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Abstract. We introduce and investigate the notion of a quasi-complete group. A group G is
quasi-complete if every automorphism ¢ € Aut(G), with the property that = and 7 o ¢ are uni-
tarily equivalent for every unitary irreducible representation 7 of G, is an inner automorphism
of G. Our main result is that every connected linear real reductive Lie group is quasi-complete.
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Introduction

The study of the automorphisms group Aut(G) of a topological group G and of its
distinguished normal subgroups raises many interesting questions. In connection with
the normal subgroup of inner automorphisms, it was shown in [DG] that any group
G can be realized as the outer automorphism group of some group H, ie. G =
Aut(H)/Inn(H). In another direction, an abstract characterization of inner auto-
morphisms in terms of their extension properties was recently given in [Sc].

Other distinguished normal subgroups of Aut(G) are the automorphisms Aut(G)
preserving the conjugacy classes of G and the automorphisms Aut(G) s preserving the
equivalence classes of (continuous) unitary representations of G. These definitions
appear in [Bu] for finite groups, but carry over to more general settings. In general,
one has the inclusions Inn(G) = Aut(G)s < Aut(G), = Aut(G). On the other hand,
if G is an arbitrary compact group, one has that Aut(G), = Aut(G):. The groups all
of whose automorphisms are inner are called complete and have been extensively
studied (cf. [Sz] [Hu]).

In this paper, we consider a notion which generalizes the one of completeness. We
call quasi-complete the groups for which Aut(G); = Inn(G): if ¢ € Aut(G) is an auto-
morphism with the property that the representations = and z o ¢ are unitarily equiv-
alent for every unitary representation n of G, then ¢ is an inner automorphism of G.

Our interest in quasi-complete groups arose in connection with C*-algebras.
Given a C*-algebra ./ one can consider the crossed product # of ./ by the dual
of a compact group G (see [DR]) and study extensions of automorphisms or anti-
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automorphisms from .o/ to 4. Extensions commuting with the action of G on 4 may
not exist. If the group G is quasi-complete one can give necessary and sufficient con-
ditions for such extensions to exist. For more details we refer to [CD] or to [BDLR].

Like completeness, the property of being quasi-complete makes sense also for
non-compact, locally compact groups. As one can easily deduce from [Pel] [Pe2],
interesting examples of quasi-complete non-complete groups are provided by the non-
commutative free groups IF; over a finite number of generators. Of course, complete
groups such as Aut(IF,), Aut(Aut(IBs)), Aut(IB,) (n > 4), where B, denotes the braid
group over »n strands, are quasi-complete (see [DF] [DG2]). However direct products
of complete groups need not be complete, while direct products of finitely many
quasi-complete groups are quasi-complete. In view of the above remarks, our inves-
tigation goes beyond the compact case and our main result is the following theorem.

Theorem. Let G be a connected linear real reductive Lie group. Let ¢ € Aut(G) be an
automorphism with the property that the representations n and mo ¢ are unitarily
equivalent, for every unitary representation n of G. Then ¢ is an inner automorphism of
G. In short, G is quasi-complete.

This theorem covers locally compact groups like SL(n, R), SO¢(m, n), Sp(m, n), etc.
In the course of our investigation we recover the well-known result that an arbitrary
compact connected group is quasi-complete. See [Mc] [Wa] [Ha] for further motiva-
tions and discussions on the compact case. More generally, we show that the class of
quasi-complete compact groups is stable under taking projective limits, and that an
arbitrary direct product of compact groups is quasi-complete if and only if every
factor is (cf. Sect. 2).

In general, as soon as we relax the connectedness assumption quasi-completeness
may fail. An example of a finite group which is not quasi-complete was given by
G. C. Wall (see [Hu]). We show that such an example is not isolated but fits into a
more general pattern.

From the point of view of abstract DR-duality theory (cf. [DR]), compact con-
nected groups play a distinguished role because an isomorphism of their fusion rings
already implies an isomorphism of the underlying groups. In view of possible exten-
sions of duality theory to the non-compact setting our results should supply a large
class of examples for which the description of the groups by their duals is somehow
“redundancy-free”” and thus more accessible.

The paper is organized as follows. In section 1, we give the basic definitions. In
section 2, we deal with projective limits and direct products of quasi-complete com-
pact groups. In sections 3-5, we deal with connected linear real reductive groups.
In section 3, we reduce to the semisimple case. In section 4, we show that a connected
linear real reductive group satisfying the equal-rank condition is quasi-complete. In
section 5, using the results about equal-rank groups and parabolic induction, we
prove that a connected linear real reductive Lie group is quasi-complete. In section 6
we consider finite groups. We construct a family of finite groups which are not quasi-
complete. Wall’s counterexample fits into this pattern.
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We thank the referee for suggesting the proof of Lemma 3.1 in the present form.

1 Preliminaries

Throughout the paper we denote a Lie group by a roman letter and its Lie algebra by
the corresponding gothic letter: if G, H are groups, g, are the corresponding Lie
algebras. We denote by g€ the complexification of a Lie algebra g. We say that a
group G is a real form of a complex group G if there exists a conjugation x of G
whose fixed point set is G. We write G° for the connected component of the identity
of a group G.

We denote by Aut(G) the group of (continuous) automorphisms of G and by
Inn(G) the normal subgroup of the inner automorphisms. For x € G, we denote by
Ad, the inner automorphism ¢(g) = xgx~!, g€ G. In general, we denote by the
same symbol an automorphism of a Lie group, the derived automorphism of its Lie
algebra and its extension to the complexified Lie algebra. Since we mainly deal
with linear groups, the corresponding actions actually coincide. Let Out(G) =
Aut(G)/Inn(G) be the quotient group. We say that ¢ € Out(G), meaning that the
image of ¢ in Out(G) is different from the identity.

We denote by G the set of equivalence classes of irreducible unitary representations
of G, i.e. the homomorphisms 7 of G into the unitary linear operators of a Hilbert
space V'™, such that the resulting map of G x V'™ into V'™ is continuous (cf. [Knl],
Ch. 1). Recall that the unitary representations of a non-compact Lie group are gen-
erally infinite dimensional. We write 7 =~ 7 meaning that the unitary representations 7
and 7 are unitarily equivalent.

Definition 1.1. A group G is quasi-complete if every automorphism ¢ € Aut(G), with
the property that the representations 7 and 7z o ¢ are unitarily equivalent for every
irreducible unitary representation 7 of G, is an inner automorphism of G. In short if
Aut(G);s = Inn(G).

The notion of quasi-complete group generalizes the one of complete group, for which
every automorphism is an inner automorphism (and the center is trivial).

Observe that if o is an automorphism of G and 7 o o is unitarily equivalent to n for
every irreducible unitary representation 7 of G, then 7 o « is unitarily equivalent to 7
for every unitary representation 7 of G. The argument goes essentially as follows. If
is not irreducible, it can be disintegrated in a direct integral, with respect to a maxi-
mal abelian subalgebra in 7(G)' (the set of all operators which commute with 7(G))

®
T J n, du,

where the representations 7, are irreducible almost everywhere with respect to u (see
[Ma], Ch. II). The fact that such a decomposition is generally not unique is irrele-
vant. Then 7o a = j@)(nﬂ o o) du. Since 7, = m, o o for almost every 4, there is a uni-
tary U, such that 7,(g9)U, = U(n, o 2)(g), for all g e G. By the Measurable Cross
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Section Theorem ([Ta], Thm. A16) the function x — U, can be chosen to be mea-
surable and U = f® U, du implements the equivalence 7 = 7o a.

2 Projective limits and direct products of quasi-complete compact groups

In this section we collect some useful results concerning projective limits and direct
products, thus showing that the class of quasi-complete groups has natural stability
properties.

We briefly recall some facts about “inverse systems’ and projective limits, taking as a
reference [Du].

Let G be a compact group and let 4 be a maximal collection of pairwise
inequivalent finite-dimensional continuous representations of G. For a € 4, define
K, :=kera and G, := G/K,. Denote by =, the canonical projection 7, : G — G,
x — xK,. Observe that G, is a Lie group, since it is isomorphic with a closed sub-
group of U(dim(x)). The set 4 is a partially ordered directed set when we define
a < pif Ky = K,; This yields a continuous suriective map fz, : Gy — Gy, fp,(xKp) :=
xK,. For every o < f5, we have the following commutative diagram

g
N G/;

G
Jﬂx A Ty = fﬁoc o 71, for all g > a.
G,

In other words, (G, Gy, 7y, f,) is an “inverse system” and G is the projective limit
G =1lim G, of the G,. The elements x € G can be identified with the infinite tuples
{xy :4_7za(x)}[xE 4 satisfying x, = fg,xp, for every f > a. The group G is connected if
and only if all the G, are connected.

Definition 2.1. A homomorphism between two inverse systems (X, X,,n,, f3,) and
(Y, Y,, 7}, gp.) is a family of maps {/,},. ,, hy : X, — Y, yielding the following com-
mutative diagram

hg
Xp — Y

M \% gpuohy = hy o fp, forall f=a.

hy
X, — 1,

Remark 2.2. Given a homomorphism between two inverse systems (X, X,,7,, fz,)
and (Y, Y,,7),gp,), there exists a unique homomorphism 4 :X — Y such that
n, oh = hyom,, for all a € 4 (see [Du]).

The next result follows e.g. from the analysis in [Wa]. For reader’s convenience we
sketch the arguments.
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Theorem 2.3. Let G be a compact group, G =1im G, and assume that every G, is
quasi-complete. Then G is quasi-complete.

Proof of the theorem. The proof is divided into several elementary steps.

(1) Let o € Aut(G)¢. Then o induces an automorphism {a,},. , of the inverse system
(G, Gy, 7y, fpu). Of course o also coincides with the automorphism arising from
{04} 4c 4 (cf. Remark 2.2).

Proof of (1). Let 0 € Aut(G)s. Then, for every o € 4, one has that ¢(K,) = K, and
o induces an automorphism g, of G, by

Ua(nx(x)) = na(U(X)).
One can check that
Jpz 008 =0, 0 fpy, forevery f>a.

By Remark 2.2, there exists a g, € Aut(G) satisfying 7, o 6, = g, o m,, for all a. By
the uniqueness, it coincides with o.

(2) Let 0 € Aut(G)g. For all « € 4, the automorphism o, of G, induced by o satisfies
the condition

(%) Xy = Xy © O,

for every unitary representation y, of G,.

Proof of (2). Given a unitary representation y, : G, — U(C"), define
T G = UCY), 7,(9) = 1,(ma(9))-

Then j, € G and ker, > K. Similarly define
X2 0 02(9) = %, 0 02(7a(9)) = 1,ma(0(9)) = X, 0 0(9).

Since o € Aut(G), the representations g, and y, 0 g, = 7, o o of G are equivalent,
for all o € A. This yields

Xy 00y =y, YVoeA.
(3) The automorphism ¢ = o, of G is inner.

Proof of (3). Since g, is an automorphism of G, satisfying condition (x), and G, is
assumed to be quasi-complete, for every o € A, g, is the inner automorphism of G,
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defined by some g,K,, with g, € G. Since G is compact, after passing to a subnet if
necessary, one can assume that g, — g in G. Then it is straightforward to verify that
o = Ad,. This concludes the proof of (3) and of the theorem.

Remark 2.4. An arbitrary compact connected group is a projective limit of compact
connected Lie groups (cf. [P]). A straightforward application of the Highest Weight
Theorem shows that compact connected Lie groups are quasi-complete. Hence from
the above result one recovers in particular the well-known fact that a compact con-
nected group G is quasi-complete (see [Mc] [Wa] [Ha]).

Next we give a precise characterization of direct products of compact groups which
are quasi-complete.

Theorem 2.5. Let {G,},., be a family of compact groups, parametrized by an arbitrary
non-empty set I. Then the direct product G := X,c; G, is a quasi-complete compact
group if and only if every factor G, is quasi-complete.

Proof. Recall that the characters of the irreducible representations of G are exactly
those of the form g = (g,) — x,,(9,,) - - - x,,(9.,), where n ranges over all finite integers,
the indices i, for 1 < k < n, are all distinct and y, are the characters of the irreduc-
ible representations of G,, (see [HR], 27.43).

If o € Aut(G) leaves all the characters of G invariant, i.e. y o o = y for all y, then it
is easy to see that it preserves each factor G,. Thus, for every 1 € I, the restriction o
defines an automorphism o, of G, such that y, o o, = y, for every irreducible character
1, of G,. If the G, are quasi-complete, it follows that o, is inner, i.e. o, = Ad,: for some
g, € G,. Since the G, generate G, the automorphism « is completely determined by the
o, and it is inner: o = Ad,., where g* = (g).

In order to show the converse, consider first the case where G is quasi-complete
and of the form G = G x G,. Let o) be an automorphism of G; with the property
that p; o a; is equivalent to p; for every unitary representation p; of G;. Define o €
Aut(G) by o = o x Idg,. Then

(p1 % pa) o (a1 x Idg,) = (py o 0n) X (py 0 ldG,) = py X py

for all unitary representations p, and p, of G; and G, respectively. Since G is quasi-
complete, o x Idg, is an inner automorphism of G. It follows that there exists g =
(91,95) € G such that Ad; = oy x Idg,. In particular, o; = Ad,. and G is quasi-
complete. Similarly one obtains that G, is quasi-complete. The general case is now
immediate.

Remark 2.6. A similar argument (but using directly representations instead of char-
acters) applies to the case where G is the direct product of groups G, which are
compact for all but finitely many indices z and locally compact otherwise, so that the
resulting G is locally compact. If the G, are quasi-complete for all 1€ then G is
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quasi-complete too. Conversely, if such a G = X, G, is quasi-complete, then every G,
is, provided that the G, are of type I (see [Di], for a definition).

3 Connected linear real reductive groups: reduction to the semisimple case

The main goal of this paper is to prove that connected linear real reductive Lie groups
are quasi-complete. In this section we show that it is sufficient to consider the semi-
simple ones. The result is a consequence of the following general lemma.

Lemma 3.1. Let G be a locally compact group and suppose that G = ZH, where both Z
and H are closed characteristic subgroups of G and Z is contained in the center of G. If
H is quasi-complete, then so is G.

Proof. Let ¢ be an automorphism of G such that 7 o ¢ = 7 for all 7 € G. Since H and
Z are both characteristic, ¢(H) = H and ¢(Z) = Z.

Let 7 € G and denote by #, the Hilbert space of 7. Then, since 7 is irreducible
and Z is central, 7(z) is a multiple of the identity for each z € Z. Thus every n(H)-
invariant subspace of #; is already n(G)-invariant, whence n|H is irreducible.
Clearly, n|H o ¢|H = n|H. Moreover, since every character y € (Z n H)" extends to a
character y € Z (see [HR]), when 7 varies in G, the restrictions z|H vary in all H.
Hence, by hypothesis, there exists 4y € H such that ¢(h) = hy Yhho for all he H.

We claim that ¢|Z = Id. Since the characters of Z separate the points of Z (see
[HR]), it suffices to show that y o ¢|Z = y for all y € Z. Fix y € Z. There exists a
unitary representation 7 of G such that z|Z is a multiple of y, that is, {z(z)y,n) =
%2(z){x,ny for all £, € #;. For example, the induced representation n = Ind () has
this property. Let U be a unitary operator in #, such that 7 o ¢(x) = U~ 'zn(x) U for
all x € G. Then, for any & € #, with ||{|| =1 andze Z

x(z) = x(2)KUE UEy = n(z)UE, UEY
= U 'n(z)UE, &) =(mo ) (2)E, &) = x(¢(2)).

This proves the above claim. It follows that ¢(zh) = ¢(z)(h) = zhy ' hho = hy' (zh)h
for all ze Z and € H, as required.

Corollary 3.2. Let G be a connected linear real reductive group. Then G is quasi-
complete if the semisimple subgroup G* is quasi-complete.

Proof. Let G be a connected linear real reductive Lie group. Then G decomposes as
the commuting product

G=27(6)"G",

where Z(G) is the center of G and G* is the connected semisimple subgroup of G with
Lie algebra [g, g]. By applying Lemma 3.1 to Z =Z (G)" and H = G* we obtain the
desired result.
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4 The case of equal-rank connected linear real reductive Lie groups

In this section we consider non-compact connected linear real reductive Lie groups G
which satisfy the “equal-rank” condition rank(K) = rank(G), where K is a maximal
compact subgroup of G. We show that they are quasi-complete by using their discrete
series representations. The proof generalizes the one for compact connected Lie
groups, which is a straightforward application of the Highest Weight Theorem. The
reference for this section is [Knl], Ch. 9, Thm. 9.20.

Fix a maximal compact subgroup K of G and a compact Cartan subgroup 7 sat-
isfying T = K < G. Denote by g® and £ the complexifications of g and f respectively,
and by « the conjugation of g© with respect to g. Denote by A = A(g%,t€) and Ax =
A(f“:, tc) the root systems of g® and ¢ with respect to t€. For o € A, denote by g*
the corresponding root space in g*. Denote by W and W the Weyl groups generated
by the reflections with respect to the roots in A and Ak respectively. Both groups act
on it. Since Wx = W, each Wg-chamber contains a union of W-chambers.

For a fixed positive system AT < A, a positive system can be chosen in Ag so that
A} = Ag n A" In terms of Weyl chambers this corresponds to taking the positive
chamber for W inside the positive chamber for Wk. Denote by p, and p,, the half
sum of the positive roots in A" and A} respectively. Let A e t* be a non-singular
weight with respect to A, i.e. such that {i,a) # 0, for all « € A. Here {,) is the
restriction of the Killing form of g®. We denote by A} = {x e A|{a,A) >0} the
positive system in A determined by A and by A};’ , the compatible positive system in
Ag. The next lemma generalizes the result which characterizes inner automorphisms
of a compact connected Lie group as those leaving a maximal torus pointwise fixed
(cf. [Lo], Ch. 6, Thm. 4.5).

Lemma 4.1. Let G be a connected non-compact linear real semisimple Lie group sat-
isfying the equal rank condition. Let T = K = G be a compact Cartan subgroup, and
let ¢ € Aut(G) be such that

4.1) éx)=x VxeT.

Then ¢ is an inner automorphism of G. More precisely, ¢ = Ad.,, for some xo € T.
Proof. The proof is similar to the proof of [Lo], Ch. 6, Thm. 4.5 and is omitted.
Corollary 4.2. Let ¢ € Out(G) be such that $(K) = K. Then $|K € Out(K).

Proof. Assume by contradiction that ¢|K is inner. By [Lo], Ch. 6, Thm. 4.5, there
exists a maximal torus 7' = K which is left pointwise fixed by ¢|K. Since T is also a
maximal torus of G, by Lemma 4.1, ¢ is an inner automorphism of G. This contra-

dicts the assumptions and the lemma follows.

Proposition 4.3. Let G be a non-compact connected linear real semisimple Lie group
satisfying the equal-rank condition. Let ¢ € Aut(G) be an automorphism with the prop-
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erty that m and 7 o ¢ are equivalent for every irreducible unitary representation n of G.
Then ¢ is an inner automorphism of G. In short, G is quasi-complete.

Proof. Let T = K = G be a compact Cartan subgroup of G. Modulo Inn(G), we can
assume ¢(K) =K, ¢(T) =T, and ¢(it") = it", where it* is a fixed positive Weyl
chamber with respect to Wx. Under these assumptions, ¢ induces a map of the dual
space t* into itself, given by 1 — Ao ¢, for A et”. Let n; be a discrete series repre-
sentation of G, with Harish-Chandra parameter 4 (see [Knl], Ch. IX, Sect. 7). Recall
that 2 €t is a non-singular weight, such that 1 4 p,+ is analytically integral. The
restricted representation ;| K contains with multiplicity one the lowest K-type

Ao =2+ ppr — 2/7A]+(7/1
and the other K-types are of the form

AN =Ao+ > n, n,eZsy.

aeAf
1

Consider now the unitary representation 7; o ¢. One has that 4 o ¢ is a regular weight
with respect to A and ¢(A]) = A} ;. In particular, pa;, =pa; and fog+ P(AT) is
analytically integral. Moreover, since ¢(K) = K, one also has ¢(A,+{1 )= A}, s0p and
PaL ., = PAL The restricted representation (7; o ¢) | K contains with multiplicity one
the K-type

AOO¢:/IO¢+pA;fO¢_2PAZ_ZO¢:;“O¢+pAZ¢_2pA;/,_O¢

and for the other K-types we have

ANop=Agod+ Y nmoop=~Aood+ Y noogp, n,elsg.

xeAf aopeA;

In other words, A o ¢ is the lowest K-type for ; o ¢. Suppose now that 7z, and 7, o ¢
are equivalent representations. Then 7, o ¢ is a discrete series representation with
Harish-Chandra parameter 4 o ¢. In particular, A and /4 o ¢ lie on the same Wx-orbit.
On the other hand, since 4 and 4o ¢ lie on the same Weyl chamber with respect to
Wk and ¢|K is an outer automorphism of K, it follows that

42) Ai=iog.

Observe that Harish-Chandra parameters of discrete series representations of G
include non-singular weights of the form

u=A+ > n, ny€Zso,

xeAf
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provided that A} = AT. If 7 and 7 o ¢ are equivalent for every unitary representation
7 of G, and in particular for every discrete series representation 7, of G, equation
(4.2) implies that ¢|T = Idr. By Lemma 4.1, ¢ is an inner automorphism of G and
the proposition follows.

Corollary 4.4. By Proposition 4.3 and Corollary 3.2, equal-rank connected linear real
reductive Lie groups are quasi-complete.

Remark 4.5. The result of Corollary 4.4 could have also been obtained directly. Dis-
crete series representations p of an equal-rank connected linear real reductive Lie
group G are parametrized by pairs (4, y), where 4 is the Harish-Chandra parameter
of the dicrete serles representation p|G* of G¥, y is a character of Z(G ) and on the
finite group Z(G)" N G* the restriction of p|Gv coincides with the scalar character
determined by y. Two discrete series representdtlons p,., and p,/ . are equivalent
if and only if y =y’ and the parameters A, A’ are conjugate by WG( ) (see [Knl],
p. 469-470).

5 The case of arbitrary connected linear real reductive Lie groups

In this section, using the results of sections 3 and 4, we prove that an arbitrary con-
nected linear real reductive Lie group G is quasi-complete.

Fix a maximal compact subgroup K of G. Let 0 be the Cartan involution of g with
Cartan decomposition g = I @ p. Fix a maximally split O-stable Cartan subalgebra
h=s® ag, where ap is a maximal abelian subspace in p and s < . Denote by
my = 3¢(ao) the centralizer of ag in f. Then my is a compact reductive subalgebra

my = 3(mp) @ [mo, Mo,

with center 3(n) and semisimple subalgebra [ng, my]. If ¢’ is a Cartan subalgebra of
[mg, M), then

s =3(my) @',

is a Cartan subalgebra of my. Denote by My = Zg(ay) the centralizer of ag in K. One
has that M is a compact reductive group with Lie algebra my, generally discon-
nected. One can write My = F - M), where F = K nexp(iay) is a finite abelian group
of involutive elements contained in the center of M, (see [Kn2], Thm. 7.53, and
[Knl], p. 468). Let A = A(g%, h%) be the root system of g© with respect to h*. Denote
by Ay the subsystem of imaginary roots, i.e. the roots in A which vanish identically
on ag. Then

my =s"® ¢ and [me,mg]" = ()" @ ¥ ¢%

O(EAQ 16A0

LetX = 3(g, ap) be the restricted root system of g with respect to ay. For 4 € X, denote
by g* the corresponding root space in g.
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Fix a basis of hp = is @ ag, consisting of a basis of a followed by a basis of is. The
lexicographic ordering defines compatible notions of positivity on X, Ay and A. For
roots with non-zero restrictions to ag, one has that « € A" if and only if a|ag e Z*.
Similarly, for roots vanishing identically on ay, one has that « € AT if and only if
a € Aj. Denote by ajj, b and is™ the corresponding positive Weyl chambers in ay,
hr and is respectively.

Let Py be the minimal parabolic subgroup associated with Z*. Then Py = MyAoNy,
where Ay = expag and Ny = expny, for 1o =P, s+ g”. Every parabolic subgroup
of G is conjugate to a unique ‘“‘standard” parabolic subgroup Q = MAN containing
Py. The Lie algebra of Q decomposes as g =m @ a @ n, where a < ap, n < 1y and
m > my (Langlands decomposition). A standard parabolic subgroup Q = MAN is
called cuspidal if m possesses a compact Cartan subalgebra.

Lemma 5.1. Let G be a connected non-compact linear real semisimple Lie group. Let
¢ € Aut(G). Then, modulo Inn(G), one can assume:

PpK)=K ¢ =1 ¢(p)=p
plag) =ao ¢lag) =ag ¢(s) =5 ¢(is") =is".

Proof. Since all maximal compact subgroups in G are conjugate by Inn(G), one
has that ¢~'(K) = 4d,(K), for some g € G, and (¢o Ad,)(K) = K. In particular,
(poAd,)(¥) =1 and (¢ o Ad,)(p) = p. Equivalently, ¢ o Ad, commutes with the
Cartan involution # on g. Since all maximal abelian subspaces ay < p are conju-
gate by Inn(K), one has that (¢0Adg)71(a0) = Ady(ap), for some k € K. Then
(¢ o Ady o Adi)(ap) = ag. Since the Weyl group Wk (ag) acts transitively on the set
of Weyl chambers in ag, by a similar argument one has (¢ o Ad, o Ady o Ad,,)(a})
=ay, for some we Ng(ag). In particular, (¢ o Ad, o Ady o Ad,)(My) = My and
(poAdyo Ady o Ad,,)(M) = M{. Since all Cartan subalgebras in my are conjugate
by Inn(M)), there exists me M such that (¢o Ad, o Adyo Ad, o Ady,)(s) =
s. Finally, since the Weyl group WMg(s) acts transitively on the set of Weyl cham-
bers in is, one also has that (¢ o Ad, o Ady o Ad,, o Ad,, o Ad,)(is*) = is*, for some
Ve WM(?(S).

Corollary 5.2. Let ¢ € Aut(G) be an automorphism of G satisfying the conditions of
Lemma 5.1. Then ¢(A*) = A*. In particular, ¢ induces a ( possibly trivial) permuta-
tion of the simple roots in A", commuting with the conjugation action r(a)(H) :=
a(H), Heb, aeA.

(a) If such a permutation is non-trivial, then ¢ either induces a non-trivial permutation
of the simple restricted roots in £ or it restricts to an outer automorphism of M and
of My, i.e.

¢| M) € Out(My), ¢| My e Out(My).
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(b) If such a permutation is trivial, then ¢ € Inn(g®) and ¢|h = Idy. As a consequence, ¢
preserves all standard 0-stable Cartan subalgebras of g. Moreover, ¢ preserves all stan-
dard parabolic subgroups Q containing Py and respects their Langlands decomposition.

Proof. Let o e A*. If a|ag # 0, then a«fag e Z*. By Lemma 5.1, «lagopeX™ and
axopeA". If alag =0, then x € Aj. By Lemma 5.1, xo¢eAf and in particular
wodeAT.

(a) Assume that ¢ induces a non-trivial permutation of the simple roots in A*. Since
¢(ag) = ao, one has that ¢(My) = M, and $(M)) = M. Also recall that the restric-
tions of the simple roots in A™ map surjectively onto the simple roots in ™ (cf. [He], p.
585). Suppose that ¢ induces a trivial permutation of the simple roots in £*. Since
such roots span ag, one has that ¢[ag = Id,,. On the other hand, since ¢|hr # Idy,, it
follows that ¢|s # Ids. Moreover, ¢(is™) = is* implies that ¢(A) = A . At this point,
either ¢ induces a non-trivial permutation of the simple roots in A; or ¢ acts non-trivially
on 3(my). In both cases, ¢ € Out(M)). Since ¢ acts non-trivially on M, while the finite
group F centralizes M, one also has that ¢ € Out(Mp).

(b) If ¢ induces a trivial permutation of the simple roots in A", it acts as the identity
on the positive Weyl chamber b, and on b. In particular it stabilizes all root spaces
g”, for o € A, and all f-stable standard Cartan subalgebras in g (see [Su]). Moreover,
since ¢ acts as the identity on ay, it also acts trivially on the simple restricted roots in
" and stabilizes the restricted root spaces g*, for 1 € X. As a consequence, ¢ sta-
bilizes the minimal parabolic subgroup Py = MyAoN, associated to . The auto-
morphism ¢ also stabilizes all standard parabolic subgroups Q containing Py, and
respects their Langlands decomposition (cf. [Knl], Ch. 5, Sect. 5).

For every outer automorphism of G, we now construct an irreducible unitary repre-
sentation 7 of G with the property that z o ¢ is not unitarily equivalent to z. We do
this by using parabolic induction. Let Q = MAN be a standard parabolic subgroup
containing Py. Denote by X(g, a) the set of restricted roots of g with respect to a and
by £* (g, a) the set of positive roots determined by 1 (i.e. the roots whose root spaces
g lie in n). Define p = 35+, o (dim g*)uc.

Let o : (M, V?) be an irreducible unitary representation of M and e” a unitary char-
acter of A4, for some real valued linear functional v € a*. Consider the following sub-
space of continuous functions on G with values in V°

C™* = {f € C(G. V") | f(gman) = a(m)" e~ P £ (g) man € MAN g € G},

with norm
1A= | 13-
K

and G-action given by

g-f(x)=f(g"'x) geG, feC™
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Denote by H”" the Hilbert space given by the completion of C%" with respect to the
above norm and by n%" := Ind$ (6 ® ¢ ® 1) the corresponding representation of

G on H”". One has that Ind{ (0 ® e” ® 1) is a unitary representation of G (see
[Knl], p. 169).

Lemma 5.3. Let ¢ € Aut(G) be an automorphism satisfying ¢(K) = K. Assume in
addition that $(Q) = Q and precisely that (M) =M, $(A) = A and $(N) = N.
Then IndS,v(oc @ e” ® 1) o ¢ is a unitary representation of G, unitarily equivalent
to IndG \((6od) @e™ @ 1).
Proof. Consider the map

A:H® = H® A(f) = fog.

The map A is densely defined on H?”, with domain containing C%". For every
f e C%", the image A(f) satisfies the functional equation

A(f)(xman) = f($(x)p(m)d(a)p(n)) = a(p(m™"))e” P D (g (x))
= (g ))e 0% 4 1) ).
In other words, A(f) e C??"? for all f € C”". Note that we have used the fact that
#(Z*(g,a)) = = (g,a) and therefore p o ¢ = p. Moreover, the map 4 is a densely
defined intertwining operator between 77" o ¢ (acting on H”") and 7°°%*°¢, namely

A((x7" 0 ) -1)(x) =270 - A(f)(x), ¥ € C™'\Vxe G,

Indeed, evaluating the left-hand side and the right-hand side of the above equality
we get

A(f o Ly )(x) = (f 0 Ly 0 $)(x) = /($g) ' $(x)),
and
(A(f) o Ly1)(x) = (f oo L) (x) = f(plg' X)) = f($lg9) ' $(x)),

respectively. Since ¢ preserves the Haar measure on K, one has that || 4(f)|| 2= I/ ||2 .
Hence A4 can be extended to a unitary operator

A:H® — HT"
intertwining 77" o ¢ with 7% "¢

Proposition 5.4. Let G be a non-compact connected linear real semisimple Lie group.
Let hy = s ® ag be a maximally split Cartan subalgebra of g. Let ¢ € Aut(G) be an
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automorphism satisfying the conditions of Lemma 5.1 and of Corollary 5.2 (a). Then
there exists an irreducible unitary representation n € G of the principal series such that

mo¢ .

Proof. Suppose that ¢ induces a non-trivial permutation of the simple restricted roots.
One can find a regular v € ag (i.e. {v,ay # 0, for all o € £(g, ap)) such that v # v o ¢.
Then, for an arbitrary ¢ € My, the induced representation 7 = Indy (0 ® e’ ®1) is
an irreducible unitary representation of G (see [Knl], Thm. 7. 2) Moreover, by
Lemma 5.3 and [Knl], p. 174, the representation n has the property that 7o ¢ 2 7.

Suppose now that ¢ restricts to an outer automorphism of M and of M. Let o
be an irreducible unitary representation of Mé) such that g o (/7§|M00 2 0. Such a rep-
resentation exists because compact connected Lie groups are quasi-complete. Let y
be the character determined by the restriction of ¢ to Z(M; 0)% We can extend ¢
from M to My, by extending x from F n Z(M, 0) to F. In this way, we get a repre-
sentatlon of M, which satisfies the condition o o ¢| M, 2 ¢. For every regular v € ag,
the induced representation 7 = Ind G (0 ® e” ® 1) is an irreducible unitary represen-
tation of G (by [Knl], Thm. 7.2) W1th the property that 7 o ¢ 2 7 (by Lemma 5.3 and
[Knl], p. 174).

Lemma 5.5. Let G be a connected non-compact linear real semisimple Lie group. Let
¢ € Aut(G) be an automorphism satisfying the conditions of Lemma 5.1 and of Corol-
lary 5.2 (b). If ¢ € Out(G), then $|K € Out(K).

Proof. First we show that it is sufficient to prove Lemma 5.5 for a real simple group
G with simply connected complexification G*. Embed G in a complexification G¢, as
the connected component of the identity of a real form of GT. Let x be the corre-
sponding conjugation of G®. Denote by G the universal covering group of G® and
by G the real form of GT with respect to the lifted conjugation %. The group G is
always connected and G = G/T, for some central subgroup I' = G. Let ¢ be an
automorphism of G satisfying the conditions of Lemma 5.1 and of Corollary 5.2 (b).
It follows that ¢ is the restriction to G of an inner automorphism of G€ commuting
with x, namely ¢ = Ad., for some z € GT. In the same way, there exists Z € GT such
that ¢ Ads is an inner automorphlsm of G preserving G and which is the lifting of
¢. If ¢ € Inn(G), then also ¢ € Inn(G). Recall that a simply connected complex sem-
isimple Lie group decomposes as the direct product

GE—GEx. x GF,

where each G is a simply connected complex simple group. Likewise, a real form G
of G€ decomposes as the direct product of real forms of the following two types:

- G — G‘r with G; real simple and G‘E complex simple;

- G = G<E — G‘E X ch, with G complex simple embedded in G<E X G‘FJ as the
dlagonal subgroup Here GC denotes a copy of G(E with the opposne complex
structure.
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By the above remarks, G can be assumed to be a real simple group with simply con-
nected complexification GC. If G satisfies the equal-rank condition, the lemma fol-
lows from Corollary 4.2. Suppose now that G is a simple group with rank(K) <
rank(G). Assume by contradiction that ¢|K = Ad.|K = Ady, for some k € K. Then
k='z € Zge(K). We claim that Zge(K) = Z(G®). The inclusion Z(GY) = Zge(K) is
obvious. For the opposite inclusion let x € Z;«(K) and let k be an arbitrary regular
elliptic element in G (one such element exists). If x centralizes k, it centralizes a 6-
stable maximally compact Cartan subgroup H of G containing k. Let ) = b; @ b, be
the Cartan decomposition of the Lie algebra of H. Then x centralizes K, and
Urkex Adib,. Since G is simple and Adx acts irreducibly on p, the element x cen-
tralizes p and also G = Kexpp. Therefore x € Zgc(G) = Z(G%) and the claim is
proved. It follows that k~!z € Zge(K) = Z(GY) and ¢ = Ad. = Adj., contradicting
the assumption that ¢ € Out(G).

Let Q = MAN be a maximal standard cuspidal parabolic subgroup of G containing
Py. Unless G is equal-rank, M is a proper subgroup of G. If Q = Py, then g has a
unique conjugacy class of Cartan subalgebras and M = M, is a connected compact
reductive group. If Q # Py, then M is a non-compact linear real reductive group, sat-
isfying the equal-rank condition. Moreover, M is non-abelian, with non-trivial semi-
simple part, and is generally disconnected: M = M° - F, where F K is a finite abe-
lian group (cf. [Knl], p. 468-469, [Kn2|, Prop. 7.87). If tc m ¥ is a compact
Cartan subalgebra of m, then ) =t @ a is a maximally compact Cartan subalgebra
of g. Since A(g, hT) contains no real roots, it follows that F n Z(M) = 1 (see [Knl],
p. 468). Since t is also a Cartan subalgebra of f, there is an inclusion of Weyl groups
Wy (t) € Wi (t) = Wi (t). Finally observe that by Corollary 5.2 (b), the compact
Cartan subalgebra t = m can be assumed ¢-stable.

Corollary 5.6. Let Q be a standard maximal cuspidal parabolic subgroup of G.
Under the assumptions of Lemma 5.5, if ¢ € Out(G) then ¢|M € Out(M) and
$|M° e Out(M?).

Proof. By Lemma 5.5, if ¢ € Out(G), then ¢|K € Out(K). Since ¢|K € Out(K), one
has that ¢|t # Id;, by [Lo], Ch. 6, Thm. 4.5. Moreover, the action of ¢|t does not
coincide with the action of any Weyl group element we Wk(t) (otherwise
Ad,,1 o |t = Id; and ¢|K would be inner on K, by [Lo], Ch. 6, Thm. 4.5). In partic-
ular, the action of ¢|t does not coincide with the action of any Weyl group element
in Wy, (t) nor in W)y, (t). Therefore ¢|M € Out(M) and ¢|M° € Out(M?).

Proposition 5.7. Let G be a connected non-compact linear real semisimple Lie group,
not equal-rank. Let ¢ € Aut(G) be an automorphism satisfying the conditions of
Lemma 5.1 and of Corollary 5.2 (b). Then there exists an irreducible unitary repre-
sentation 7 € G such that @ o o £

Proof. Let Q = MAN be a maximal cuspidal parabolic subgroup. By Corollary 5.2
(b) we have that ¢(M) = M and by Corollary 5.6 that ¢|M € Out(M). Assume first
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that Q = P,. Since compact connected groups are quasi-complete, there exists o € M
such that oo ¢|M # o. For an arbitrary regular v € aj, the induced representation
= Indgo(a ® e ® 1) is an irreducible unitary principal series representation of G
(by [Knl], Thm. 7.2) with the required properties: by Lemma 5.3, 7 o ¢ is equivalent
to Indg)(a 0¢p®e” ® 1), and by [Knl], p. 174, one has that 7o ¢ % 7.

Assume now that Q # Py. We claim that there exists a unitary representation p in the
discrete series of M with the property that p o ¢p|M 2% p. (see [Knl], Ch. XII, Sect. 8
for the appropriate definitions). Start with a unitary representation p° in the discrete
series of M, with the property that p® o ¢|M® % p°. Such a representation exists
because equal-rank connected linear real reductive groups are quasi-complete (cf.
Proposition 4.3, Corollary 4.4, Remark 4.5). Recall that discrete series representa-
tions p° of M are parametrized by pairs (/4,y), where A is the Harish-Chandra
parameter of the discrete series representation p|(M?)* of (M°)*, y is a character of
Z(M®)" and on the finite group Z(M°)° ~ (M°)* the restriction of p|(M°)* coincides
with the scalar character determined by y. Hence, there exists p° = pg 4 such that
either y o ¢ # y or A o ¢ does not belong to the W) (t)-orbit of A. Since M has finite
index in M and the action of ¢|t does not coincide with the action of any Weyl group
element in W), (t), one can actually choose p} , such that either yo¢ # y or 20¢
does not belong to the Wj,(t)-orbit of A. -

Consider next the discrete series representation of M given by p, ., := Ind %u(p(j’ z)'
We claim that p, o¢ %p,,. Observe that p, o¢ is equivalent to pw¢ yob =
Ind Mo(plo,/) 10(/5) On the other hand by [Knl], Prop 12.32, two discrete serles repre-
sentations p, , and p; ,,» of M are equivalent if and only if ' = y and A =wi, for
some w € W) (t). So the claim follows.

Finally, consider the induced representation 7 = Indg (pi., ®e” ®1). For an arbi-
trary regular v € a*, one has that z is an irreducible unitary tempered representation
of G (cf. [Knl], Thm. 14.15). Moreover, since 4 is a regular weight, = is induced from
“non-degenerate’ data ((Knl], p. 611). By Lemma 5.3 and [Knl], Thm. 14.91, 7 has
the property that 7 o ¢ % 7.

By the results of the previous sections, Corollary 3.2, Proposition 5.4 and Proposition
5.7, we finally obtain our main result.

Theorem 5.8. Let G be a connected linear real reductive Lie group. Let ¢ € Aut(G) be
an automorphism with the property that the representations n and 7o ¢ are unitarily
equivalent, for every irreducible unitary representation n of G. Then ¢ is an inner
automorphism of G. In short, G is quasi-complete.

6 The case of finite groups

Finite abelian groups do not admit any non-trivial inner automorphisms. They are
quasi-complete, since characters separate points. On the other hand, arbitrary finite
groups are not necessarily quasi-complete. An example of a finite group which is not
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quasi-complete was given by G. C. Wall (cf. [Hu], p. 22). In this section we show that
this counterexample is not isolated, but fits into a more general pattern.
We recall some elementary notions from group cohomology (cf. [Se], Ch. VII).

Definition 6.1. Let G be a group, and let 4 be a G-module. A I-cocycle is a function
o : G — A satistying the condition

alg-g')=0a(g) +go(y’), forallg,g eG.
The 1-cocycles form a group denoted by Z!(G, 4).

Definition 6.2. A I-coboundary is a function o : G — A of the form

alg)=g-a—a,

for some fixed a € 4 independent of g € G. The 1-coboundaries form a subgroup of
the group of 1-cocycles. It is denoted by B'(G, A4).

The first cohomology group of G with values in A4 is the quotient group
H'(G,4)=Z'(G,4)/B'(G, A).

To any exact sequence of G-modules

61) 0-4%BLCc—o0

there is associated an exact cohomology sequence
0— A% - BS — %% HY(G,4) — H'(G,B) — H'(G,C) — -,

where 49 B% CY denote the subgroups of G-invariant elements of 4, B, C. The
connecting homomorphism ¢ : C¢ — H'(G, A) is defined in the following way. Let
c e CY. By the exactness of (6.1), one has ¢ = (), for some b € B. Since ¢ is G-
invariant, we have that g - b — b € ker(¥/) = Im(¢) for all g € G. Then define J(c) to
be the 1-cocycle G — A that maps g € G to the unique @ € A for which ¢(a) =
g-b—>b.

Our examples of finite groups I" that are not quasicomplete, are constructed as fol-
lows. Let R be a finite commutative local ring with identity 1, maximal ideal 9t and
residue field IF = R/ (see [AM]). Consider the multiplicative subgroup of the units
R*

U:={ueRuel+MN}.

The additive group R is a U-module by multiplication. Now define

re (o 0) {0 ) rervec)
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Then I is a finite group. It is non-abelian when Mt # 0 or, equivalently, when R is not
a field. One can easily check that the map H'(U,R) — Out(I") given by ¢ — f,

where
u u

is a well defined injective homomorphism. Indeed, f; is an automorphism of I" if and
only if ¢ is a 1-cocycle and it is inner if and only if ¢ is a 1-coboundary.

Next we show that for certain choices of the ring R and the 1-cocycle o, the auto-
morphism f; preserves conjugacy classes.

Definition 6.3. A finite commutative local ring R with maximal ideal 9t and residue
field IF = R/t is called Gorenstein if the ideal

m = Ann("M) = {xe R|xy =0, for all y € N}
is the unique minimal ideal of R.

When R is Gorenstein, the ideal m is by minimality a one-dimensional IF-vector
space.

Consider the exact sequence of U-modules
0—-m—=R—R/m—0

and the associated cohomology sequence
o= (R/m)Y - HY(U,m) — H'(U,R) — ---.

Proposition 6.4. If R is a finite local Gorenstein ring, then the 1-cocycles o in the image
of H'(U,m) — H'(U, R) have the property that f,(g) is conjugate to g, for all g € T.

Proof. Let g= () *)el and let ¢ be a l-cocycle in the image of the map
H'(U,m) — H'(U,R). If u=1, then o(u) =0 and f,(9) =g. If u# 1, then the

minimal ideal m is contained in (¢ — 1)R and in particular o(u) = (u — 1)y, for some
vy € R. Then

o )=l 5= )6 D6 )

as required.

It follows from Proposition 6.4 that the group I' associated to a finite local Goren-
stein ring is not quasi-complete whenever the image of the natural map
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(6.2) H'(Um)— H'(U,R)

is not zero. The next proposition gives a characterization of the local Gorenstein
rings for which this map is zero. For any prime number p, let IF, denote the finite
field with p elements. If R is a ring and M, M, are R-modules, denote by
Hompg(M;, M>) the group of homomorphisms between M, M, commuting with the
R-action.

Proposition 6.5. Let R be a finite local Gorenstein ring with maximal ideal I and
minimal ideal m. Then the natural map H'(U,m) — H'(U, R) is zero if and only if
R/M =T, and (1 +M)" =1+ M2

Proof. The map H'(U,m) — H'(U, R) is zero if and only if the map (R/m)Y —
H'(U,m) is surjective. Recall that the connecting homomorphism d : (R/m)Y —
H'(U,m) maps x to the 1-cocycle given by u ~ (u— 1)x for all u e U. We write J
as the composite of several homomorphisms.

(R/m)Y = Ann(M2)/m <> Homg(M/M2,m) & Homz(M/M2, m)
| Pa

H'(U,m) = Homz(1 + M, m) <> Homz((1+M)/(1 +M2), m)

Here the homomorphism (R/m)Y — Ann(9%?)/m is the inverse of the map induced
by the inclusion of Ann(9?) in R. The map y sends x to the homomorphism
given by y — xy, for all y € M/M>. It is injective. The diagonal homomorphism
maps an additive map f to the multiplicative map given by y— f(y —1). It
is casily seen to be an isomorphism. Finally, note that U =1+ 9t and that
H'(U,m) = Homz(1 + 9, m) because the action of U on m is trivial.

It follows that ¢ is surjective if and only if the three maps y, i and j are surjective.
The map y is a bijection. Indeed, since R is Gorenstein, the functor Hompg(—, R)
is exact. Applying it to the exact sequence 0 — i/M? — R/M> — R/M — 0, we
obtain the exact sequence

0 — m — Ann(M?) Z Hompg(M/M?, m) — 0,

with " inducing y. Here we used the fact that for every ideal I = R, the map
Hompg(R/I,R) — Ann(I) given by f — f(1) is an isomorphism and the fact that
the image of any homomomorphism f : 9t/ M? — R is automatically contained in
Ann(M) = m, so that Homg(M/M?>, R) = Hompg(M/M?, m). We conclude that y is
bijective. The inclusion map 7 is a bijection if and only if any homomorphism
M/M? — m is automatically R-linear. Since both M/M? and m are IF-vector spaces,
this happens precisely when IF is equal to the prime field IF,. The map j is surjective if
and only if every homomorphism f : 1 + 9t — m = IF has 1 + 9% in its kernel. Since
m = IF is killed by p, this happens precisely when 1 + 9> < (1+M)”.
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This proves the proposition.

Remark 6.6. Finally we observe that there are plenty of finite local Gorenstein rings:
Z/p"Z, for p prime, is a finite local Gorenstein ring with minimal ideal m generated
by p"~!. If R is a finite local Gorenstein ring and ¢ € R[X] is a monic polynomial
for which R[X]/(¢) is local, then the ring R[X]/(¢) is Gorenstein as well. Examples
of finite groups I" which are not quasi-complete arise whenever at least one of the two
conditions in Proposition 6.5 is not fulfilled.

An example where the first condition is not satisfied, (i.e. the residue field R/ is
not a prime field) is given by R = [F4[X]/(X?). In this case, M = m = (X) and U =
1 + (X). The corresponding group I' has cardinality |I'| = 64. In Wall’s example the
second condition is not fulfilled: (1 + 9M)” # 1 + M2,

Example 6.7. Wall’s example corresponds to the ring R = Z/8Z with maximal ideal
I = (2) and residue field of characteristic p = 2. Since (1 +M)” is trivial, while
1 4+ M2 is cyclic of order 2, the second condition of Prop. 6.5 is not satisfied. There-
fore the corresponding group I is not quasi-complete.

Explicitly, T is the 32 element group given by

r= {((1) z) :er/SZ,ue{1,3,5,7}}.

The map o: U — R given by a(u) := “5L is a non-trivial l-cocycle in H'(U, R).
Since ”22* I is divisible by 4, it lies in the image of the map (6.2). The corresponding

map
f((l) x) _ ((1) x+a(u)>

is an involutive outer automorphism of I" which preserves every conjugacy class of T".
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