for αj ∈ ∆a, satisfying the conditions

α1(X) = . . . = αm(X) = 0, ∀ X ∈ a, [Xαj , Xαk ] = [Xαj , θXαk ] = 0, τθXαj = ±Xαj ,

for j, k = 1, . . . ,m.

Proposition 3.3. Every standard Cartan subset C in (GC, σ, τ) can be described by an orthogonal system
of restricted root vectors Q = {Xα1 , . . . , Xαm} in (g, τ) as follows:

C = exp itQ ·AQ,

where
tQ = t⊕R(Xα1

+ θXα1
)⊕ . . .⊕R(Xαm + θXαm),

AQ =

{
eiH ∈ exp iaQ |

{
e2αj(H) = −1, if τθXαj = Xαj

e2αj(H) = 1, if τθXαj = −Xαj

}
= exp iaQ · a,

aQ = {H ∈ a | αj(H) = 0, j = 1, . . . ,m}, a = eiA0 ,

{
αj(A0) ≡ π/2 mod π, if τθXαj = Xαj

αj(A0) ≡ 0 mod π, if τθXαj = −Xαj .

Proof. Let gC ⊕ igC = {Z = X + iY | X,Y ∈ gC} be the complexification of gC and let the fundamental
Cartan subspace i(t⊕a) act on gC⊕ igC by [H,X+ iY] := [H,X]+ i[H,Y], with H ∈ i(t⊕a) and X,Y ∈ gC.
For λ ∈ i(a⊕ t)∗ \ {0}, denote by (gC)λ the λ-weight space

(gC)λ = {Zλ ∈ gC ⊕ igC | [H,Zλ] = λ(H)Zλ, H ∈ i(t⊕ a)}.

In [1], Sect.4.4, p.83, standard Cartan subsets in (GC, σ, τ) are described in terms of orthogonal systems
Q = {Zλ1

, . . . ,Zλm} of weight vectors Zλi ∈ (gC)λi , with λi|t ≡ 0 for i = 1, . . . ,m, satisfying the conditions

ΘZλi = −Zλi , σZλi = −Zλi , [Zλi ,Zλj ] = [Zλi , σZλj ] = 0, στZλi = µiZλi , µi ∈ U(1),

for all i, j = 1, . . . ,m. A standard Cartan subset is obtained from Q as

CQ = exp tQAQ,
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where

tQ = it⊕R(Zλ1
− σZλ1

)⊕ . . .⊕R(Zλm − σZλm), AQ = {t ∈ A | t2λj = µj , j = 1, . . . ,m}.

Observe that if λ|it ≡ 0, then the weight space (gC)λ is both Θ-stable and στ -stable. We are going to show
that CQ can also be described by an orthogonal system of restricted root vectors Q in (g, τ) (see Definition
3.2). Write Zλ = Xλ + iYλ ∈ gC ⊕ igC, for Xλ,Yλ ∈ gC. For H ∈ ia, one has that

Zλ ∈ (gC)λ ⇔
{

[H,Xλ] = −ImλYλ

[H,Yλ] = ImλXλ;

ΘZλ = −Zλ ⇔ Xλ,Yλ ∈ (gC)−Θ = iu;

σZλ = −Zλ ⇔
{
σXλ = −Xλ

σYλ = Yλ
⇔
{

Xλ ∈ ig
Yλ ∈ g.

In particular, under the above conditions,

Xλ ∈ ik, Yλ ∈ p, and Zλ − σZλ = 2Xλ ∈ ik.

Since the weight spaces (gC)λ are στ -stable and (στ)2 = Id, from στZλ = µZλ one obtains µ = ±1 (for
example in the Riemannian case, where στ = Θ, one has µ = −1, for all j). One has

Xλ ∈ i(q ∩ k), for µ = 1, Xλ ∈ i(h ∩ k), for µ = −1.

• Claim. One has i2Xλ = Xα + θXα, for some restricted root vector Xα ∈ gα, with α := Im(λ) ∈ ∆a.
Moreover

Xα + θXα ∈ k ∩ q, if µ = 1, Xα + θXα ∈ k ∩ h, if µ = −1.

Proof of the Claim: The vector iXλ + Yλ ∈ g and for iH ∈ a, one has

[iH, iXλ + Yλ] = Imλ(iXλ + Yλ).

This means that Xα := iXλ + Yλ is a root vector in gα, for the restricted root α := Imλ ∈ ∆a. Note that
λ|t ≡ 0 implies α|t ≡ 0. Since Yλ ∈ p, one has

i2Xλ = Xα + θXα,

as claimed. Moreover, one has

στXλ = Xλ ⇔ στ(Xα + θXα) = −(Xα + θXα)⇔ τθXα = −Xα ⇔ Xα + θXα ∈ qk, for µ = 1;

στXλ = −Xλ ⇔ sigmaτ(Xα + θXα) = (Xα + θXα)⇔ τθXα = Xα ⇔ Xα + θXα ∈ hk, for µ = −1.

This concludes the proof of the claim.

It follows that tQ = it⊕Ri(Xα1 + θXα1) + . . .+ Ri(Xαm + θXαm). One can check that AQ can be written
as AQ = exp iaQ · a, where aQ = {H ∈ a | αj(H) = 0, j = 1, . . . ,m}, and a = eiA0 ∈ exp ia is a point
satisfying the conditions αj(A0) ≡ 0 mod π, if µj = 1

αj(A0) ≡ π/2 mod π, if µj = −1
j = 1, . . . ,m.

(6)

This concludes the proof of the Proposition.

Base points of Cartan subsets. In this subsection we prove that a Cartan subset CQ associated to a given
orthogonal system of restricted root vectors Q = {Xα1

, . . . , Xαm} in (g, τ) admits a base point p ∈ exp iaQ ·a
satisfying conditions (3). Observe that, as long as dim aQ 6= 0, conditions (6) generally do not determine
completely a base point of a Cartan subset CQ, because the roots α1, . . . , αm take the same value at every
point in exp iaQ ·a. On the other hand, if the cardinality of Q is equal to the real rank of g, then dim aQ = 0
and conditions (6) do uniquely determine the base point p. This shows that the statement of Lemma 3.4 is
not a priori obvious but depends on the features of the restricted root system of (g, τ).
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Lemma 3.4. Let CQ = exp ic · p be a standard Cartan subset associated to an orthogonal system Q =
{Xα1

, . . . , Xαm}. Then there exists a base point p = eiH0 ∈ exp iaQ · a for CQ satisfying conditionsαj(H0) ≡ 0 mod π, if µj = 1
αj(H0) ≡ π/2 mod π, if µj = −1
j = 1, . . . ,m.

and 2α(H0) ≡ 0 mod π/2, ∀α ∈ ∆a. (7)

Proof. As we remarked, an arbitrary point in exp iaQ · a satisfies conditions (6). We need to show that
there exists p = eiH0 ∈ exp iaQ · a, which satisfies the larger set of conditions (7). Without loss of generality,
we may assume ∆a irreducible. If Q = {Xα1 , . . . , Xαm} is a system of orthogonal restricted root vectors
in (g, τ), then {α1, . . . , αm} is a set of orthogonal restricted roots (cf. [11], p.344). In [6], Section 2.3, all
sets of orthogonal roots in all irreducible restricted root systems were listed and the Lemma was proved in
the Riemannian case, i.e. for orthogonal systems Q satisfying τθXαj = Xαj , for all j = 1, . . . ,m. The
same arguments prove the lemma for orthogonal systems Q = {Xα1

, . . . , Xαm} satisfying τθXαj = −Xαj ,
for all j = 1, . . . ,m. Here we are left to prove the lemma in the cases in which mixed conditions hold:
τθXαj = −Xαj , for some j, and τθXαj = Xαj , for some other j.

Every root in ∆a can be written as a linear combination of basic functionals e1, . . . , er, where r is the
real rank of G/H (see [12]), and conditions (6) translate into a system of linear equations in the values
ei1(H0), . . . , eim(H0) for some {i1, . . . , im} ⊂ {1, . . . , r}. The point is to show that there exists H0 ∈ a for
which the values e1(H0), . . . , er(H0) are compatible with conditions (7). The equations in ei1(H0), . . . , eim(H0)
arising from (6) are of the form

ek(H0)± eh(H0) = s
π

2
, or ei(H0) = t

π

2
, t, s ∈ Z,

where different equations involve ei’s with different indices, except for pairs{
ek(H0) + eh(H0) = aπ2
ek(H0)− eh(H0) = bπ2

, a, b ∈ Z.

If a, b are both odd or both even, then the values ek(H0), eh(H0) are integer multiples of π
2 and of π,

respectively. If a and b have different parity (this actually happens in the pseudo-Riemannian case), then
the values ek(H0), eh(H0) are odd multiples of π

4 .

A tedious but straightforward check of the various cases shows that every Cartan subset indeed admits a
base point p = eiH0 satisfying conditions (7). As an example, consider the Cartan subset associated to an
orthogonal system Q = {Xα1

, . . . , Xα8
}, where {α1, . . . , α8} is a maximal set of strongly orthogonal roots in

E8 (see [6], page 631). In this case, conditions (6) become
λ1(H0) = n1

π
2

. . .
λ8(H0) = n8

π
2

, n1, . . . , n8 ∈ Z.

They uniquely determine the values {ei(H0)}i=1,...,8 and those of the simple roots {γi(H0)}i=1,...,8 at H0,
which turn out to be equal to

(−n3 + n2 − n4 + n1)
π

4
, (n2 + n4 − n6 + n5)

π

4
, (−n1 + n4 − n7 − n5)

π

4
, (n1 − n2 + n3 − n4)

π

4
,

(−n1 + n2 + n6 − n7)
π

4
, (n1 − n2 + n4 − n3)

π

4
, (−n1 + n5 + n7 − n4)

π

4
, (−n6 − n7 + n8 − n5)

π

4
,

respectively. Now it is clear that conditions (7) hold.

Remark 3.5. Let p = eiH0 ∈ exp ia be a point satisfying conditions (3). Set g+ = Zg(p4) and let
(g+ = gp ⊕ m, τp) be the associated symmetric algebra (g+ = g under conditions (5)). By Lemma 2.1, the
following equality holds

m = g+ ∩AdpqC = g ∩AdpqC

8



and the fundamental Cartan subspace t ⊕ a is contained in m. By the arguments of Proposition 3.3, more
“compact” θ-stable standard Cartan subspaces c ⊂ m arise from orthogonal systems of restricted root
vectors Q = {Xα1

, . . . , Xαm} satisfying αi(H0) ≡ 0 mod π, for those i’s for which τXαi = −θXαi , and
αi(H0) ≡ π/2 mod π, for those i’s for which τXαi = θXαi . Under such conditions in fact Xαi + θXαi lies in
g+ and τp(Xαi) = −θXαi , for i = 1, . . . ,m.

Now recall from Lemma 2.1 that im can be identified with an AdGp̄ -invariant complementary subspace
of T (G · p̄)p̄ in T (GC/HC)p̄. In this way Cartan subsets C = exp ic · p based at a point p are in 1-1
correspondence with cross sections for the closed Gp̄-orbits in the slice representation (AdGp̄ , im).

4. Orbit structure of GC/HC

Let S = {p1, . . . , pn} be the finite set of points in A = exp ia defined by conditions (3). In this section we
show that suitable G-invariant neighborhoods of the orbits

G · p̄1, . . . , G · p̄m

in GC/HC determine the G-orbit structure of GC/HC. Let p be an arbitrary point in S. By Lemma 2.1,
the orbit of p̄ ∈ GC/HC under the group G+ = ZG(p4) is a symmetric space with involution τp. Let
(g+ = gp̄ ⊕m, τp) be the corresponding symmetric algebra, where m = g+ ∩ AdpqC. By Lemma 2.1(vi), the
adjoint action of Gp̄ on m is equivalent to the isotropy representation of the symmetric space G+/Gp̄ and
to the slice representation at p̄ in GC/HC. Define the twisted bundle G×Gp̄ m as the orbit space of G× m
under the Gp̄-action given by γ · (g,X) := (gγ−1, AdγX), for γ ∈ Gp̄. The group G acts on G ×Gp̄ m by
g′ · [g,X] := [g′g,X], for g′ ∈ G. Observe that every G-orbit in G ×Gp̄ m intersects m. Moreover if X ∈ m,
then G ·X is closed in G×Gp̄ m if and only if Gp̄ ·X is closed in m. Hence there is an identification

(G×Gp̄ m)‖G ∼= m‖Gp̄,

where ‖ denotes the quotient with respect to closed orbits. Define

ω = {X ∈ m | |Reλ| < π/8, ∀λ ∈ spec(adX)},

where adX : gC → gC is the adjoint map adX(Y ) = [X,Y ] and spec(adX) is its spectrum. Define φp:G×Gp̄
m→ GC/HC by [g,X] 7→ g exp iX · pHC/HC, where exp is the exponential map gC → GC. Denote by

Dp := φp(G×Gp̄ m) (8)

the image of Dp in GC/HC under the map φp.

Lemma 4.1. The map φp is G-equivariant, and its restriction to G ×Gp̄ ω is injective. The set Dp is a
G-invariant saturated set in GC/HC with non-empty interior. The G-orbit structure of Dp is modelled on
the isotropy representation of the symmetric space G+/Gp̄.

Proof. The map φp is clearly G-equivariant. Given two elements [g1, X], [g2, Y ] ∈ G ×Gp̄ ω, one has that
φ([g1, X]) = φ([g2, Y ]) if and only if

g exp(iX) = exp(iY )hp, g = g−1
2 g1 ∈ G, hp ∈ AdpHC. (9)

By applying the map ητp(z) = zτp(z)
−1 to both terms of the above equality, one obtains

g exp(i2X) = exp(i2Y )τp(g).

Write g = exp(i2Y )τp(g) exp(i2X)−1. From σ(g) = g one gets στp(g) exp(i4X) = exp(i2Y )τp(g) and

Adp4τp(g) exp(i4X) = exp(i4Y )τp(g),
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since στp = Adp4τpσ (cf. [6], Lemma 2.14). By applying στp to both terms of the above equality and the
fact that στpAdp4 = Adp4στp (by Lemma 2.1(ii)), one gets

Adp4(g) exp(−i4X) = exp(−i4Y )g ⇔ g = exp(i4Y )−1Adp4(g) exp(i4X).

From σ(g) = g one gets
exp(i8Y ) = exp(iAdψ(g)8X), ψ(g) = Adp4(g).

Since X,Y ∈ ω, both i8Y and Adψ(g)8X are contained in the injectivity set of the exponential map exp: gC →
GC. This implies Y = Adψ(g)X = (p4gp−1)Y (p4g−1p−1) and

Y = AdgX,

since Adp4 = Id on m. The above relation plugged in (9) yields g = hp ∈ G ∩AdpHC = Gp̄ and g2 = g1h
−1
p .

In particular [g1, X] = [g2, Y ]. This concludes the proof of the first statement.
It follows that Dp is a G-invariant set in GC/HC, with non-empty interior and orbit structure modelled

on that of G×Gp̄ m. In particular Dp is saturated.

Proposition 4.2. Let S = {p1, . . . , pn} be the finite set of points in A = exp ia defined by conditions (3).
Then there exist G-invariant saturated neighbourhoods D1, . . . , Dm of the orbits G · p̄1, . . . , G · p̄m which
cover GC/HC. The orbit structure of each Di is modelled on the isotropy representation of the real reductive
symmetric space ZG(p4

i )/Gp̄i .

Proof. For pi ∈ S, set G+
i := ZG(p4

i ) and let (g+
i = gp̄i ⊕ mi, τpi) denote the associated symmetric algebra

(cf. Lemma 2.1). As G-invariant saturated neighborhoods of the orbits G · p̄1, . . . , G · p̄m in GC/HC take
the sets D1, . . . , Dm defined in (8) (see Lemma 4.1). It remains to show that they cover GC/HC. Since they
are saturated, it is sufficient to prove that they intersect all closed G-orbits in GC/HC. In view of Matsuki’s
Thm.3 in [1], it is sufficient to show that every standard Cartan subset C = exp ic · p can be embedded in
one of the sets D1, . . . , Dm. By Lemma 3.4, the base point of C can be assumed to satisfy conditions (3),
and to coincide with a point in S, say pi. By Remark 3.5, one has that c is a Cartan subspace in mi, and
therefore C embeds in Di. This concludes the proof of the proposition.

Remark 4.3. For i = 1, . . . ,m, define Si := exp imi · pi. Then the set Si ⊂ GC/HC is transversal to the
orbit G · p̄i at p̄i. More precisely, Si is contained in (G+

i )c · p̄i, the orbit of p̄i under the c-dual group (G+
i )c.

Such orbit is in fact the c-dual symmetric space of G+
i /Gp̄i (see Sect.2). One should compare the sets Si

with the so-called transversals defined in Section 3 of [3] and the above Proposition 4.2 with Theorem 5.6
therein.

Remark 4.4. Given p1 = eiH1 , p2 = eiH2 in A = exp ia, by [1], Thm.3, the points p̄1, p̄2 in GC/HC

lie on the same G-orbit if and only if p1, p2 lie on the same orbit under the Weyl group W (A) ∼=
NK×HC∩U (A)/ZK×HC∩U (A), whereNK×HC∩U (A) = {(k, h) ∈ K×HC∩U | kAl−1 = A} and ZK×HC∩U (A) =
{(k, h) ∈ K ×HC ∩ U | kal−1 = a, ∀a ∈ A}.

Generalizing the arguments of [13], Prop.6, one can show that two points x = eiH1 , y = eiH2 ∈ A, lie
on the same W (A)-orbit if and only if there exists n ∈ NK(a) and γ ∈ A, with γ4 = e, such that

y = Adnx · γ. (10)

At Lie algebra level, the action (10) is given by

H2 = AdnH1 +H, n ∈ NK(a), γ = exp iH.

In other words, W (A) is isomorphic to the semidirect product WK(a) ·Γ, where WK(a) = NK(a)/ZK(a) and
Γ is the lattice in a defined by

Γ =
⊕
α∈∆a

Z
π

2

2Hα

〈Hα, Hα〉
.
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Here 〈·, ·〉 denotes the Killing form and for every root α, the vector Hα ∈ a is defined by α(X) = 〈X,Hα〉,
for all X ∈ a.
By the above discussion, in Proposition 4.2 one may take the set S = {p1, . . . , pn} in a fundamental domain
of W (A) in A.

5. Applications.

(1) Parametrization of all G-orbits in GC/HC. The result of Proposition 4.1 reduces the problem of
parametrizing all G-orbits in GC/HC to the study of the slice representation at the finite set of points
p̄1, . . . , p̄m, for pi ∈ S, satisfying conditions (3) (see also Remark 4.4). Any G-orbit is contained in a G-
invariant set Dp, for some point p ∈ S. Assume for simplicity that p satisfies conditions (5) and G · p̄
is a symmetric space with symmetric algebra g = gp̄ ⊕ m. Every G-orbit in Dp admits a reference point
x̄ = exp iX · p, for some X ∈ m, and it is closed if and only if the Gp̄-orbit of X in m is closed. This happens
if and only if X is semisimple in m. Let X = Xs +Xn be the Jordan decomposition of X in m. If Xn 6= 0,
one has that G · exp i(Xs +Xn) · p is a non-closed orbit containing the closed orbit G · exp i(Xs) · p in its
closure. For example, the non-closed orbits containing G · p̄ in their closure are in one-to-one correspondence
with the nilpotent Gp̄-orbits in m. It is well known that there are finitely many of them [14]. Finally observe
that the decomposition of x = exp iX · p = xsxn ∈ GC, where xs = exp iXs · p and xn = exp iXn, coincides
with the Jordan decomposition of x defined by Matsuki in [1], Prop.2(ii), p.66. That was obtained by lifting
to GC the Jordan decomposition of the image of x in the real algebraic group AutR(gC) via the map

η:GC → AutR(gC), x 7→ σ ◦AdxτAdx−1 .

The result of Proposition 4.2 was used for example in [8] to completely determine the orbit structure of
GC/KC, when G/K is an irreducible Riemannian symmetric space of rank-one.

(2) Cauchy-Riemann structure of principal G-orbits in GC/HC. In [6] the Cauchy-Riemann structure of
principal G-orbits in the complexification of a Riemannian symmetric space GC/KC was investigated. A
crucial ingredient in the calculations was the fact that every Cartan subset admits a base point in S. Because
of Lemma 3.4, the results of [6] hold in the more general setting of the complexification of an arbitrary
semisimple symmetric space G/H.

(3) Properness of G-action. There exists a G-invariant region in GC/HC where G acts properly if and
only if the slice representation space at some point p̄, with p ∈ S = {p1, . . . , pn}, contains a region with
proper Gp̄-action. As we remarked in Lemma 2.1, the slice representation at p̄ is equivalent to the isotropy
representation of the symmetric space ZG(p4)/Gp̄. Hence, a sufficient condition for proper G-action in some
region in GC/HC is the existence of a point p ∈ S such that the orbit G/Gp̄ is either a Riemannian or a
compactly causal symmetric space, or such that ZG(p4)/Gp̄ is a compactly causal symmetric space.

To see an example of the latter case, consider a non-compact irreducible Hermitian symmetric space
G/K, of non-tube type. In this case the restricted roots system ∆a is of type BCr. Denote by Πa =
{γ1, . . . , γr} a set of simple roots in ∆a, by λ =

∑r
i=1 kiγi the highest root and by ω1, . . . , ωr ∈ a the set

of dual roots, defined by γi(ωj) = δij . Set p = ei
π
2
ωr
2 . One can easily check that the point p̄ lies on the

boundary of the crown domain Ξ ⊂ GC/HC (cf. [13]). It satisfies conditions (3), but not conditions (5),
implying that G · p̄ is a non-symmetric orbit (see for example [15], p.1338). Moreover, the Lie algebra Zg(p4)
is given by

Zg(p4) = Zg(a)⊕
⊕

α(πωr)≡0
mod 2π

gα, (11)

and is a proper subalgebra of g. Write BCr = {±ei,±2ei,±(ei ± ej), 1 ≤ i < j ≤ r}. Then ωr =
(e1 + . . . + er) and it is easy to check that the non-zero roots appearing in the decomposition (11) are
precisely {±2ei,±(ei ± ej), 1 ≤ i < j ≤ r}. There are three cases:

g = su(r,m), (r < m), Zg(p4) = u(m− r)⊕ su(r, r), gp = u(m− r)⊕ sl(r,C)⊕R;
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so∗(2r), (r odd), Zg(p4) = R⊕ so∗(2(r − 1)), gp = R⊕ sl(r − 1,H)⊕R;

e6(−14), (r = 2), Zg(p4) = R⊕ so(2, 8), gp = R⊕ so(1, 1)⊕ so(1, 7).

The slice representation at p̄ is equivalent to the isotropy representation of the symmetric space of Cayley
type given by

su(r, r)/sl(r,C)⊕R, so∗(2(r − 1))/R⊕ sl(r − 1,H)⊕R, so(2, 8)/so(1, 1)⊕ so(1, 7), (12)

respectively (cf. [9], p.89) . Write (g+ = gp ⊕ m, τp) for the symmetric algebra associated to any of the
spaces in (12). Denote by V ± the maximal proper elliptic AdGp̄ -invariant cones in m. Then the point p̄ also

lies in the boundary of the G-invariant domains W± = G exp iV ± · p in GC/KC, on which the group G acts
properly. The domains W± are generally not Stein (see [8], for the rank-1 case) and contain no G-invariant
Stein subdomains, but they are contained in a larger G-invariant Stein domain on which G-acts properly
(see [16]).
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