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POLAR SYMPLECTIC REPRESENTATIONS

LAURA GEATTI AND CLAUDIO GORODSKI

ABSTRACT. We study polar representations in the sense of Dadok and Kac which are sym-

plectic. We show that such representations are coisotropic and use this fact to give a classi-

fication. We also study their moment maps and prove that they separate closed orbits. Our

work can also be seen as a specialization of some of the results of Knop on multiplicity free

symplectic representations to the polar case.

1. INTRODUCTION

A rational representation of a complex reductive linear algebraic group G on a finite-

dimensional complex vector space V is called polar if there exists a subspace c ⊂ V con-

sisting of semisimple elements such that dim c = dimV //G (the categorical quotient), and

for a dense subset of c, the tangent spaces to the orbits are parallel [DK85]; then it turns

out that every closed orbit of G meets c (Prop. 2.2, ibid). In this paper we study the class

of polar representations which are symplectic, namely, preserve a non-degenerate skew-

symmetric bilinear form ω on V (polarity of a representation depends only on the identity

component, and we assume throughout that all groups are connected). We first prove:

Theorem 1. A polar symplectic representation is coisotropic.

Recall that a symplectic representation V of G is coisotropic if a generic G-orbit is co-

isotropic, namely, (g · v)⊥ω ⊂ g · v where v ∈ V is generic, g denotes the Lie algebra of G

and ⊥ω refers to the symplectic complement. Representations in this class can be charac-

terized by a number of different properties, e.g. the Poisson algebra of invariants C[V ]G

is commutative (cf. [Kno07, p. 224 and Prop. 9.1] and [Los05, Introd.]) ; in particular, they

are also called multiplicity-free (in the symplectic sense).

Using Theorem 1, we can reduce the classification of polar symplectic representations,

up to geometric equivalence, to that of coisotropic representations given in [Kno06]. In
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contrast to the case of coisotropic representations, it turns out that every saturated de-

composable polar symplectic representation is a product (see section 2 for unexplained

terminology).

Theorem 2. The saturated indecomposable polar symplectic representations are listed in Tables A

and B. Every saturated polar symplectic representation is a product of indecomposable polar sym-

plectic representations.

G V dimV //G Conditions

SOp ⊗ Sp2m C
p ⊗ C

2m min{[p
2
], m} m ≥ 1, p ≥ 3

Sp2m C
2m 0 m ≥ 1

Sp2 × Spin7 C
2 ⊗ C

8 1 −

SL2 × Spin9 C
2 ⊗ C

16 2 −

Spin11 C
32 1 −

Spin12 C
32 1 −

Spin13 C
64 2 −

SL2 S3(C2) 1 −

SL6 Λ3(C6) 1 −

Sp6 Λ3(C6)⊖ C
6 1 −

SL2 ×G2 C
2 ⊗ C

7 1 −

E7 C
56 1 −

TABLE A: INDECOMPOSABLE POLAR SYMPLECTIC REPRESENTATIONS OF TYPE 1

G V dimV //G Conditions C
× essential

C
× × SLm × SLn C

m ⊗ C
n ⊕ (Cm ⊗ C

n)∗ n m ≥ n ≥ 2 yes iff m = n

GLn Λ2(Cn)⊕ Λ2(Cn)∗ [n
2
] n ≥ 4 yes iff n even

GLn S2(Cn)⊕ S2(Cn)∗ n n ≥ 2 yes

GLn C
n ⊕ C

n∗ 1 n ≥ 1 yes iff n = 1

C
× × Sp2m C

2m ⊕ C
2m∗ 1 m ≥ 2 no

C
× × SOm C

m ⊕ C
m∗ 2 m ≥ 5 yes

C
× × Spin7 C

8 ⊕ C
8∗ 2 − yes

C
× × Spin10 C

16 ⊕ C
16∗ 2 − no

C
× ×G2 C

7 ⊕ C
7∗ 2 − yes

C
× × E6 C

27 ⊕ C
27∗ 3 − yes

TABLE B: INDECOMPOSABLE POLAR SYMPLECTIC REPRESENTATIONS OF TYPE 2

In the last column of Table B, non-essentialness of the center means that its removal

does not change the closed orbits; otherwise, the closed orbits change and the represen-

tation ceases to be polar.
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A symplectic symmetric space is a symmetric space which is endowed with a symplec-

tic structure invariant by the symmetries. Our interest in them is that the (complexified)

isotropy representations of symplectic symmetric spaces provide examples of symplectic

θ-groups [Vin76, Kac80], thus, polar symplectic representations. Conversely, it is a natural

question to ask which polar symplectic representations come from symplectic symmetric

spaces. We say that two symplectic representations are closed orbit equivalent if there exists

a symplectic isomorphism between the representation spaces mapping closed orbits onto

closed orbits (for the sake of comparison, recall that in the orthogonal case all polar repre-

sentations come from symmetric spaces, up to closed orbit equivalence [Dad85, GG08]).

Note that polarity is a property of closed orbit equivalence classes.

Theorem 3. A polar symplectic representation is closed orbit equivalent to the isotropy repre-

sentation of a complex semisimple symplectic symmetric space if and only if it is closed orbit

equivalent to the complexification of the isotropy representation of a semisimple Hermitian Rie-

mannian symmetric space. In the saturated case, such representations are exactly the products of

representations listed in Table B.

Finally, recall that a symplectic representation (G, V ) has a canonical moment map µ :

V → g∗ (see section 6). Since µ is equivariant, it induces an invariant moment map ψ =

µ//G : V //G→ g∗//G.

Theorem 4. The moment map of a saturated polar symplectic representation maps closed orbits

to closed orbits and separates closed orbits.

Remark 5. The only saturated indecomposable polar symplectic representation for which

the invariant moment map ψ fails to be an isomorphism from V //G onto an affine space

in g∗//G is the last one in Table B. Hence, in all the other cases the morphism ψ∗ : C[g∗]G →

C[V ]G is surjective, that is, all invariants are pull-backs of coadjoint invariants.

Remark 6. In case of type 2 representations, Theorems 1 and 4 reduce to known facts about

polar representations of compact Lie groups in the sense of Dadok [Dad85]. Let (K,U)

be an orthogonal representation of a compact Lie group K and consider its complexifica-

tion (G := KC, V := UC). It is easy to check that (G, V ) is polar if and only if (K,U) is

polar. Suppose now U admits an invariant complex structure. Then (G, V = U ⊕ U∗) is

coisotropic if and only (K,U) is multiplicity free (cf. [Kno06, p.532] or [Kno07, Prop. 9.2])

if and only if (K,U) has coisotropic principal K-orbits ([Kno98, Thm. 3.1] and [Vin01,

Prop. 12]) so Theorem 1 says that a polar representation of a compact Lie group has

coisotropic principal K-orbits (compare [PT02, Thm. 1.1 and Lem. 2.7]). Moreover the

moment map µ of (G, V ) restricts to the moment map µK of (K,U), every G-orbit through

a point in U is closed [Bir71], and two different K-orbits in U cannot be contained in the

same G-orbit (since C[V ]G = R[U ]K ⊗C; see also [Bre93, § 2.2]), so Theorem 4 says that µK

separates K-orbits (compare [PT02, Cor. 1.5] and [HW90, p. 274]).
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2. PRELIMINARIES

We begin by recalling terminology from [Kno07] that will be useful in the sequel. A

symplectic representation of G is called indecomposable if it is not isomorphic to the sum

of two non-trivial symplectic representations of G. A symplectic representation V of G is

called of type 1 if V is irreducible as a G-module, and it is called of type 2 if V = U ⊕ U∗

where U is an irreducible G-module not admitting a symplectic structure and the sym-

plectic form on V is given (up to a multiple) by

ω(u1 + u∗1, u2 + u∗2) = u∗1(u2)− u∗2(u1).

Every indecomposable symplectic representation is either of type 1 or 2. Two symplectic

representations are isomorphic as G-modules if and only if they are isomorphic as sym-

plectic representations. Every symplectic representation is a direct sum of finitely many

indecomposable symplectic representations, and the summands are unique up to permu-

tation [Kno06, Theorem 2.1].

It is convenient to revisit the result above as follows. Choose a maximal compact sub-

group K of G (necessarily connected) and a K-invariant Hermitian inner product h on V .

A K-invariant conjugate linear automorphism ǫ : V → V is then defined by

ω(u, v) = h(u, ǫv)

for all u, v ∈ V . Then

h(u, ǫ2v) = ω(u, ǫv) = −ω(ǫv, u) = −h(ǫv, ǫu)

= −h(ǫu, ǫv) = −ω(ǫu, v) = ω(v, ǫu) = h(v, ǫ2u) = h(ǫ2u, v),

so ǫ2 is a C-linear K-invariant Hermitian endomorphism of V . It also follows from the

above that h(u, ǫ2u) = −||ǫu||2, so ǫ2 is negative definite. Now there is a h-orthogonal

K-irreducible decomposition V =
⊕

Vj such that ǫ2|Vj
= λjidVj

for λj < 0 and all j. For

each j, either ω|Vj×Vj
is non-degenerate or it is zero (since ω is K-invariant and Vj is K-

irreducible). In the former case, ǫ(Vj) = Vj . In the latter case, ǫ(Vj) ⊥h Vj and ǫ(Vj) =

V ∗
j (since ǫ is conjugate-linear). Hence V is an h-orthogonal direct sum of symplectic

representations of type 1 (Vj is irreducible and anisotropic) and type 2 (Vj ⊕ V ∗
j , where

Vj is irreducible and isotropic). By renormalizing h, we may assume that ǫ2 = −idV ; in

particular, ǫ becomes an h-isometry.

Let ρi : gi → sp(Vi) for i = 1, 2 be two symplectic representations. We say V1 and V2 are

(geometrically) equivalent (resp. closed orbit equivalent) if there is a symplectic isomorphism

ϕ : V1 → V2, inducing an isomorphism ϕ̃ : sp(V1) → sp(V2), such that ρ2(g2) = ϕ̃(ρ1(g1))

(resp. ϕ maps closed orbits of G1 onto closed orbits of G2). The product of ρ1 and ρ2 is the

algebra g1 ⊕ g2 acting on V1 ⊕ V2; it is a symplectic representation. A symplectic represen-

tation is called connected if it is not equivalent to the product of two non-trivial symplectic
4



representations. Of course, it suffices to prove the above theorems for connected repre-

sentations.

A symplectic representation ρ : g → sp(V ) is called saturated if ρ[g] is self-normalizing

in sp(V ). Note that every type 2 representation U ⊕ U∗ has non-trivial endomorphisms,

namely, t1 acting by t · (u, u∗) = (tu,−tu∗). We will also use the following notation

from [Kno06]. Let U be a representation of a semisimple Lie algebra s. We denote the

type 2 representation of g = s + t1 on U ⊕ U∗ by T (U). Continuing, if U1, U2 are two

representations of s, then T (U1)⊕ T (U2) is a representation of g = s+ t2.

Remark 7. Let U be a symplectic representation of G with U ∼= U∗. Then (G×SO2, U ⊗C
2)

is isomorphic to T (U) = U ⊕ U via v ⊗ e1 + w ⊗ e2 7→ (v + iw, v − iw).

Recall that a representation is called stable if generic orbits are closed. A representation

of the form U⊕U∗ is always stable, since it admits the invariant orthogonal structure given

by 〈u1+u
∗
1, u2+u

∗
2〉 = u∗1(u2)+u

∗
2(u1) and one can apply [Sch80, Cor. 5.9] or [Lun72, Lun73].

A useful necessary and sufficient condition for the stability of a symplectic representation

is that the generic isotropy algebra be reductive [Los05, Thm. 2]. Recall also that the rank

of a representation V of G is the difference between the dimension of V //G and that of the

subspace of fixed points V G. We next quote two results about polar representations that

will be essential to our discussion.

Proposition 8 ([DK85], Thm. 2.4). Let V be a polar representation ofG, let v ∈ V be semisimple,

and setNv to be the orthocomplement of g·v with respect to aK-invariant Hermitian inner product

on V , where K is a maximal compact subgroup of G. Then the slice representation of Gv on Nv is

polar. Moreover, any Cartan subspace of Nv for the action of Gv is also a Cartan subspace of V for

the action of G.

Proposition 9 ([DK85], Prop. 2.14 and Cor. 2.15). Let V = V1 ⊕ V2 be a polar representation

of G, where V1 and V2 are G-invariant. Then:

(a) The subrepresentations V1 and V2 are polar.

(b) If V1, say, is stable, then every Cartan subspace of V is the direct sum of Cartan subspaces

of V1 and V2; it follows that rank (V ) = rank (V1) + rank (V2).

(c) Under the assumptions in (b), the set of closed orbits of G in V2 coincides with the set of

closed orbits of Gv1 , where v1 ∈ V1 is any semisimple point.

We can now prove:

Proposition 10. Let ρ : g → sp(V ) be a polar symplectic representation. Then:

(a) The centralizer of ρ[g] in sp(V ) is commutative.

(b) Let ĝ be the normalizer of ρ[g] in sp(V ). Then (ĝ, V ) is saturated and closed orbit equiva-

lent to (g, V ).

It follows from (b) that (g̃, V ) is polar for every ρ[g] ⊂ g̃ ⊂ ĝ.
5



Proof. (Compare [Kno06, Prop. 2.2].) Let V =
⊕

i C
ni

i be a decomposition into inde-

composable symplectic representations where the Ci are mutually non-isomorphic. The

centralizer of ρ[g] in sp(V ) is the product of the centralizers of the Cni

i . There are three

cases to consider:

1. Ci is of type 1. Then the centralizer is soni
.

2a. Ci = U ⊕ U∗ is of type 2 with U 6∼= U∗. Then the centralizer is glni
.

2b. Ci = U ⊕ U∗ is of type 2 with U ∼= U∗. Then the centralizer is sp2ni
.

A component Ci of type 1 has multiplicity ni ≤ 2 since C2
i is stable and we can apply

Proposition 9(c) to C3
i . The same corollary yields that ni ≤ 1 in case 2a since Ci is stable in

that case, and that components of type 2b cannot occur since U is stable in that case. This

proves part (a).

It follows from (a) and Remark 7 that we can write V = W ⊕ U ⊕ U∗, where W =

W1 ⊕ · · · ⊕Wr, U = U1 ⊕ · · · ⊕ Us, the Wi are indecomposable of type 1, and either the

Uj ⊕ U∗
j are indecomposable of type 2 or Uj is of type 1; moreover, the Wi (resp. Uj ⊕ U∗

j )

are pairwise non-isomorphic, and ĝ = ts+ g = ts ⊕ g′, where g′ is the derived algebra of g.

Since Uj⊕U
∗
j is always a stable representation and (g, U⊕U∗) is polar (Proposition 9(a)),

the latter representation is closed orbit equivalent to a product of polar representations
⊕s

j=1(gj, Uj ⊕ U∗
j ) [GG08, Lem. 5]. This is the complexification of

⊕s

j=1(kj , Uj), where

kj is a maximal compact subalgebra of gj . Now (kj, Uj) is real polar irreducible with an

invariant complex structure, so it is orbit equivalent to the action of its normalizer (k̂j , Uj)

according to [Dad85, p. 129]; note that k̂j = u1 ⊕ kj if kj is not self-normalizing. Passing to

the complexifications we deduce that (gj , Uj ⊕ U∗
j ) is closed orbit equivalent to the action

of its normalizer (ĝj , T (Uj)) [GG08, Lem. 8], where ĝj = t1⊕gj if gj is not self-normalizing,

and hence (g, U ⊕ U∗) is closed orbit equivalent to (ĝ, T (U)).

Since U⊕U∗ is stable, every Cartan subspace c for (g, V ) is of the form c = c′⊕c′′ where c′

is a Cartan subspace of (g,W ) and c′′ is a Cartan subspace of (g, U⊕U∗) (Proposition 9(b)).

Let v ∈ c be arbitrary and write v = w + u where w ∈ c′ and u ∈ c′′. By the above, given

X ∈ ts, there is Y ∈ g such that X · u = Y · u. Since (g, U ⊕ U∗) is stable, there is Z ∈ gu

such that Z · w = Y · w (Proposition 9(c)). Now

X · v = X · u+X · w = X · u = Y · u

= Y · v − Y · w = Y · v − Z · w = Y · v − Z · v = (Y − Z) · v

where Y − Z ∈ g, which proves that the G and Ĝ-orbits through v coincide. Since every

closed Ĝ-orbit contains a closed G-orbit, we are done. �
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3. POLAR SYMPLECTIC REPRESENTATIONS ARE COISOTROPIC

In this section we prove Theorem 1. LetG be a connected complex reductive linear alge-

braic group and let V be a rational representation. Assume (G, V ) is symplectic, i.e. there

exists a G-invariant non-degenerate skew-symmetric bilinear form ω on V .

We begin with an interesting observation which will not be needed later.

Proposition 11. If (G, V ) is polar symplectic without trivial components then every Cartan sub-

space is isotropic.

Proof. Let c ⊂ V be a Cartan subspace. The restriction ω|c×c is W (c)-invariant, where

W (c) = NG(c)/ZG(c) is the Weyl group of (G, V ) with respect to c, and W (c) is gen-

erated by unitary reflections [DK85, Lem. 2.7 and Th. 2.10]. For w ∈ W (c), a vector

u in the fixed point set cw of w, and a w-eigenvector v ∈ c transversal to cw, we have

ω(u, v) = ω(w · u, w · v) = e
2πi
q ω(u, v) for some positive integer q 6= 1, thus ω(cw, v) = 0.

We deduce that v ∈ kerω|c×c. Since a basis of c can be constructed which consists of such

eigenvectors of reflections (otherwise c has a non-zeroW (c)-fixed subspace which implies

that V has a non-zero G-fixed subspace [DK85, Lem. 2.11 and Prop. 2.13]), this shows that

the restriction of ω to c is null. �

3.1. Knop reduction. Denote by g the Lie algebra of G and fix a Cartan subalgebra h of

g and a system of positive roots ∆+ ⊂ ∆. For each α ∈ ∆, the corresponding coroot is

denoted by α∨. The weight system of V is denoted by Λ. A weight λ ∈ Λ is called:

(i) extremal or highest if α ∈ ∆ and 〈λ|α∨〉 > 0 implies λ+ α 6∈ Λ;

(ii) toroidal if 〈λ|α∨〉 = 0 for all α ∈ ∆;

(iii) singular if it is extremal and 2λ ∈ ∆ and the multiplicity of λ is one.

A submodule U of V generated by a highest weight vector is called singular if U is an

anisotropic subspace of V and G → Sp(U) is surjective. Note that if λ is an extremal

weight of V and 2λ ∈ ∆, then we can always find a highest weight vector for λ that

generates a singular submodule of V ; however, in case the multiplicity of λ is bigger than

one, one can also find a highest weight vector that generates an isotropic, hence non-

singular submodule [Kno07, Remarks, p. 228].

A symplectic representation is called terminal if all of its highest weights are either

toroidal or singular. Equivalently, a symplectic representation is terminal if every highest

weight vector generates either a one-dimensional module or a singular submodule. Such

a representation (G, V ) decomposes as

(3·1) V = V0 ⊕ V1 ⊕ · · · ⊕ Vs, G = G0 × Sp(V1)× · · · × Sp(Vs)

where V0 = ⊕m
i=1(Cλi

⊕C−λi
) is a direct sum of 1-dimensionalG0-modules [Kno07, Propo-

sition 4.1]. A terminal symplectic representation is coisotropic if and only if the set of

weights {λ1, . . . , λm} is linearly independent [Kno06, Theorem 3.1].
7



Knop reduction is a finite algorithm which, for a given symplectic representation, out-

puts a terminal symplectic representation. Each intermediate step of the algorithm pro-

duces a representation which is coisotropic if and only if the original representation was

coisotropic. Since coisotropicity is easy to check for terminal representations, this pro-

vides an effective criterion to decide whether a given symplectic representation is coiso-

tropic or not. Indeed it was used in [Kno06] to classify coisotropic symplectic representa-

tions.

3.2. The step in the algorithm. Let (G, V ) be a non-terminal symplectic representation.

Choose an extremal weight λ ∈ Λ which is neither toroidal nor singular. Put P = {α ∈

∆|〈λ|α∨〉 > 0} and Q = λ− P as multisets (i.e. sets with multiplicities), and

∆′ = ∆ \ (P ∪ −P ), Λ′ = Λ \ (Q ∪ −Q).

The choice of λ ensures that ∆′ is the root system of a reductive Lie algebra l (namely, a

Levi subalgebra of the stabilizer of the line through a highest weight vector of λ), and Λ′

is a weight system of a symplectic representation S of l.

Theorem 12 ([Kno07], Thm. 8.4 and Prop. 9.1). (g, V ) is coisotropic if and only if so is (l, S).

We remark that the multiset Λt of toroidal weights is invariant under multiplication

by −1 and contains zero with even multiplicity, and its cardinality strictly increases in

passing from (g, V ) to (l, S). In fact, λ is non-toroidal for (g, V ) but it is toroidal for (l, S);

moreover, for all α ∈ ∆+ with 〈λ|α∨〉 6= 0, we have that µ = λ−α is non-toroidal for (g, V )

(since
∑

β∈∆+〈λ|β∨〉 is an odd number [Sam90, Prop. G, p. 142]), so any toroidal weight µ

of (g, V ) has weight space contained in S, and thus µ is also toroidal for (l, S). By [Kno07,

Theorem 8.4], dimV//G = dimS//L. Now the integer

m(g, V ) := dimV//G−
1

2
#Λt ≥ 0

strictly decreases under each step in Knop reduction. The algorithm stops after finitely

many steps, necessarily at a terminal representation. The final value of m(g, V ) equals

zero if and only if the terminal representation is coisotropic [Kno06, Theorem 3.1].

3.3. Relation to slice representations. Suppose λ is a highest weight which is neither

toroidal nor singular. Take a corresponding highest weight vector vλ of unit length that

generates a non-singular submodule. Consider:

v−λ = ǫ(vλ) : lowest weight vector, so that ω(vλ, v−λ) = 1

p : stabilizer of C vλ (parabolic subalgebra of g)

pu : unipotent radical of p

l : Levi subalgebra of p, so that p = l+ pu

p− = l+ p−u : opposite parabolic subalgebra
8



Then C vλ ⊕ p−u vλ and C v−λ ⊕ puv−λ are isotropic subspaces of V [Kno07, Lem. 3.2]. There

are also decompositions

(3·2) V = puv−λ ⊕ (p−u vλ)
⊥ω = p−u vλ ⊕ (puv−λ)

⊥ω ,

see [Kno07, Lem. 3.3]. We claim these decompositions are h-orthogonal. In fact, for ξ ∈ pu,

u ∈ (p−u vλ)
⊥ω ,

h(ξv−λ, u) = −ω(ξv−λ, ǫu) = ω(ǫξv−λ, u) = −ω(ξ̃vλ, u) = 0

where ξ̃ = ǫ−1 ξǫ ∈ p−u ; similarly for the second decomposition in (3·2). Since vλ gener-

ates a non-singular submodule, puv−λ ∩ p−u vλ = {0}. Also [Kno07, Eq. (3.3)] or [Kno06,

Thm. 3.2]

(3·3) S = (puv−λ)
⊥ω ∩ (p−u vλ)

⊥ω .

Note that

p = h+
∑

α∈∆+

gα +
∑

α∈∆+

〈λ|α∨〉=0

g−α

and

l = h+
∑

α∈∆+

〈λ|α∨〉=0

(gα + g−α) = l′ + z

where l′ is the derived subalgebra of l and z is the center of g.

Let v = vλ + v−λ. Then v is a semisimple point [DK85, Proposition 1.2]. The tangent

space to the G-orbit through v is

(3·4) g · v = puv−λ ⊕ p−u vλ ⊕ C(vλ − v−λ).

Consider the isotropy subalgebra

gv = ker λ
︸︷︷︸

⊂h

+
∑

α∈∆+

〈λ|α∨〉=0

(gα + g−α).

Since l′ is generated by the gα satisfying 〈λ|α∨〉 = 0, we have l′ ⊂ gv. Now we can find a

complementary line to gv in l contained in z. Hence there is a direct sum of ideals

(3·5) l = gv ⊕ t1.

Assume now our symplectic representation (G, V ) is in addition polar. It is interesting

to relate Knop reduction with respect to the weight λ to the slice representation at v. The

slice representation (gv, Nv) is also polar, where Nv is the h-orthocomplement of g · v in V ,

in view of Proposition 8. Write S = C vλ ⊕C v−λ ⊕ S◦, h-orthogonal decomposition. Then

S◦ is a symplectic subspace of S and S◦ ⊕ C v = Nv (due to (3·2), (3·3) and (3·4)). Since gv

acts trivially on C vλ ⊕C v−λ, the subspace S◦ is gv-invariant and (gv, S◦) is polar and thus

also (gv, S) is polar. It follows from (3·5) and Proposition 10(b) that (l, S) is polar. Since

l · v = C(vλ − v−λ), any Cartan subspace c of (l, S) passing through v satisfies c ⊥h vλ − vλ,
9



so that c ⊂ Nv. It follows from Proposition 8 that c is a Cartan subspace of (g, V ). We have

proved:

Proposition 13. If (g, V ) is a non-terminal polar symplectic representation, then any Knop re-

duction (l, S) is also a polar symplectic representation. Moreover, any Cartan subspace of (l, S) is

a Cartan subspace of (g, V ).

3.4. End of the proof of Theorem 1. We apply induction on m(g, V ). By the above,

m(l, S) < m(g, V ) and (l, S) is polar, so the induction step implies that (l, S) is coisotropic.

Hence (g, V ) is coisotropic by Theorem 12. The initial case of the induction is the case of

a terminal representation.

Lemma 14. A terminal representation is polar if and only if it is coisotropic.

Proof. Let (G, V ) be a terminal representation as in (3·1). It has already been remarked

that (G, V ) is coisotropic if and only if the weights λ1, . . . , λm are linearly independent.

We check that the latter condition is equivalent to the polarity of (G, V ).

Since (Sp(Vi), Vi) has no non-trivial closed orbits, we may assume Vi = 0 for i = 1, . . . , s

and G is a complex torus Tk = (C×)k acting effectively on V = V0. Effectiveness says

that k ≤ m and equality holds if and only if the weights are l.i.. If k = m then the

representation is them-fold product of the standard representation (T1,C⊕C∗) and hence

polar. Conversely, assume the representation is polar. Let v1 = vλ1
+ v−λ1

= (1, 1) ∈ Cλ1
⊕

C−λ1
. Then Gv1 is the subtorus Tk−1 defined by λ1 = 0, and the normal space Nv1 equals

⊕m
i=2(Cλi

⊕C−λi
) plus a one-dimensional trivial component. The slice representation at v1

is polar and effective, thus by induction k−1 = m−1 and hence k = m, as we wished. �

Remark 15. In the situation of Lemma 14, a Cartan subspace is given by 〈vλ1
+

v−λ1
, . . . , vλm

+ v−λm
〉.

4. THE CLASSIFICATION

In this section, we prove Theorem 2. Due to Theorem 1, a polar symplectic representa-

tion is coisotropic, so we will extract the list of saturated polar symplectic representations

from the lists of saturated coisotropic representations given, up to geometric equivalence,

by [Kno06, Thms. 2.4, 2.5 and 2.6].

Suppose V is a saturated indecomposable polar symplectic representation of g. If

it is of type 1, then it is listed in [Kno06, Table 1]. Representations in this table with

dimV //G ≤ 1 are trivially polar, so we run through the other cases. Some representations

with dimV //G = 2 are already discussed in [DK85, p. 512 and 523]. We finish this case

by referring to [Lit89, Tabelle, p.199 and p.201], where irreducible polar representations

of connected semisimple Lie groups are classified (see also discussion in [Lit89, p. 208]).

We obtain our Table A.
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Suppose now V is of type 2. Then it is listed in [Kno06, Table 2]. In this case V = U⊕U∗

and (g, V ) is the complexification of (k, U), where k is a maximal compact subalgebra

of g and U is a real irreducible polar representation with an invariant complex structure.

Therefore we can refer to the classification of irreducible polar representations of compact

connected Lie groups [Dad85, EH99]. We obtain our Table B.

We will complete the proof of the theorem by showing that every saturated decompos-

able polar symplectic representation is a product, namely, connected saturated decompos-

able polar symplectic representations do not exist. An sl2-link is an sl2-factor of g which

acts effectively on at least two components of V . All connected saturated decomposable

coisotropic representations without sl2-links are listed in [Kno06, Tables 11, 12 and 22],

and we will see shortly that none of these is polar. Indeed due to Proposition 9(a), we

need only examine the representations in tables 11, 12 and 22 whose irreducible compo-

nents are all polar. The only unstable representations in Table A are (Sp2m,C
2m) for all

m ≥ 1 and (SOp × Sp2m,C
p ⊗ C

2m) where 3 ≤ p < 2m and p is odd, while all repre-

sentations in Table B are stable. Now all representations in Tables 12 and 22 have both

components polar and at least one component stable, and we check that the rank con-

dition of Proposition 9(b) is violated by all of them. The same argument applies to the

representations of Table 11, but 〈11.13〉 which has a non-polar component and therefore

is not polar, and the two sub-cases not having stable components of 〈11.11〉 and 〈11.14〉,

which are discussed in Lemmata 16 and 17.

We borrow more notation from [Kno06] (cf. (2.4), p. 538). The line under the ⊕-sign

below means that the algebras immediately to the left and to the right are being identified

and the resulting algebra is acting diagonally.

Lemma 16. sop ⊗ sp2m⊕sp2m is not polar for 3 ≤ p < 2m and p odd.

Proof. We will use Proposition 13. The Lie algebra is sop + sp2m and the representation

space is V1 ⊕ V2, where V1 = C
p ⊗C

2m and V2 = C
2m. By performing Knop reduction with

respect to a highest weight vector of V1 and proceeding by induction, we may assume

p = 3 and m ≥ 2. A further step of Knop’s algorithm yields

Cλ1
⊕ C−λ1

⊕ Cǫ′
1
⊕ C−ǫ′

1
⊕ sp2m−2⊕sp2m−2

where λ1 = 2ǫ1 + ǫ′1. This representation is polar [DK85, p. 522] with Cartan subspace

c = c0 ⊕ c1 ⊕ c2, where c0, c1 and c2 are one-dimensional Cartan subspaces for Cλ1
⊕C−λ1

,

Cǫ′1
⊕ C−ǫ′1

and sp2m−2⊕sp2m−2, respectively. If the given representation were polar, then

it would have c as a Cartan subspace. Since Cǫ′
1
⊕ C−ǫ′

1
⊂ V2 and V2 contains no non-zero

semisimple points, this is not possible. �

Lemma 17. sp2m ⊗ so5⊕sp4 is not polar for m ≥ 3.
11



Proof. This representation has rank 4. Knop reduction with respect to a highest weight

λ1 of the first summand yields

Cλ1
⊕ C−λ1

⊕ sp2m−2 ⊗ S2sl2⊕T (sl2).

Consider the last two summands, namely, 〈S.13〉 + 〈S.10〉 in [Kno06, Table S]. This is not

polar, since its rank is 3, T (sl2) is stable of rank 1, and sp2m−2⊗S2sl2 has rank 1, so we can

apply Proposition 9(b). �

We finish the proof by considering connected saturated decomposable coisotropic rep-

resentations with sl2-links. According to [Kno06, Thm. 2.6] they are obtained by taking

any collection of representations from Table S (ibid) and identifying any number of dis-

joint pairs of underlined sl2’s, except that not allowed is the identification of the two sl2’s

of 〈S.1〉 and the combination of 〈S.9〉 with itself. Again by Proposition 9(a), we need only

consider entries in Table S which are polar; for convenience, we list them below, and make

some remarks which will be useful in the sequel.

(g, V )

〈S.1〉 sl2 ⊗ sp2m ⊗ sl2 m ≥ 1

〈S.3〉 son ⊗ sl2 n ≥ 3

〈S.5〉 spin9 ⊗ sl2

〈S.7〉 spin7 ⊗ sl2

〈S.9〉 sl2

〈S.10〉 T (sl2)

〈S.11〉 T (slm ⊗ sl2) m ≥ 2

〈S.13〉 sp2m ⊗ S2sl2 m ≥ 1

〈S.16〉 g2 ⊗ sl2

TABLE S’: POLAR REPRESENTATIONS IN [Kno06, Table S]

In Table S’, all representations but 〈S.9〉 contain nonzero semisimple points, and the

only unstable representations are 〈S.9〉 and 〈S.13〉 withm ≥ 2. Suppose V is different from

〈S.9〉 and 〈S.13〉 with m ≥ 1. Then V = W ⊗ C
2, where g = h + sl2, W is a representation

of h and C
2 = 〈e1, e2〉 is acted on by sl2; also W is irreducible and non-singular if V is

not 〈S.10〉, 〈S.11〉, and W = U ⊕ U∗ otherwise. Let λ be an extremal weight of V , choose

weight vectors v±λ such that ω(vλ, v−λ) = 1 and put

(4·1) v = vλ + v−λ.

Then v = w ⊗ e1 + w− ⊗ e2 where w, w− ∈ W and gv = hv + t1. Finally, note that

(4·2) w ⊗ e2 ∈ sl2 · v ⊂ g · v, but w ⊗ e2 6∈ (h+ t1) · v.
12



Suppose now V is 〈S.13〉. Then V = C
2m ⊗ C

3 and g = h + sl2, where h = sp2m. The

isotropy algebra at v = vλ + v−λ is gv = hv + t1, where hv = sp2m−2. Last, the restriction of

V to h+ t1 is T (sp2m)⊕sp2m.

Lemma 18. The combination of 〈S.9〉 with any other representation in Table S’ is not polar.

Proof. Suppose the assertion is not true. Consider such a polar representation V =

V1 ⊕ V2 where V2 = C
2 is acted on by sl2, and let g = h + sl2. Due to Proposition 13,

Knop reduction with respect to the highest weight λ1 of V1 yields a polar representation

(Cλ1
⊕C−λ1

⊕U)⊕ (Cǫ1 ⊕C−ǫ1), where U is a subspace of V1, ±2ǫ1 are the roots of sl2, and

Cǫ1 ⊕ C−ǫ1 equals V2. By Proposition 9, a Cartan subspace of this representation is of the

form c = c1⊕ c2, where c1 ⊂ Cλ1
⊕C−λ1

⊕U and c2 is the diagonal subspace of Cǫ1 ⊕C−ǫ1 ;

by Proposition 13, c is a Cartan subspace of V , too. However V2 does not contain non-zero

G-semisimple elements of V , and this is a contradiction. �

Lemma 19. The combination of 〈S.13〉 with itself or any other representation in Table S’ different

from 〈S.9〉 is not polar.

Proof. Write V = V1 ⊕ V2 where V1 is 〈S.13〉. Knop reduction with respect to the

highest weight λ2 of V2 contains as a summand T (sp2m)⊕sp2m by the last sentence be-

fore Lemma 18. If m ≥ 2, this is a connected saturated representation without sl2-links

and has already been shown not to be polar. If m = 1, we have T (sl2)⊕sl2 which is not

polar by Lemma 18. Hence in neither case is V polar. �

Let now V be an arbitrary connected saturated decomposable coisotropic representa-

tion of g with sl2-links. We will show that V is not polar. In view of Proposition 9(a),

we may assume that V has two components and both are polar. Now g = g1 + s + g2,

V = V1 ⊕ V2, and Vi is an indecomposable symplectic representation of gi + s given by

Table S’, i = 1, 2, where s is an sl2-link. Owing to Lemmata 18 and 19, we may assume

V1 and V2 are both different from 〈S.13〉 and 〈S.9〉. Let v ∈ V1 be a semisimple point as

in (4·1). Then gv1 = (g1 + s)v1 + g2 = (g1)v + t1 + g2. If V were G-polar then, due to Propo-

sition 9(c), the set of closed orbits of T 1 · G2 in V2 would have to coincide with the set of

closed orbits of SL2 ·G2, but it follows from (4·2) that this is not the case. This finishes the

proof of Theorem 2.

5. SYMPLECTIC SYMMETRIC SPACES

A symplectic symmetric space is a symmetric space which is endowed with a symplectic

structure invariant by the symmetries. We refer to [Bie95, Bie98] for the basic theory of

such spaces. Our interest in them is that the (complexified) isotropy representations of

symplectic symmetric spaces provide examples of symplectic θ-groups (namely, adjoint

groups of graded Lie algebras) thus, polar symplectic representations [PV94, §8.5, 8.6].

Indeed simply-connected symplectic symmetric spaces are parametrized by symplectic
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involutive Lie algebras. A symplectic involutive Lie algebra is a triple (g, σ, ω) where g is

a real Lie algebra, σ is an involution of g, with respect to which there is an eigenspace

decomposition g = h+ q, and ω is an adh-invariant non-degenerate 2-form on q.

An indecomposable (i.e. non-isomorphic to a product of symplectic involutive Lie alge-

bras) non-flat (i.e. satisfying [q, q] 6= 0) reductive symplectic involutive Lie algebra (g, σ, ω)

is simple [Bie95, Prop. 3.5.4]. The symplectic structures ω on a simple involutive Lie al-

gebra (g, σ) are parametrized by the non-zero elements in the center Z(h) of h [Bie98,

Th. 2.1]. Moreover, if g is a complex Lie algebra viewed as real, then σ is a complex au-

tomorphism, ω is complex bilinear, dimC Z(h) = 1 and (h, q) is a θ-group; otherwise g is

absolutely simple, dimR Z(h) = 1 and the complexification (hC, qC) is a θ-group [Bie98,

Prop. 2.2 and Thm. 2.2]. In any case, the (indecomposable) polar symplectic represen-

tations thus obtained are exacly the complexified isotropy representations of irreducible

Hermitian Riemannian symmetric spaces [Bie98, § 10], hence of type 2 and listed in Ta-

ble B. On the other hand, every representation in Table B is closed orbit equivalent to the

complexification of the isotropy representation of an irreducible Hermitian Riemannian

symmetric space [Dad85, EH99].

A complex semisimple symplectic involutive Lie algebra is the product of complex

simple symplectic involutive Lie algebras [BCG95, Prop. 3], each of which with an inde-

composable (polar) symplectic representation (of type 2) as isotropy representation. Now

an arbitrary polar symplectic representation can be assumed saturated, up to closed orbit

equivalence (Proposition 10(b)), and then it is the product of indecomposable polar sym-

plectic representations (Theorem 2); finally, it is closed orbit equivalent to the isotropy

representation of a complex semisimple symplectic symmetric space if and only if each of

its factors is. This completes the proof of Theorem 3.

6. THE MOMENT MAP

Recall the idea of a moment map. In our context, an action of an algebraic group G

on a symplectic variety (X,ω) is called Hamiltonian if there exists a moment map, that is,

an equivariant map µ : X → g∗ (where g∗ is regarded with the coadjoint representation)

such that ω(ξx, v) = 〈dµx(v)|ξ〉 for all ξ ∈ g, v ∈ TxX , x ∈ X (compare [Kno07, section

2]). In our particular case of interest X = V is a symplectic representation of G, there is a

canonical moment map given by

µ : V → g∗, 〈µ(v)|ξ〉 =
1

2
ω(ξv, v).

Assume now V is polar symplectic. Apply Knop reduction to get a terminal rep-

resentation with set of weights {λ1, . . . , λr}. Let vλj
be an h-unit λj-weight vector,

and v−λj
= ǫ(vλj

) so that ω(vλj
, v−λj

) = 1. Owing to Proposition 13 and Remark 15,

c = 〈vλ1
+ v−λ1

, . . . , vλr
+ v−λr

〉 is a Cartan subspace of (G, V ).
14



We say that a set of weights of a representation is strongly orthogonal if neither the sum

nor the difference of weights in the set is a root.

Proposition 20. (a) If the set {λ1, . . . , λr} is strongly orthogonal, then

µ

(
r∑

j=1

aj(vλj
+ v−λj

)

)

=

r∑

j=1

a2jλj,

where aj ∈ C. In particular,

µ(c) = 〈λ1, . . . , λr〉 =: a∗ ⊂ h∗.

(b) Every saturated polar symplectic representation admits a set {λ1, . . . , λr} satisfying the

assumption in (a).

Proof. (a) We first note that ω(gα(vλj
+ v−λj

), vλk
+ v−λk

) = 0 for all α ∈ ∆, by strong

orthogonality of λj , λk in case j 6= k, and by non-singularity of vλj
in case j = k. This

already shows µ(c) ⊂ h∗. To finish, let ξ ∈ h and compute

ω(ξ(vλj
+ v−λj

), vλk
+ v−λk

) = 〈λj|ξ〉ω(vλj
− v−λj

, vλk
+ v−λk

)

=

{

0, if j 6= k,

2〈λj|ξ〉, if j = k.

The desired formula follows.

(b) In view of Theorem 2, it suffices to consider the indecomposable case. We run

Knop’s algorithm for the representations listed in Tables A and B, where we can omit

those of rank at most one, and find explicitly a set {λ1, . . . , λr}. We obtain the following

table. (We use Bourbaki’s notation for weights [Bou68, Planches I-IX], and denote by η

the weight associated to t1.)

sp2m ⊗ sop ǫ1 + ǫ′1, . . . , ǫr + ǫ′r (r = min{[p2 ],m})

sl2 ⊗ spin9 ǫ1 +̟′
4, ǫ1 +̟′

1 −̟′
4

spin13 ̟6,̟3 −̟6

T (slm ⊗ sln) ǫ1 + ǫ′1 + η, . . . , ǫr + ǫ′r + η (r = min{m,n})

T (Λ2sln) ǫ1 + ǫ2 + η, . . . , ǫ2r−1 + ǫ2r + η (r = [n2 ])

T (S2sln) 2ǫ1 + η, . . . , 2ǫn + η

T (som) ̟1 + η,̟1 − η

T (spin7) ̟3 + η,̟3 − η

T (spin10) ̟4 − η,̟5 + η,

T (g2) ̟1 + η,̟1 − η

T (e6) ̟1 + η,̟6 − η,−̟1 +̟6 + η

TABLE C: KNOP ALGORITHM FOR SOME POLAR REPRESENTATIONS.

It is readily checked that {λ1, . . . , λr} is always strongly orthogonal. �
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Corollary 21. The moment map µ of a saturated polar representation maps closed orbits to closed

orbits.

Proof. This is clear from the proposition since the closed orbits of G in V (resp. g∗) are

exactly those that meet c (resp. h∗). �

Let (G, V ) be a symplectic representation. Since the moment map is equivariant, there

is an induced invariant moment map:

V
µ

> g∗

V //G
∨

......................
ψ := µ//G

> g∗//G
∨

Recall that we denote the Cartan subalgebra of g by h. Let π : h∗ → h∗/WG denote

the projection, where WG denotes the Weyl group of g with respect to h. Knop proved

in [Kno07] that there is an essentially unique subspace a∗ of h∗ and a subgroup WV of

Γ := NWG
(a∗)/ZWG

(a∗) acting on a∗ as a group generated by reflections such that the

morphism a∗/WV → π[a∗] is finite, the image of the (invariant) moment map is π[a∗], and

ψ factors through a map V //G→ a∗/WV ; moreover, (G, V ) is coisotropic if and only if the

morphism V //G→ a∗/WV is an isomorphism. Namely, a∗ is the span of {λ1, . . . , λr}.

Proof of Theorem 4. It remains only to prove the second assertion. Recall that, by Cheval-

ley’s theorem, g∗//G ∼= h∗/WG. Similarly, V //G ∼= c/W (c), where W (c) = NG(c)/ZG(c)

is the Weyl group of (G, V ) with respect to c; in addition, since G is connected, C[c]W (c)

is a polynomial algebra [DK85, Th. 2.9 and 2.10]. Hence V //G ∼= C
dim c. It follows that

ψ∗ : C[g∗]G → C[V ]G factors as the composition

C[h∗]WG
α
> C[a∗]Γ

β
> C[a∗]WV

We may assume that V is indecomposable. According to the last column of Tables 1 and 2

in [Kno06], WV = Γ so that β is the identity map, and α is surjective in all cases but T (e6).

We finish the proof by proving directly in this case that ψ is injective.

We need to show that WG · ξ ∩ a∗ = Γ · ξ for all ξ ∈ a∗ in case V = T (e6). We have

a∗ = 〈̟1 + η,−̟6 + η,−̟1 +̟6 + η〉. Let ξ1, ξ2 ∈ a∗ such that wξ1 = ξ2 for some w ∈ WG.

The action of WG fixes η and preserves the complex span ã∗ of ̟1, ̟6, so wξ̃1 = ξ̃2, where

ξ̃i is the ã∗-component of ξi with respect to a∗ = ã∗ ⊕ Cη. Moreover the action of WG

preserves the real span ã∗R of ̟1, ̟6, so, by taking real and imaginary components, we

may assume that ξ̃1, ξ̃2 ∈ ã∗
R

. Since the action of Γ on ã∗
R

is generated by the reflections on

the real lines through ̟1, ̟6, we may replace ξ̃1, ξ̃2 by suitable Γ-conjugates and further

assume that they are linear combinations of ̟1, ̟6 with non-negative coefficients. The
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fact that ̟1, ̟6 are fundamental weights of E6 now implies that ξ̃1, ξ̃2 belong to the closed

positive Weyl chamber and hence w = 1. This finishes the proof of of the theorem.

Remark 22. Since π : h∗ → h∗/WG is a dominant finite morphism between affine varieties,

it is a closed map and thus π[a∗] is an affine variety. We have shown that ψ is a bijective

morphism from V //G to π[a∗]. Essentially by Zariski’s main theorem [Mil12, ch. 8], ψ

is an isomorphism onto its image if and only if π[a∗] is a normal variety. In general,

ψ : V //G ∼= a∗/Γ → π[a∗] is the normalization morphism.

Example 23. We give the details of Knop reduction and Theorem 4 for T (e6). This is polar

since it is a θ-group. Now

∆ = {±ǫi ± ǫj | 1 ≤ i < j ≤ 5} ∪

{

±
1

2

(

ǫ8 − ǫ7 − ǫ6 +
5∑

i=1

(−1)νiǫi

)
∣
∣
∣

5∑

i=1

νi even

}

and

Λ =

{

±

(

η +
2

3
(ǫ8 − ǫ7 − ǫ6)

)}

∪

{

±

(

η +
1

6
(ǫ8 − ǫ7 − ǫ6)−

1

2

5∑

i=1

(−1)νiǫi

)
∣
∣
∣

5∑

i=1

νi even

}

∪

{

±

(

η −
1

3
(ǫ8 − ǫ7 − ǫ6)± ǫi

) ∣
∣
∣ 1 ≤ i ≤ 5

}

where η corresponds to the center of G. Let Ω = ǫ8 − ǫ7 − ǫ6 and denote the fundamental

highest weights of E6 by ̟1, . . . , ̟6. We start with the extremal weight ω1 := η + 2
3
Ω =

η +̟1, and we are left with

∆′ = {±ǫi ± ǫj | 1 ≤ i < j ≤ 5} and Λ′ =

{

±

(

η −
1

3
Ω± ǫi

) ∣
∣
∣ 1 ≤ i ≤ 5

}

.

We take sucessively ω2 := η− 1
3
Ω+ǫ5, ω3 := η− 1

3
Ω−ǫ5 and end up with Λ+

t = {̟1+η,̟6−

η,−̟1+̟6+η}, which is linearly independent. Now a∗ = 〈̟1+η,−̟6+η,̟6−̟1+η〉.

Since the angle between ̟1 and ̟6 is π/3, we get Γ = A2.

Example 24. In Theorem 4, we cannot drop the assumption that the representation

is saturated. In fact, consider the polar symplectic representation of type 2 given

by (SLn,C
n ⊕ C

n∗). Then µ : C
n ⊕ C

n∗ → sl∗n is given by µ(u, α)(ξ) = α(ξ · u) and

ψ : C → C
n−1 is given by ψ(z) = (σ2, . . . , σn) where σj = −(j − 1)

(
n

j

) (
z
n

)j
. In particu-

lar, if n = 2 then ψ(z) = −z2

4
does not separate closed orbits. Note that if n = 3 then

ψ(z) = (−z2

3
,−2z3

27
) is not an isomorphism onto its image; however, for all n, the enlarged

saturated polar symplectic representation T (sln) has C → C
n, z 7→ (z, 0, . . . , 0) as moment

map, that is, an isomorphism onto its image.
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