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Abstract. We carry out a detailed study of Ξ+, a distinguished G-invariant

Stein domain in the complexification of an irreducible Hermitian symmetric
space G/K. The domain Ξ+ contains the crown domain Ξ and is naturally

diffeomorphic to the anti-holomorphic tangent bundle of G/K. The unipotent

parametrization of Ξ+ introduced in [KrOp08] and [Krö08] suggests that Ξ+

also admits the structure of a twisted bundle G×K N+, with fiber a nilpotent

cone N+. Here we give a complete proof of this fact and use it to describe the
G-orbit structure of Ξ+ via the K-orbit structure of N+. In the tube case, we

also single out a Stein, G-invariant domain contained in Ξ+\Ξ which is relevant

in the classification of envelopes of holomorphy of invariant subdomains of Ξ+.

1. Introduction

Let G/K be a non-compact, irreducible, Riemannian symmetric space. Its
Lie group complexification GC/KC is a Stein manifold and left translations by ele-
ments of G are holomorphic transformations of GC/KC. In [AkGi90], Akhiezer and
Gindikin introduced the crown domain Ξ in GC/KC, with the aim of determining
a complex G-manifold whose analytic properties would reflect the harmonic anal-
ysis of G/K and the representation theory of G. Since then its complex analytic
properties have been extensively studied by several authors.

In the Hermitian case, Krötz and Opdam recently introduced two Stein G-
invariant domains Ξ+ and Ξ− in GC/KC, with Ξ+ ∩ Ξ− = Ξ, which are maximal
with respect to properness of the G-action on GC/KC. The relevance of Ξ and of the
domains Ξ+ and Ξ− for the representation theory of G was underlined in Theorem
1.1 in [Krö08]. Here we carry out a detailed analysis of the G-orbit structure of Ξ+.
Since Ξ+ and Ξ− are G-equivariantly anti-biholomorphic, the same analysis applies
to Ξ− as well.

Let G/K be an irreducible Hermitian symmetric space and let GC/Q be its

compact dual symmetric space, which is denoted by GC/Q when endowed with the
opposite complex structure. The space GC/KC admits an equivariant holomorphic
embedding

GC/KC ∼= GC · x0 ⊂ GC/Q×GC/Q

as the open dense orbit through x0 := (eQ, eQ) ∈ GC/Q × GC/Q, under the GC-
action defined by

g · (x, y) := (g · x, σ(g) · y) .

Here σ denotes the conjugation of GC with respect to G. Let π1 : GC/Q×GC/Q→
GC/Q be the projection onto the first factor. The G-invariant domain Ξ+ is defined
by

Ξ+ := (π1)−1(D) ∩GC · x0,
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where D := G · eQ is the Borel embedding of G/K in GC/Q. The domain Ξ+

contains the crown Ξ as the subset D ×D and the G-action on Ξ+ is proper.
The above definition leads to a natural G-equivariant diffeomorphism between

the anti-holomorphic tangent bundle of G/K and Ξ+, via the map

G×K p0,1 → Ξ+, [g, Z] 7→ g expZ · x0. (1)

The anti-holomorphic G-equivariant involution on GC/KC induced by σ maps Ξ+

diffeomorphically onto Ξ− := π−1
2 (D) ∩GC · x0.

An alternative construction of the domain Ξ+ was given in [Krö08] and [KrOp08],
via its unipotent parametrization. In the notation of Section 2, let λ1, . . . , λr be a
maximal set of long strongly orthogonal real restricted roots, and let Ej ∈ gλj , for
j = 1, . . . , r, be root vectors normalized as in Definition 2.1. Consider the closed
hyperoctant

Λx
r := spanR≥0{E1, . . . , Er}

and the subcone N+ := AdKΛx
r of the nilpotent cone of g. Then

Ξ+ = G exp i
⊕
j

(−1,∞)Ej · x0 = G exp iΛx
r · x0.

It was also suggested in [KrOp08] and [Krö08] that the map

ψ : G×K N+ → Ξ+, [g,X] 7→ g exp iX · x0

is a G-equivariant homeomorphism.
The first goal of the paper is to give a complete and selfcontained proof of this

fact. The main difficulty is to show that the map ψ is open. This is not a priori
obvious because at every point of the slice exp iΛx

r · x0 ⊂ Ξ+, lying on a singular
G-orbit, the tangent spaces to the orbit and to the slice itself do not span the whole
tangent space to Ξ+.

Let P := exp p0,1 · x0 be the K-invariant fiber in the domain Ξ+ ∼= G×K p0,1.
We first use a topological argument (Lemma 4.2) to show that our goal is equivalent
to proving that the projection

Λx
r → P/K, X 7→ G exp iX · x0 ∩ P ,

is proper. Then we check that such a projection is proper by using a novel de-
composition inside GC, relating a unipotent element exp iX, with X ∈ Λx

r , to an
element in expZ KC, with Z ∈ p0,1, lying on the same G-orbit (see Lemma 4.5
and Thm. 4.7). Possibly, a similar argument leads to a characterization of smooth
twisted bundles in the context of proper G-actions on differentiable manifolds, as
considered by R. S. Palais and C.-L. Terng in [PaTe87].

In view of the bundle structure defined by ψ, the G-orbit structure of Ξ+ is
completely determined by the AdK-orbit structure of the cone N+. We show that a
fundamental domain for the action of the Weyl group WK(Λx

r) on the hyperoctant
Λx
r is a perfect slice for the K-action on N+ and hence it determines a perfect slice

for the G-action on Ξ+. Moreover, there is a one-to-one correspondence between
the orbit strata of the WK(Λx

r)-action on the closed hyperoctant Λx
r and the orbit

strata of the G-action on Ξ+.
The second goal of the paper is to prove that, in the tube-case, Ξ+ contains

a distinguished Stein, G-invariant subdomain S+, which arises from the compactly
causal structure of a semisimple symmetric orbit G/H in the boundary of Ξ. A
first evidence of this fact comes from the rank-one case SL(2,R)/SO(2,R) studied
in [GeIa08], where it is also shown that every proper, Stein, invariant subdomain of
Ξ+ is either contained in Ξ or in S+.

The domain S+ is G-equivariantly biholomorphic to an invariant domain in
the Lie group complexification of the symmetric space G/H and its Steiness follows
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from a result of K. H. Neeb in [Nee99]. Here we show that it is contained in Ξ+ by
proving the following identity (Prop. 7.5)

S+ = G exp i

r⊕
j=1

(1,∞)Ej · x0.

From the classification of envelopes of holomorphy of invariant domains in Ξ+ (see
[GeIa13]), it follows that, like in the rank-one case, every proper, Stein, invariant
domain of Ξ+ is contained either in Ξ or in S+. In the non-tube case, there is no
Stein analogue of S+. At the end of the paper we give some details on the non-tube
case.

The paper is organized as follows. In Section 2 we set up the notation and
collect some basic facts about Hermitian symmetric spaces. In Section 3 we study
the action of the Weyl group WK(Λx

r) of the hyperoctant Λx
r . In Section 4 we recall

the unipotent model of Ξ+ and prove that the map

ψ : G×K N+ → Ξ+, [g,X] 7→ g exp iX · x0

is a G-equivariant homeomorphism. In Section 5 we give an alternative proof of
the above fact for the symmetric spaces SL(2,R)/SO(2,R) and Sp(2,R)/U(2), by
using global G-invariant functions on concrete models of GC/KC. In Section 6 we
study the G-orbit structure of Ξ+ by means of the AdK-orbit structure of N+.
Finally, in Section 7 we show that the domain S+ is contained in Ξ+ by expressing
it in the unipotent parametrization of Ξ+.

2. Preliminaries

Let G/K be an irreducible Hermitian symmetric space of the non-compact
type. We may assume G to be a connected, non-compact, real simple Lie group
contained in its simple, simply connected universal complexification GC, and K to
be a maximal compact subgroup of G. Denote by g and k the Lie algebras of G
and K respectively. Denote by θ both the Cartan involution of G with respect to
K and the derived involution of g. Let g = k ⊕ p be the corresponding Cartan
decomposition. Let a be a maximal abelian subspace in p. The rank of G/K is by
definition r = dim a. The adjoint action of a on g determines the restricted root
decomposition

g = a⊕ Zk(a)⊕
⊕

α∈∆(g,a)

gα,

where ∆(g, a) = {α ∈ a∗ \ {0} : gα 6= {0}} is the restricted root system, gα =
{X ∈ g | [H,X] = α(H)X, H ∈ a} is the α-restricted root space, and Zk(a) is the
centralizer of a in k. A set of simple roots Πa in ∆(g, a) uniquely determines a set
of positive restricted roots ∆+(g, a) and an Iwasawa decomposition of g

g = k⊕ a⊕ n, where n =
⊕

α∈∆+(g,a)

gα.

The restricted root system of a Lie algebra g of Hermitian type is either of type Cr
(if G/K is of tube type) or of type BCr (if G/K is not of tube type) (cf. [Moo64]),
i.e. there exists a basis {e1, . . . , er} of a∗ for which

∆(g, a) = {±2ej , 1 ≤ j ≤ r, ±ej ± ek, 1 ≤ j 6= k ≤ r}, for type Cr,

∆(g, a) = {±ej , ±2ej , 1 ≤ j ≤ r, ±ej ± ek, 1 ≤ j 6= k ≤ r}, for type BCr.

Since g admits a compact Cartan subalgebra t ⊂ k ⊂ g, there exists a set of r long
strongly orthogonal restricted roots {λ1, . . . , λr} (i.e. such that λj ± λk 6∈ ∆(g, a),
for j 6= k), which are restrictions of real roots with respect to a maximally split
θ-stable Cartan subalgebra l of g extending a. Choosing as simple roots
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Πa = {e1 − e2, . . . , er−1 − er, 2er}, for type Cr, (2)

Πa = {e1 − e2, . . . , er−1 − er, er}, for type BCr, (3)

the roots {λ1, . . . , λr} are given by

λ1 = 2e1, . . . , λr = 2er. (4)

In both cases, the Weyl group WK(a) = NK(a)/ZK(a) is isomorphic to the group
of signed permutations of {e1, . . . , er}, and therefore of {λ1, . . . , λr}. Denote by
WK(a)+ the subgroup of WK(a) isomorphic to the the group of ordinary permuta-
tions of {e1, . . . , er}. This subgroup is generated by the reflections in the first r− 1
simple restricted roots.

For j = 1, . . . , r, choose Ej ∈ gλj such that the sl(2)-triple

{Ej , θEj , Aj := [θEj , Ej ]} (5)

is normalized as follows

[Aj , Ej ] = 2Ej , [Aj , θEj ] = −2θEj . (6)

The vectors {A1, . . . , Ar} form a basis of a which is orthogonal with respect to the
restriction of the Killing form and one has

[Ej , Ek] = [Ej , θEk] = 0, [Aj , Ek] = λk(Aj)Ek = 0, for j 6= k. (7)

In particular the above sl(2)-triples commute with each other and {A1, . . . , Ar} is
the dual basis of {e1, . . . , er}. As a consequence, the action ofWK(a) and ofWK(a)+

on a is by signed permutations and by ordinary permutations of {A1, . . . , Ar},
respectively.

Observe that relations (6) and (5) determine the vectors Ej only up to sign. Fix
an invariant complex structure J0 of G/K. We are going to define the unique choice
of the vectors Ej which is compatible with J0, in the sense that the r-dimensional
polydisk, associated with the r commuting sl(2)-triples in g, is holomorphically
embedded in G/K.

Identify p with the tangent space to G/K at the base point eK. The com-
plex structure J0 is uniquely determined by its restriction to p and it is given by
J0 = adZ0 |p, for some Z0 ∈ Z(k). More precisely, consider a compact Cartan
subalgebra of g of the form t = s ⊕ c, where s is a Cartan subalgebra of Zk(a),
c := span{T1, . . . , Tr}, and Tj := Ej + θEj , for j = 1, . . . , r. Then Z0 ∈ t and can
be written as Z0 = S +

∑
j ajTj , for some S ∈ s and aj ∈ R. Since J2

0 = −Id and

the algebra Zk(a) acts trivially on the 1-dimensional root spaces gλj and g−λj , one
has

J0(Ej − θEj) = [Z0, Ej − θEj ] = 2ajAj , with aj = ±1

2
.

Definition 2.1. The choice of the Ej is compatible with the complex structure J0

if, for all j = 1, . . . , r, one has

J0(Ej − θEj) = Aj .

Equivalently, aj = 1
2 , for all j = 1, . . . , r.

Consider the Lie algebra homomorphism sl(2,R)→ g mapping the triple

E =

(
0 1
0 0

)
, θE =

(
0 0
1 0

)
, A =

(
1 0
0 −1

)
(8)

to {Ej , θEj , Aj}, for some j. Endow SL(2,R)/SO(2,R) with the unique invariant

complex structure defined by 1
2

(
0 1
−1 0

)
. Then the induced embedding

SL(2,R)/SO(2,R)→ G/K
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is holomorphic if and only if the choice of the vector Ej agrees with Definition 2.1.
Otherwise it is anti-holomorphic.

Remark 2.2. Fix the vectors Ej as in Definition 2.1 and set

Wj :=
1

2
((Ej − θEj)− iAj) , W−j := W j . (9)

Then the vectors Wj in gC span the root spaces gλ̃j of a set of strongly orthogonal,

non-compact, imaginary roots λ̃1, . . . , λ̃r in ∆(gC, tC), satisfying λ̃j(−iZ0) = 1.
Moreover [Wj ,W−j ] = −iTj , for j = 1, . . . , r. Then, by the discussion on p. 254 and
Koranyi-Wolf’s Theorem A.3.5 in [HiOl97], the following conditions are equivalent
(a) G/K is of tube type, i.e. ∆(g, a) is reduced of type Cr,
(b) Z0 = 1

2

∑
j Tj .

3. The Weyl group WK(Λr)

Resume the notation of Section 2. For j = 1, . . . , r, let Ej be the unique vector
in gλj which is compatible with the complex structure J0 of G/K in the sense of
Definition 2.1. Define

Λr := spanR{E1, . . . , Er} and Λx
r := spanR≥0{E1, . . . , Er}. (10)

Consider the Adjoint action of K on g and define the groups

ZK(Λr) := {k ∈ K : AdkX = X, ∀X ∈ Λr}, NK(Λr) := {k ∈ K : AdkΛr = Λr},

WK(Λr) := NK(Λr)/ZK(Λr) .

Consider the K-equivariant map

Ψ : g→ p, X 7→ [Z0, X − θX] = J0(X − θX) , (11)

where Z0 ∈ Z(k) is the element defining the complex structure J0 = adZ0 of G/K.
Note that its restriction Ψ|Λr : Λr → a is a linear isomorphism (cf. Def. 2.1).

Lemma 3.1.
(i) ZK(Λr) = ZK(a).
(ii) NK(Λr) is a subgroup of NK(a), implying that WK(Λr) is a subgroup of WK(a).
(iii) The group WK(Λr) coincides with the subgroup WK(a)+ of WK(a), acting on a
by permutations of {A1, . . . , Ar}. Moreover, WK(Λr) acts on Λr by permutations
of {E1, . . . , Er}.

Proof. Since the map Ψ defined in (11) is K-equivariant and Ψ|Λr : Λr → a is an
isomorphism, there are inclusions NK(Λr) ⊂ NK(a) and ZK(Λr) ⊂ ZK(a). In order
to show that ZK(a) ⊂ ZK(Λr), recall that every restricted root space is invariant
under the Adjont action of ZK(a) on g. Since Λr is the direct sum of the one-
dimensional restricted root spaces gλj , for j = 1, . . . , r, it follows that ZK(a) is a
subgroup of NK(Λr). The injectivity of the NK(Λr)-equivariant isomorphism Ψ|Λr
implies that ZK(a) ⊂ ZK(Λr), proving (i) and (ii).

(iii) We already showed that WK(Λr) ⊂ WK(a). Next we show that WK(Λr)
contains the subgroup WK(a)+. Recall that the subgroup WK(a)+ acts on a by
permutations of A1, . . . , Ar and on a∗ by permutations of the basis vectors e1, . . . , er
defined in Section 2. As a result, the corresponding elements in K permute the root
spaces gλ1 , . . . , gλr and thus normalize Λr. This proves the inclusion

WK(a)+ ⊂WK(Λr).
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In order to prove equality, assume by contradiction that there exists k ∈ NK(Λr)
lying in WK(a) \ WK(a)+. Since WK(a) acts on a by signed permutations of
A1, . . . , Ar, there exist indices j, h ∈ {1, . . . , r} for which Adk(Aj) = −Ah. By
applying Adk to both terms of the relation [Aj , Ej ] = 2Ej , we obtain

[Ah,AdkEj ] = −2AdkEj .

We claim that [Al,AdkEj ] = 0, for all l 6= h. From the identity

[Al,AdkEj ] = Adk[Adk−1Al, Ej ]

and the fact that k normalizes a, we have that Adk−1Al ∈ {±Am}, for some m 6= j.
Thus

Adk[Adk−1Al, Ej ] = Adk[±Am, Ej ] = 0,

as claimed. It follows that AdkEj ∈ g−λh , contradicting the assumption that k
normalizes Λr. So WK(a)+ = WK(Λr), proving the first part of (iii).

Finally, since Ψ|Λr (Ej) = Aj and WK(a)+ acts on a by permutations of
A1, . . . , Ar, the equivariance of the isomorphism Ψ|Λr implies that WK(Λr) =
WK(a)+ acts on Λr by permutations of E1, . . . , Er. This concludes the proof of
(iii) and of the lemma. �

Corollary 3.2. The group WK(Λr) preserves the closed hyperoctant Λx
r. Hence

WK(Λr) := NK(Λr)/ZK(Λr) = NK(Λx
r)/ZK(Λx

r).

4. The domain Ξ+ as a nilpotent cone bundle

As it was mentioned in the introduction, an alternative description of the
domain Ξ+ was given in [Krö08], p.286, and [KrOp08], Sect. 8, via its unipotent
parametrization. For j = 1, . . . , r, fix the unique vectors Ej ∈ gλj compatible with
the complex structure J0 of G/K (see Def. 2.1). Define Λr and Λx

r as in (10) and
consider the subcone N+ := AdKΛx

r of the nilpotent cone of g. In [Krö08] it was
shown that

Ξ+ = G exp i
r⊕
j=1

(−1,∞)Ej · x0 = G exp iΛx
r · x0,

and it was suggested that the map

ψ : G×K N+ → Ξ+, [g,X] 7→ g exp iX · x0

is a G-equivariant homeomorphism. The main result of this section is a complete
self-contained proof of this fact. It is obtained by combining a topological approach
with a novel decomposition in GC relating a unipotent element exp iX, with X ∈ Λx

r ,
to an element expZ KC, with Z ∈ p0,1, lying on the same G-orbit (see Lemma 4.5
and Thm. 4.7).
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4.1. Some topological lemmas. This subsection contains some preliminary re-
sults, which are of topological nature. Our setting is as follows. Let G be a con-
nected Lie group acting properly on a connected Hausdorff topological space Z,
and let K be a compact subgroup of G. Let N be a Hausdorff topological K-space.
Assume that there exists a K-equivariant continuous map j : N → Z such that the
continuous map

ψ : G×K N → Z, [g, x]→ g · j(x)

is bijective. Denote by Σ a closed subset of N such that K · Σ = N . We discuss
necessary and sufficient conditions for ψ to be a homeomorphism.

Lemma 4.1. The following three conditons are equivalent:

(i) the map ψ̃ : G× Σ→ Z, (g, x)→ g · j(x) is proper,

(ii) the map ψ̂ : G×N → Z, (g, x)→ g · j(x) is proper,
(iii) the map ψ : G×K N → Z, [g, x]→ g · j(x) is proper.

If any of the above conditions is satisfied, then ψ is a homeomorphism, the map
j : N → j(N) is a homeomorphism, and j(N) is closed in Z.

Proof. We first show that (i) is equivalent to (ii). Consider the commutative dia-
gram

G× Σ

��
ψ̃

%%KK
KKK

KKK

G×N
ψ̂

// Z ,

where the vertical arrow is the inclusion map. Since Σ is closed in N , such a map is

proper. Therefore, if ψ̂ is proper, so is ψ̃. Conversely, assume that ψ̃ is proper and

let C be a compact subset of Z. We claim that the closed subset ψ̂−1(C) coincides

with K · ψ̃−1(C), where the K-action on G×N is given by k · (g, x) := (gk−1, k ·x).

In order to see that ψ̂−1(C) ⊂ K · ψ̃−1(C), let (g, x) be an element in ψ̂−1(C) and
choose k ∈ K and x′ ∈ Σ such that x = k · x′. Then gk · j(x′) = g · j(x) ∈ C,

implying that (gk, x′) ∈ ψ̃−1(C). Thus (g, x) = k · (gk, x′) belongs to K · ψ̃−1(C).
The opposite inclusion is straightforward, and the claim follows.

Since ψ̃−1(C) is compact by assumption, it follows that ψ̂−1(C) = K · ψ̃−1(C)
is compact (cf. [Bou89], Cor. 1, p. 251). This concludes the proof of the first equiv-
alence. In order to show that (ii) is equivalent to (iii), consider the commutative
diagram

G×N
π
��

ψ̂

&&LL
LLL

LLL
L

G×K N
ψ

// Z ,

where π is the natural quotient map with respect to the twisted K-action. Since
K is compact, such a map is proper (cf. [Bou89], Prop. 2, p. 252). Therefore, if ψ

is proper, so is ψ̂. Conversely, assume that ψ̂ is proper and let C be a compact

subset of Z. Then the inverse image ψ−1(C) coincides with π(ψ̂−1(C)). Thus it is
compact, implying that ψ is proper and concluding the proof of the lemma. �

Note that assuming j : Σ→ Z proper does not imply G× Σ→ Z proper. For
instance, let G = R act on R2 by t · (x, y) = (t + x, y). Set N = Σ := { s ∈ R :
s ≤ 0 or s > 1} and define j : Σ → R2 by j(s) := (0, s), for s ∈ (−∞, 0], and
j(s) := (ln(s− 1), s− 1), for s ∈ (1,+∞). Then ψ : R× Σ→ R2 is continuous and
bijective but it is not a homeomorphism. In this example Σ ∼= j(Σ) is a disconnected,
closed submanifold (with boundary) of Z. In higher dimension, e.g. dimR Z = 3,
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one can constuct a similar example with Σ a contractible, closed submanifold (with
boundary) of Z.

Now we assume that in addition Z has the structure of a G-equivariant fiber
bundle, i.e. that there exists a closed topological K-subspace P of Z such that the
map

G×K P → Z, [g, p]→ g · p
is a homeomorphism.

Lemma 4.2. If the map q : Σ → P/K, given by x → P ∩ G · j(x) is proper, then
ψ : G×K N → Z, [g, x]→ g · j(x) is a homeomorphism.

Proof. By Lemma 4.1, it is sufficient to show that the map ψ̃ : G×Σ→ Z is proper.
Let {(gn, xn)}n be a sequence in G×Σ, with gn ·j(xn)→ z0. Choose {(hn, pn)}n in
G×P such that gn·j(xn) = hn·pn. Since the canonical projection G×P → G×KP is
proper (cf. [Bou89], Prop. 2, p. 252), the map G× P → Z, given by (g, z)→ g · z,
is proper. Thus, by passing to a subsequence if necessary, we may assume that
(hn, pn)→ (h0, p0). In particular, q(xn) := P ∩G · j(xn) = K · pn → K · p0. Since
the map q is proper by assumption, by passing to a subsequence if necessary, one
has that xn → x0, for some x0 ∈ Σ. Thus j(xn) → j(x0). By the properness of
the G-action, the map G × Z → Z × Z, given by (g, z) → (z, g · z), is proper as
well. Therefore, the sequence {(gn, xn)}n converges to (g0, x0), for some g0 in G.

As a result the map ψ̃ : G × Σ → Z is proper, and the statement follows from
Lemma 4.1. �

As a matter of fact, the converse of the above lemma holds true as well. Indeed
if ψ : G×KN → Z, [g, x]→ g·j(x) is a homeomorphism, then Z/G is homeomorphic
to N/K, as well as to P/K, being Z homeomorphic to G×K P . Therefore there is
a commutative diagram

Σ −→ G×K N
ψ−→ Z

↘ ↓ ↓

N/K −→ P/K ,

where the map N/K → P/K is a homeomorphism. As Σ is closed in N , the
restriction Σ → N/K of the natural projection G×K N → N/K is proper. Hence
the map q : Σ → P/K, x → P ∩ G · j(x), given in the above diagram as the
composition of proper maps, is proper, as claimed.

Note that, being Z connected by assumption, if ψ is a homeomorphism and
K is connected, then N is necessarily connected. Indeed, in this case the principal
bundle G × N → G ×K N has connected base and fibers. Thus the total space
G×N is connected, implying that N is connected.

For later use we also mention the following corollary.

Corollary 4.3. Assume that there exists a continuous, G-invariant function f : Z →
R such that f ◦ j|Σ : Σ→ R is proper. Then ψ is a homeomorphism.

Proof. By Lemma 4.1, it is sufficient to show that the map

ψ̃ : G× Σ→ Z, (g, x)→ g · j(x)

is proper. Let {(gn, xn)}n be a sequence in G×Σ such that {gn ·j(xn)}n converges to
an element z0 in Z. We need to show that, by passing to a subsequence if necessary,
the sequence {(gn, xn)}n converges in G × Σ. Let U be a compact neighborhood
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of f(z0) in R. By assumption, the set V := (f ◦ j|Σ)−1(U) is a compact subset of
Σ. By the continuity and the G-invariance of f one has f(j(xn)) = f(gn · j(xn))→
f(z0). Therefore xn ∈ V for n large enough. Thus, by passing to a subsequence if
necessary, {xn}n converges to an element x0 of Σ and j(xn) → j(x0). Finally, by
the properness of the G-action, the map G×Z → Z×Z, given by (g, z)→ (z, g ·z),
is proper. Hence, by passing to a subsequence if necessary, {(gn, xn)}n converges
to (g0, x0), for some g0 in G. This concludes the proof of the corollary. �

Remark 4.4. The function f ◦ j|Σ is proper if and only if f ◦ j is proper. As Σ is
closed in N , one implication is clear. For the converse, let C be a compact subset
of R. Then

(f ◦ j)−1(C) = K · (f ◦ j|Σ)−1(C) ,

which is compact if (f ◦ j|Σ)−1(C) is compact (cf. [Bou89], Cor. I, p. 251).

4.2. A slice in the anti-holomorphic tangent bundle. Let G/K be an irre-
ducible Hermitian symmetric space. Resuming the notation of Section 2, denote by
a+ the open positive Weyl chamber in a and by a+ its topological closure, given by

a+ := {
r∑
j=1

xjAj : x1 > · · · > xr > 0}, a+ = {
r∑
j=1

xjAj : x1 ≥ · · · ≥ xr ≥ 0}.

Define the closed hyperoctant

ax := {
r∑
j=1

xjAj : xj ≥ 0, j = 1, . . . , r}.

The set a+ is a perfect slice for the adjoint action of K on p, and

ax = WK(a)+ · a+.

Similarly, denote by (Λx
r)

+ the open positive Weyl chamber in Λx
r , and by (Λx

r)
+ its

topological closure, given by

(Λx
r)

+ := {
r∑
j=1

xjEj : x1 > · · · > xr > 0}, (Λx
r)

+ = {
r∑
j=1

xjEj , : x1 ≥ · · · ≥ xr ≥ 0},

respectively. By Lemma 3.1 and Corollary 3.2, one has

Λx
r = WK(Λr) · (Λx

r)
+.

Consider the homeomorphism

Φ : Λx
r → ax,

∑
xjEj →

1

2

∑
log(1 + xj)Aj ,

and the K-equivariant linear isomorphism

τ : p→ p0,1, Y → −1

2
(Y + iJ0Y ) . (12)

The isomorphism τ maps a, a slice for the AdK-action on p, onto a slice for the AdK-
action on p0,1, and induces a homeomorphism between the respective fundamental
domains a+ ⊂ a and τ(a+) in p0,1.

The next lemma is crucial for the main result of this section. It states that
inside Ξ+ the nilpotent slice exp iΛx

r · x0 can be mapped continuously onto a slice
in exp p0,1 · x0, by elements of the abelian group A = exp a.
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Lemma 4.5. For every X in Λx
r one has

exp(iX) = exp Φ(X) exp

(
−1

2
(Ψ(X) + iJ0Ψ(X)

)
exp iχ(X),

where χ : Λx
r → k is defined by

∑
xjEj →

∑
sinh−1

(
xj

2
√

1+xj

)
(Ej + θEj). Thus

exp(iX) · x0 = exp Φ(X) exp

(
−1

2
(Ψ(X) + iJ0Ψ(X)

)
· x0 .

Proof. Write X =
∑
xjEj as a sum of nilpotent elements in the embedded sl(2)-

triples defined in (5). By Definition 2.1, the complex structure J0 of G/K induces

the invariant complex structure defined by 1
2

(
0 1
−1 0

)
on each of the associated

rank-one symmetric spaces. This fact, together with the commutativity of such
triples in g and of the corresponding groups in GC, reduces the proof to the case of
G = SL(2,R). Then the equality to be proved reads as

exp i

(
0 x
0 0

)
∈ exp Φ

(
0 x
0 0

)
exp−1

2

((
x 0
0 −x

)
+ i

(
0 −x
−x 0

))
SO(2,C) .

One can easily check that the matrix

M = exp i sinh−1

(
x

2
√

1 + x

)(
0 1
−1 0

)
=

1√
1 + x

(
1 + x

2 ix2
−ix2 1 + x

2

)
belongs to exp iso(2,R) ⊂ SO(2,C), and that the following identity holds(

1 ix
0 1

)
=

(√
1 + x 0

0
√

1 + x
−1

)(
1− x

2 ix2
ix2 1 + x

2

)
M .

This concludes the proof of the lemma. �

Lemma 4.6.
(i) Let X be an element in (Λx

r)
+. Then

ZK(X) = ZK(Ψ(X)) = ZK(Φ(X)) .

(ii) Let X and X ′ be elements in (Λx
r)

+ such that

Ψ(X ′) = AdkΨ(X), for some k ∈ K.

Then X ′ = X and k ∈ ZK(X).

Proof. (i) We begin by proving that ZK(X) = ZK(Ψ(X)). Since the map Ψ(X) =
[Z0, X − θX] defined in (11) is K-equivariant, there is an inclusion

ZK(X) ⊂ ZK(Ψ(X)).

We prove the opposite one by showing that an element k ∈ ZK(Ψ(X)) centralizes
both X − θX and X + θX. From

[Z0, X − θX] = Adk[Z0, X − θX] = [Z0,Adk(X − θX)]

and the fact that adZ0
is bijective on p (it is a complex structure), we obtain that

k ∈ ZK(X−θX). Before showing that k ∈ ZK(X+θX), we make a small digression.
Given a subset ∆ of ∆(g, a)+, the associated orbit stratum in the closure of

the Weyl chamber a+ is by definition

a+
∆ := {A ∈ a+ : β(A) = 0 if β ∈ ∆, β(A) > 0 if β ∈ ∆(g, a)+ \∆} .
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Let H be an element in a. Since GC is simply connected, the centralizer ZGC(H) of
H in GC is a connected group (see [Hum95], p.33) with Lie algebra

ZgC(H) = ZkC(a)⊕ aC ⊕
⊕

α∈∆(gC,aC)
α(H)=0

gα. (13)

Moreover, since σ(H) = H and θ(H) = −H, the group ZGC(H) is both σ and θ-

stable. As a result, if two elements H1 and H2 of a+ lie in the same orbit stratum,
then ZGC(H1) = ZGC(H2) and likewise ZK(H1) = ZK(H2).

Write X =
∑
xjEj and Ψ(X) =

∑
xjAj . Since the elements

∑
xjAj and∑√

xj
2 Aj lie in the same orbit stratum of a+, one has ZK(Ψ(X)) = ZK(

∑√
xj
2 Aj).

Moreover, since ∑
j

√
xj
2

(Ej − θEj) = [−Z0,
∑
j

√
xj
2
Aj ],

one also has ZK(Ψ(X)) ⊂ ZK
(∑√

xj
2 (Ej − θEj)

)
. Then the equality

ZK(Ψ(X)) = ZK(X + θX)

follows from

Adk(X + θX) =

Adk
(∑

j

xj(Ej + θEj)
)

= Adk[
∑
j

√
xj
2
Aj ,

∑
j

√
xj
2

(Ej − θEj)] =

[Adk(
∑
j

√
xj
2
Aj),Adk(

∑
j

√
xj
2

(Ej−θEj))] = [
∑
j

√
xj
2
Aj ,

∑
j

√
xj
2

(Ej−θEj)] =

∑
j

xj(Ej + θEj) = X + θX .

Since X = 1
2 (X − θX) + 1

2 (X + θX), we conclude that

ZK(X) = ZK(Ψ(X)).

Next we show that

ZK(Ψ(X)) = ZK(Φ(X)).

From the definition of the maps Ψ , Φ and of the roots defining a+ (cf. Sect. 2) it

is clear that Ψ(X) and Φ(X) lie in the same orbit stratum of a+. Then the desired
equality follows from the above considerations.

(ii) By definition of (Λx
r)

+, the elements Ψ(X) and Ψ(X ′) lie in a+, which is a perfect
slice for the AdK-action on p. Then Ψ(X ′) = Ψ(X) and k ∈ ZK(Ψ(X)) = ZK(X).
Since the map Ψ: Λr → a is injective, it follows that X ′ = X. �

Theorem 4.7. Let G/K be an irreducible Hermitian symmetric space. Then the
map

ψ : G×K N+ → Ξ+, [g,X]→ g exp iX · x0

is a G-equivariant homeomorphism.

Proof. The map ψ is G-equivariant by construction. Since Ξ+ = G exp p0,1 ·x0 (see
(1)), Lemma 4.5 implies that ψ is surjective. Recall that by Corollary 3.2, one has

N+ = AdK(Λx
r)

+. Hence, in order to prove that ψ is injective, it is sufficient to
show that if the identity

g exp iX · x0 = exp iX ′ · x0, (14)
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holds true for some g ∈ G and X,X ′ ∈ (Λx
r)

+, then

g ∈ K, and X ′ = AdgX.

By Lemma 4.5, equation (14) is equivalent to

g exp Φ(X) exp

(
−1

2
(Ψ(X) + iJ0Ψ(X))

)
· x0 =

exp Φ(X ′) exp

(
−1

2
(Ψ(X ′) + iJ0Ψ(X ′))

)
· x0 .

Then, by identifying Ξ+ with G ×K p0,1 under the G-equivariant diffeomorphism
(1), the above identity becomes

[g exp Φ(X),−1

2
(Ψ(X) + iJ0Ψ(X))] = [exp Φ(X ′),−1

2
(Ψ(X ′) + iJ0Ψ(X ′))] .

In other words, there exists k ∈ K such that

exp Φ(X ′) = g exp Φ(X)k−1 and Ψ(X ′) = AdkΨ(X) . (15)

From the second equality in (15) and Lemma 4.6, one obtains the relations

X = X ′ and k ∈ ZK(Ψ(X)) = ZK(Φ(X)) = ZK(X),

which plugged in the first equality of (15) yield g = k. In conclusion, we have
obtained

g ∈ ZK(X) and X ′ = X = AdgX,

as desired.

Next we are going to show that ψ is a homeomorphism. Consider the K-
invariant fiber P := exp p0,1 · x0 in Ξ+ ∼= G×K p0,1. Since the map G×K P → Ξ+,
given by [g, z] → g · z, is a G-equivariant diffeomorphism, by Lemma 4.2 it is
sufficient to show that the following map is proper

q : Λx
r → P/K, X → P ∩G exp iX · x0 .

So let {Xn}n be a sequence diverging in Λx
r . Then {− 1

2 (Ψ(Xn) + iJ0Ψ(Xn))}n
diverges in p0,1. Consequently, the sequence {exp− 1

2 (Ψ(Xn) + iJ0Ψ(Xn)) ·x0}n di-

verges in exp p0,1 ·x0 and, by Lemma 4.5, every element exp− 1
2 (Ψ(Xn)+iJ0Ψ(Xn))·

x0 lies in G exp iXn · x0 ∩ exp p0,1 · x0. Since the canonical projection exp p0,1 ·
x0 → exp p0,1 · x0/K is proper, the sequence {exp p0,1 · x0 ∩ G exp iXn · x0 =
exp

(
− 1

2 (Ψ(X) + iJ0Ψ(X) · x0

)
}n diverges in exp p0,1 · x0/K. Thus the map q is

proper, as wished. �

From the above proposition we obtain the following consequences.

Corollary 4.8. The restriction of the map (11)

Ψ: N+ → p, Ψ(X) = [Z0, X − θX] = J0(X − θX)

is a K-equivariant homeomorphism. Likewise, the maps

N+ → p, X → X − θX

and

Ψ0,1 : N+ → p0,1, X → 1

2

(
Ψ(X) + iJ0Ψ(X)

)
are K-equivariant homeomorphisms.



ORBIT STRUCTURE 13

Proof. The map Ψ is K-equivariant, since both adZ0 and the Cartan involution
θ commute with the Adjoint action of K. It is also surjective, since its image
contains the closure of the Weyl chamber a+. In order to show that Ψ is injective,
it is enough to consider pairs of elements X and Adk(X ′), with X, X ′ ∈ (Λx

r)
+ and

k ∈ K. Assume that Ψ(X) = Ψ(Adk(X ′)). Then by Lemma 4.6, one obtains

X = X ′, k ∈ ZK(Ψ(X)) = ZK(X).

In particular X = Adk(X ′), as wished.
It remains to show that Ψ is proper. This follows from the fact that Ψ(X) 6= 0,

if X 6= 0, and Ψ(tX) = tΨ(X), for all t ∈ R. As a consequence, the image of any
divergent sequence in N+ under Ψ is a divergent sequence in p.

The second part of the statement follows directly from the fact that both
J0 : p→ p and the map p→ p0,1, given by Y → 1

2

(
Y + iJ0(Y )

)
, are K-equivariant

linear isomorphisms. �

5. An example.

In this section, we give a different proof of Theorem 4.7 in the cases of G =
Sp(2,R) and G = Sp(1,R) ∼= SL(2,R). This proof uses Corollary 4.3 and a global
G-invariant function f : Ξ+ → R, with the property that the map

Λx
r → R, X → f(exp iX · x0)

is proper. As a matter of fact, the function f is the restriction of a G-invariant
function defined on GC/KC.

Consider the real symplectic group

G = Sp(r,R) =

{
Z =

(
A B
C D

)
∈M2r×2r(R) : tZJZ = J

}
, J :=

(
0 Ir
−Ir 0

)
and its complexification GC = Sp(r,C). By Witt’s theorem, GC acts transitively
on the Grassmannian of J-isotropic complex r-planes in C2r

Y = {x complex r-plane in C2r : J |x×x = 0 } .
By considering all possible bases of x, given as r-tuples of column vectors in C2r,
we view Y as the quotient of

Ŷ :=

{
R =

(
R1

R2

)
: R1, R2 ∈Mr×r(C), rankR = r, tRJR = 0

}
by the right action of GL(r,C) defined by

M · R := RM−1, M ∈ GL(r,C).

Note that GC acts on Ŷ by left multiplication and that the canonical projection

Ŷ → Y, R → [R]

is GC-equivariant. Fix the base point x+ =

[
iIr
Ir

]
∈ Y . Then the complexification

GC/KC of G/K can be realized in the product Y × Y as the open dense orbit

GC/KC ∼= GC · x0 =
{

([R] , [S]) ∈ Y × Y :
∣∣RS∣∣ 6= 0

}
,

where x0 = (x+,x+) and
∣∣RS∣∣ denotes the determinant of the matrix formed by

R and S (see [FHW05], p. 68). Define two real G-invariant functions on GC/KC as
follows

f1 ([R] , [S]) =

∥∥∥∥∥ |tRJS|∣∣RS∣∣
∥∥∥∥∥

2

, f2 ([R] , [S]) =

∣∣tRJR∣∣ ∣∣tSJS∣∣∥∥∣∣RS∣∣∥∥2 .
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A simple computation shows that for

X =

(
O D
O O

)
∈ Λr, with D = diag(x1, . . . , xr),

one has

f1(exp iX · x0) = (1− x2
1) . . . (1− x2

r) and f2(exp iX · x0) = x2
1 . . . x

2
r.

For r = 2, define the G-invariant function f := 1−f1+f2 on GC/KC. By composing
f with the embedding Λx

2 → exp iΛx
2 · x0, given by X → exp iX · x0, one obtains an

exhaustion function of Λx
2

Λx
2 → R, X = x1E1 + x2E2 → f(exp iX · x0) = x2

1 + x2
2.

This fact, together with Corollary 4.3, yields an alternative proof of Theorem 4.7
for G = Sp(2,R). A similar proof works for G = SL(2,R) = Sp(1,R), using the
global G-invariant function f2.

It would be interesting to obtain similar global smooth G-invariant functions
on GC/KC in the higher rank case and in general for all Hermitian symmetric
spaces. For instance, in the case of G = Sp(r,R), for r ≥ 3, we know no global
G-invariant function whose restriction to exp iΛx

r · x0 determines a non-constant
symmetric polynomial on Λr other than (1− x2

1) . . . (1− x2
r) or x2

1 . . . x
2
r.

Note that as a consequence of Theorem 4.7, every function h on exp iΛr · x0,
arising from a symmetric polynomial in the ring R[x2

1, . . . , x
2
r], extends continuously

and G-equivariantly at least to Ξ+ ∪ Ξ−. It would be interesting to know whether
such an extension is smooth and if a further extension to a G-invariant, smooth
function defined on GC/KC exists. If so, one could look for an explicit global
realization of h, e.g. in terms of the coordinates of GC/KC in Y × Y .

6. G-orbit structure of Ξ+.

By Theorem 4.7, the map

ψ : G×K N+ → Ξ+, [g,X]→ g exp iX · x0

is a G-equivariant homeomorphism. Hence, every G-orbit in Ξ+ meets exp iN+ ·x0

in a K-orbit and the G-orbit structure of Ξ+ is completely determined by the K-
orbit structure of the nilpotent cone N+ = AdKΛx

r . Moreover, by Corollary 4.8,
the cone N+ is K-equivariantly homeomorphic to p. In this section we give further
details.

Corollary 6.1. Let X be an element in Λx
r, and let exp iX ·x0 be the corresponding

point in Ξ+. Then the isotropy subgroup of exp iX · x0 in G is given by

Gexp iX·x0 = ZK(X) = ZK(Ψ(X)) .

Proof. Since exp iX · x0 = ψ([e,X]), by Theorem 4.7 one has

Gexp iX·x0
= G[e,X] = ZK(X) ,

which proves the first equality. The second equality follows from Corollary 4.8. �

Definition 6.2. An element X ∈ Λx
r is generic if exp iX · x0 lies on a maximal

dimensional G-orbit in Ξ+. Equivalently, if ZK(X) = ZK(Λx
r). The set of generic

elements in Λx
r is denoted by (Λx

r)gen.
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Lemma 6.3. An element X in Λx
r is generic if and only if Ψ(X) = [Z0, X − θX]

is generic in a. In particular the set (Λx
r)gen is given by

(Λx
r)gen = {

∑
j

xjEj : xj 6= 0 and xj 6= xl, for j, l = 1, . . . , r and j 6= l},

and is dense in Λx
r.

Proof. By Corollary 6.1 one has ZK(X) = ZK(Ψ(X)). Moreover Ψ(Λx
r) = ax and

ZK(Λx
r) = ZK(Λr) = ZK(a) (see Lemma 3.1). Hence X is generic if and only if

ZK(Ψ(X)) = ZK(a), i.e. if and only if Ψ(X) is a generic element of a.
For H ∈ a the Lie algebra of ZK(H) is given by

Zk(H) = a⊕ Zk(a)⊕
⊕

α(H)=0

g[α]k,

where g[α]k is the k-component of the θ-stable subspace g[α] = gα⊕ g−α of g. From
this and the fact that ∆(g, a) is either of type Cr or BCr, one has

agen =
{∑

j

ajAj : aj 6= 0 and aj 6= ±al, for j, l = 1, . . . , r and j 6= l
}
.

Given an element X =
∑
xjEj ∈ Λx

r , one has Ψ(X) =
∑
xjAj . Thus X is generic

if and only if xj 6= 0 and xj 6= xl, for j, l = 1, . . . , r and j 6= l, as claimed. �

Proposition 6.4. Let X ∈ Λx
r and k ∈ K be elements such that AdkX ∈ Λr. Then

(i) AdkX lies in Λx
r, implying that N+ ∩ Λr = Λx

r,

(ii) there exists n ∈ NK(Λr) such that AdkX = AdnX.

In particular Λx
r is closed in N+ and the intersection AdKX ∩Λr, of the AdK-orbit

of X with Λr, is given by the WK(Λr)-orbit of X in Λx
r.

Proof. (i) We first consider the case when k is an element of NK(a) and we set
n := k. Then Adn acts on a by signed permutations of the Aj .

Claim. If for some indices i, h ∈ {1, . . . , r} one has Adn(Ai) = Ah, then Adn(Ei) ∈
gλh ; if Adn(Ai) = −Ah, then Adn(Ei) ∈ g−λh .

Proof of the claim. From [Ai, Ei] = 2Ei, by applying Adn to both terms of the
equation, we obtain

[AdnAi,AdnEi] = [Ah,AdnEi] = 2AdnEi.

Then, in order to show that AdnEi ∈ gλh , we need to show that [Al,AdnEi] = 0,
for all l 6= h. Write [Al,AdnEi] = Adn[Adn−1Al, Ei], and observe that Adn−1Al ∈
{±Am}, for some m 6= i. Then

Adn[Adn−1Al, Ei] = Adn[±Am, Ei] = 0,

as desired. A similar argument shows the second statement, and concludes the proof
of the claim.

Write X =
∑
xjEj , with xj ≥ 0, and AdnX =

∑
yjEj , with yj ∈ R. Then

Ψ(X) =
∑
xjAj and, since Ψ is AdK-equivariant, one has

Adn(Ψ(X)) =
∑

xjAdnAj = Ψ(AdnX) =
∑

yjAj .

Thus, given i ∈ {1, . . . , r}, one has yh = xi ≥ 0, if AdnAi = Ah, and yh = −xi ≤ 0,
if AdnAi = −Ah. In order to show that AdnX =

∑
yjEj lies in Λx

r , we prove that
xi = 0 whenever AdnAi = −Ah.

Assume by contradiction that this is not the case. By the above claim, each
AdnEj lies in one of the root spaces of the direct sum Λr ⊕ θΛr =

⊕
j g

λj ⊕
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g−λj . Moreover, AdnX =
∑
xjAdnEj has a non-zero component in g−λh . This

contradicts the fact that AdnX lies in Λr and concludes the proof in the case when
k = n is an element of NK(a).

Next, the general case. Both elements Ψ(X) and Ψ(AdkX) = Adk(Ψ(X))
belong to a and, by [Kna04], Lemma 7.38, p.459, there exists an element n ∈ NK(a)
such that

Adk(Ψ(X)) = Adn(Ψ(X)).

Thus n−1k lies in ZK(Ψ(X)) and also in ZK(X), by (i) of Lemma 4.6. Therefore

AdkX = AdnX.

Since we already showed that AdnX belongs to Λx
r , the proof of (i) is now complete.

(ii) By (i), both X and AdkX lie in Λx
r . Since Ψ: N+ → p is a K-equivariant

homeomorphism (Cor. 4.8) and Ψ(Λx
r) = ax, both Ψ(X) and AdkΨ(X) belong to ax.

Of course they lie on the same WK(a)-orbit. Recall that WK(a) acts on a by signed
permutations and that, by definition, ax := {

∑r
j=1 xjAj : xj ≥ 0, j = 1, . . . , r}.

Thus there exists γ ∈WK(a)+ such that

AdkΨ(X) = γ ·Ψ(X) .

Furthermore, WK(a)+ = WK(Λx
r) by Lemma 3.1, implying that there exists n ∈

NK(Λx
r) such that γ = nZK(a) and

AdkΨ(X) = AdnΨ(X) .

Now, by applying Ψ−1 : p → N+ to both sides of the above equality, one obtains
AdkX = AdnX, as wished. �

By Lemma 3.1 the closure (Λx
r)

+
of the open chamber

(Λx
r)

+ := {x1E1 + · · ·+ xrEr : x1 > x2 > · · · > xr > 0}
is a perfect slice for the WK(Λr)-action on Λx

r .

Corollary 6.5.

(i) The closure (Λx
r)

+
of the open chamber (Λx

r)
+ is a perfect slice for the AdK-

action on N+.
(ii) For X ∈ Λx

r one has

G exp iX · x0

⋂
exp iΛx

r · x0 = exp i(WK(Λr) ·X) · x0.

(iii) There are homeomorphisms of orbit spaces

Ξ+/G ∼= Λx
r/WK(Λr) ∼= (Λx

r)
+
.

Proof. Part (i) follows from Proposition 6.4. For parts (ii) and (iii), Proposition
6.4(ii) implies that every G-orbit in G ×K N+ intersects the closed subset Λx

r
∼=

{[e,X] ∈ G ×K N+ : X ∈ Λx
r } of N+ in a WK(Λr) orbit. Then the statements

follow from the G-equivariance of the homeomorphism ψ : G ×K N+ → Ξ+ (see
Thm. 4.7). �

Remark 6.6. Observe that inside Ξ+ there is a proper inclusion

exp iΛx
r · x0 ⊂ Ξ+ ∩ exp iΛr · x0,

and that the sets {X ∈ Λr : exp iX ·x0 ∈ Ξ+} and
⊕r

j=1(−1,∞)Ej coincide (see

[Krö08], p. 286). In fact, there exist elements X ∈ Λx
r , Y ∈ Λr \ Λx

r and g ∈ G \K
such that

g exp iX · x0 = exp iY · x0.
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For example, for G/K = SL(2,R)/SO(2,R), take −1 < x < 1 and b :=
√

1− x2.

Then

(
0 b
−1/b 0

)
∈ G and

(
−ix/b 1/b
−1/b −ix/b

)
∈ SO(2,C). The relation(

0 b
−1/b 0

)(
1 ix
0 1

)
=

(
1 −ix
0 1

)(
−ix/b 1/b
−1/b −ix/b

)
shows that the elements exp i

(
0 −x
0 0

)
·x0 and

(
0 x
0 0

)
·x0 lie on the same G-orbit

in Ξ+, even though not on the same K-orbit.
In the higher rank case, for ̄ ∈ {1, . . . , r}, consider the subdomains

(−1,∞)E1 ⊕ · · · ⊕ (−1, 1)E̄ ⊕ · · · ⊕ (−1,∞)Er (16)

of
⊕r

j=1(−1,∞)Ej ⊂ Λr. On each of them there are additional symmetries (induced

by the G-action on Ξ+) which identify elements which do not lie on the same AdK-
orbit in g (cf. Prop. 6.4). Namely, for −1 < x < 1, let g̄ be the image of the
element (

0
√

1− x2

−1/
√

1− x2 0

)
in the SL(2,R)-subgroup of G generated by the sl(2)-triple {E̄, θE̄, A̄}. Then

g̄ exp i(x1E1+· · ·+x̄E̄+· · ·+xrEr)·x0 = exp i(x1E1+· · ·−x̄E̄+· · ·+xrEr)·x0 .

This shows that inside the ̄th subdomain of Λr defined in (16), the element g̄
induces the reflection with respect to the ̄th-coordinate plane.

7. A distinguished Stein subdomain of Ξ+.

Let G/K be an irreducible Hermitian symmetric space. The boundary of the
crown domain Ξ contains a point whose G-orbit has locally minimal dimension. In
the tube case, such an orbit is a Cayley type symmetric space G/H. From the
compactly causal structure of G/H two distinguished G-invariant Stein domains
S± in GC/KC arise, whose boundary contains G/H. The purpose of this section is
to prove that one of these domains, namely S+, is contained in Ξ+. In the non-tube
case, there is no Stein analogue of the domains S± (see Rem. 7.7).

Denote by {ω1, . . . , ωr} the dual basis of the simple roots {α1, . . . , αr}, where r =
rank(G/K). Define

g1 := exp
(
i
π

2

ωr
kr

)
∈ exp ia , (17)

where kr is the coefficient of the r-th simple restricted root αr in the highest root
αh ∈ ∆(g, a)+. If G/K is of tube type, then the restricted root system is of type
Cr and the highest root is given by αh = 2α1 + . . .+ 2αr−1 +αr. Hence kr = 1 and
g1 = exp(iπ2ωr). If G/K is not of tube type, then the restricted root system is of
type BCr and αh = 2α1 + . . .+ 2αr. Hence kr = 2 and g1 = exp(iπ2

ωr
2 ).

In both cases |α(π2
ωr
kr

)| ≤ π
2 , for all restricted roots α, and |λr(π2

ωr
kr

)| = π
2 ,

where λr is as in (4). This shows that x1 = g1 · x0 is a point on the boundary of
the crown domain. For j = 1, . . . , r, define

g1,j := exp
(
i
π

2

Aj
2

)
,

where Aj is as in (5). The element g1,j lies in the SL(2,C)-subgroup of GC corre-
sponding to the jth triple defined in (5).



18 GEATTI AND IANNUZZI

Lemma 7.1. One has

g1 =

r∏
j=1

g1,j .

Proof. In the tube case, (2) and the relations λi(
1
2Aj) = δij , imply that αj(

1
2 (A1 +

A2 + . . .+Ar)) = δjr, for j = 1, . . . , r. Therefore ωr = 1
2 (A1 +A2 + . . .+Ar).

In the non-tube case, (3) and the relations λi(
1
2Aj) = δij imply that αj(A1 +A2 +

. . .+Ar) = δjr, for j = 1, . . . , r. Thus ωr = A1 +A2 + . . .+Ar. Since a is abelian,
the identity

g1,1 · . . . · g1,r = exp
(
i
π

2

A1

2

)
· . . . · exp

(
i
π

2

Ar
2

)
=

= exp
(
i
π

2

( 1

2
(A1 +A2 + . . .+Ar)

) )
= g1

holds true, as claimed. �

From now on, we assume the space G/K to be of tube type. We refer to
Remark 7.7 for some details about the non-tube case.

Lemma 7.2. Let G/K be an irreducible symmetric space of tube type. Then the
G-orbit of the point x1 = g1 · x0 in GC/KC is a semisimple symmetric space G/H
of Cayley type, with involution τ = Adg2

1
θ and H = Gτ . The space G/H has the

same rank, real rank and dimension as G/K.

Proof. In the tube case ωr = 1
2 (A1 + A2 + . . . + Ar). One easily verifies that

α(π2ωr) ∈ Zπ
2 , for every α ∈ ∆(g, a), i.e. g1 satisfies conditions (5) in [Gea12].

Then the orbit G · x1, with the involution τ = Adg1
θAdg−1

1
= Adg2

1
θ, is a pseudo-

Riemannian symmetric space, say G/H, of the same rank, real rank and dimension
as G/K. In addition, G/H is a totally real submanifold of GC/KC of maximal
dimension (see [Gea12], Lemma 2.2). Since x1 lies on the semisimple boundary of
Ξ, by [GiKr02], Thm. B, the space G/H is a non-compactly causal symmetric space.

To prove that G/H is also compactly causal, we use the characterisation of
Theorem 4.1 in [FaOl95], stating that an irreducible symmetric space (G/H, τ) is
compactly causal if and only if G/K is a non-compact Hermitian symmetric space
and the involution τ : G/K → G/K is antiholomorphic. Since τ defines an involu-
tion of g commuting with θ, it also determines an involution of G/K. It remains to
show that, the action of τ on p anticommutes with the complex structure J0 = adZ0 ,
where Z0 = 1

2

∑
j Tj (see Rem. 2.2). From the definition of τ and Lemma 7.1, one

can see that the further conditions θEj = −τEj , for j = 1, . . . , r, are satisfied.
Consequently, all the vectors Tj := Ej + θEj , and in particular Z0 = 1

2

∑
j Tj , are

contained in q ∩ k. Then, for all X ∈ p, one has

adZ0
τ(X) = [Z0, τ(X)] = τ [τ(Z0), X] = −τ [Z0, X] = −τ

(
adZ0

(X)
)
,

as wished. This concludes the proof of the lemma. �

Let (g = h⊕ q, τ) be the symmetric algebra associated to the symmetric space
G/H and let W± denote the maximal proper, open, convex, AdH -invariant, elliptic
cones in q.

It is important to observe that for the Cayley type symmetric space G/H,
the maximal and the minimal proper, open, convex, AdH -invariant elliptic cones in
q coincide: under the Adjoint action of H, the space q decomposes as the direct
sum of irreducibles subspaces q+ ⊕ q−, with the property that q− = θq+. Each
summand contains closed, convex, AdH -invariant cones ±C+ ⊂ q+ and ±C− ⊂
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q−, with the property that the minimal elliptic and hyperbolic closed cones in q
are given by ±(C+ − C−) and ±(C+ + C−), respectively (cf. [HiOl97], p.53). In

particular, for the minimal closed, AdH -invariant elliptic cone W+
min, there is an

isomorphism W+
min
∼= C+ + C+.

Denote by C0
+ the interior of C+. Since the symmetric space G/K is biholo-

morphic to the tube domain q+ + iC0
+ (see [HiOl97], Rem.2.6.9, p.55), the cone C+

is selfadjoint (i.e. it coincides with its dual cone). As a consequence, the minimal
proper, closed, convex, AdH -invariant, elliptic cone in q is selfadjoint and coincides

with the maximal one, which by definition is its dual cone
(
W+
min

)∗
. The same is

true for the respective interior parts.
The domains G exp iW± · x1 are G-invariant Stein domains in GC/HC, where

HC = g1K
Cg−1

1 is the isotropy subgroup of x1 in GC (cf. [Nee99], Thm. 3.5, p. 205).
Under the G-equivariant biholomorphism

GC/HC → GC/KC , gHC → gg1K
C ,

they can be identified with the G-invariant Stein domains S± := G exp iW± g1 · x0

in GC/KC.
Since the involutions θ and τ commute, g has a joint eigenspace decomposition

g = (h∩ k) ⊕ (h∩ p) ⊕ (q∩ k) ⊕ (q∩ p). Let a be a maximal abelian subspace in
q ∩ p. Then a is maximal abelian in p and in q (see [HiOl97], Prop. 3.1.11, p.77).

Fix a set of commuting sl(2,R)-triples {Ej , θEj , Aj} as in (5). As we remarked
in the proof of Lemma 7.2, each Tj := Ej + θEj is contained in q ∩ k and c :=
spanR{T1, . . . , Tr} is a compact Cartan subspace in q. In particular, c contains the
element Z0 = 1

2 (T1 + . . .+ Tr) ∈ Z(k) (see Rem. 2.2).

Lemma 7.3. One has

S+ = G

exp i

r⊕
j=1

(0,∞)Tj

 g1 · x0.

Proof. A proper, closed, convex, AdH -invariant, elliptic cone in q intersects the
compact Cartan subspace c in a proper, closed, convex, WH(c)-invariant, elliptic

cone. Here WH(c) := NH(c)/ZH(c). Since the cone W+ is selfadjoint (i.e. both

maximal and minimal), we can identify the intersection W+
c := W+ ∩ c with a

minimal proper, closed, convex, WH(c)-invariant, elliptic cone in c. We prove the
lemma by showing that

W+
c =

r⊕
j=1

[0,∞)Tj .

In order to do this we first observe that

WH(c) ∼= WH∩K(c) ∼= WH0∩K(c),

where the second isomorphism follows from the fact that the c-dual symmetric space
Gc/H is non-compactly causal. In addition, ic is a hyperbolic maximal abelian
subspace in iq. Then, by [HiOl97], Thm. 3.1.18 and Thm. 3.1.20, the group H is
essentially connected, i.e. H = H0ZH∩K(ic) (see [HiOl97], Def. 3.1.16).

Next we recall the characterization of the minimal proper, closed, convex,
WH0(c)-invariant, elliptic cones in c (see [KrNe96]). Consider the restricted root
system ∆(gC, cC) of gC with respect to cC. Define the Lie subalgebra r = q ∩ k ⊕
[q ∩ k, q ∩ k] ⊂ k. A root α ∈ ∆(gC, cC) is called compact if gα ∩ rC 6= {0}, and
non-compact otherwise. Denote by ∆(gC, cC)c and ∆(gC, cC)n the compact and
non-compact roots in ∆(gC, cC), respectively. The root system ∆(gC, cC) is called
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split if gα ⊂ kC, for all compact roots α. The Weyl group WH0∩K(c) is isomorphic to
the group Wc generated by the reflections in the compact roots ([KrNe96], Def.III.9
and Prop. V.2.i). If the positive non-compact roots ∆(gC, cC)n are stable under the
group Wc, the system ∆(gC, cC)+ is called r-adapted.

If the symmetric algebra (g, τ) is compactly causal then the restricted root
system ∆(gC, cC) is split and admits an r-adapted positive system. Moreover the
minimal proper, closed, convex, WH0∩K(c)-invariant, elliptic cones in c have the
following characterization

iW±c := ±cone({hα}α∈∆(gC,cC)n),

where hα ∈ ic is defined by α(H) = B(H,hα).
Now we come to our situation: since c is the image of a under a Cayley trans-

form, the root system ∆(gC, cC) is isomorphic to the ordinary restricted root system
∆(g, a), and is of type Cr. For simplicity, identify cR = ic with c∗R using the Killing

form. Since the restrictions to cC of the roots λ̃1, . . . , λ̃r defined in Remark 2.2 are
non-compact in ∆(gC, cC), one has the inclusion

cone({2ej}j) ⊂ iW+
c .

The fact that the image of cone({2ej}j=1,...,r) under the reflections with respect to
roots of the form ±(ei + ej), for 1 ≤ i < j ≤ r, is not contained in any regular cone
in ic, implies that such roots are necessarily non-compact. It follows that

cone({2ej}j) = cone({2ej , (ei + ek)}j, i 6=k).

We claim that all roots of the form ±(ei−ej), for 1 ≤ i < j ≤ r, are necessarily
compact. In order to see this, first observe that the compact roots are a non-empty
proper subset of ∆(gC, cC). Then assume by contradiction that there is a non-
compact root of the form ei − ek, for some i < k. Without loss of generality, we
may also assume that either ei − ej , for some i < j, or ej − ek, for some j < k, is

compact. From the Wc-invariance of the cone iW+
c and the relations

rei−ej (ei − ek) = ej − ek and rej−ek(ei − ek) = ei − ej ,

we deduce that either ej − ek or ei − ej is a non-compact root and lies in iW+
c as

well. From (ei − ej) + (ej − ek) = (ei + ej) − 2ek, we obtain that R2ek ⊂ iW+
c ;

similarly, from (ei−ek)+(ei−ej) = 2ei−(ek+ej), we obtain that R(ek+ej) ⊂ iW+
c .

In both cases the assumption that iW+
c is a proper cone is violated. Hence

cone({2ej}j) = iW+
c ,

as desired. �

The next lemma proves that S+ is contained Ξ+ in the rank-one case. It
also provides the main tool for the proof of the same inclusion in the higher rank
case, which is based on the rank-one reduction. Fix the basis of sl(2) given in (8),
normalized as in (6), and set T := E + θE.

Lemma 7.4. Set k0 = exp π
4T .

(i) For t ∈ (−π/4, π/4) define a1(t) = exp
(

ln( 1√
cos 2t

)A
)
. One has

exp itA · x0 = k0a1(t) exp i sin 2tE · x0 . (18)

In particular exp itA · x0 ∈ G exp i sin 2tE · x0 and

Ξ = G exp i[0, 1)E · x0.
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(ii) For t ∈ (0,∞) define a2(t) = exp
(

ln( 1√
sinh 2t

)A
)
. One has

exp itT g1 · x0 = k0a2(t) exp i cosh 2tE · x0 . (19)

In particular exp itT g1 · x0 ∈ G exp i cosh 2tE · x0 and

S+ = G exp i(1,∞)E · x0.

Proof. Formula (18) is proved by showing that

exp itA = k0a1(t) exp(i sin 2tE) k,

for some k ∈ SO(2,C). The above identity follows from a simple matrix computa-
tion with

exp itA =

(
eit 0
0 e−it

)
, k0 =

(
1√
2

1√
2

− 1√
2

1√
2

)
, a1(t) =

( 1√
cos 2t

0

0
√

cos 2t

)

exp i sin 2tE =

(
1 i sin 2t
0 1

)
, k =

1√
2 cos 2t

(
e−it −eit
eit e−it

)
.

The second statement in (i) follows directly from equation (18) and the definition of
Ξ. An analogous computation was carried out in [KrOp08], Sect. 3.2, for the crown
domain using the hyperbolic model SO0(1, 2,C)/SO(2,C).

Formula (19) is proved by showing that

k = g−1
1 (exp itT )−1 k0 a2(t) exp(i cosh 2tE)

is an element of SO(2,C). The above identity follows from a simple matrix compu-
tation with

g−1
1 =

(
1−i√

2
0

0 1+i√
2

)
, (exp itT )−1 =

(
cosh t −i sinh t
i sinh t cosh t

)
, k0 =

(
1√
2

1√
2

− 1√
2

1√
2

)

a2(t) =

(
1√

sinh 2t
0

0
√

sinh 2t

)
, exp i cosh 2tE =

(
1 i cosh 2t
0 1

)
.

The second statement in (ii) follows directly from equation (19) and Lemma 7.3. �

Proposition 7.5. Let G/K be an irreducible Hermitian symmetric space of tube
type. Then the domain Ξ+ contains the crown

Ξ = G exp i

r⊕
j=1

[0, 1)Ej · x0 ,

and the domain

S+ = G exp i

r⊕
j=1

(1,∞)Ej · x0.

Proof. The first equality was proved in [KrOp08]. The second one follows from
G-invariance, and rank-1 reduction. Indeed by Lemma 7.3 and Lemma 7.4, we have

S+ = G

 r∏
j=1

exp i(0,∞)Tj

 g1 · x0 = G

 r∏
j=1

exp i(0,∞)Tj

 r∏
j=1

g1,j · x0 =

= G

 r∏
j=1

exp i(0,∞)Tjg1,j

 · x0 = G

r∏
j=1

exp i(1,∞)Ej · x0,

as claimed. �
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Recall that the domain Ξ+ isG-equivariantly diffeomorphic to the anti-holomorphic
tangent bundle G×K p0,1. From Lemma 4.5, we obtain another natural description
of the crown Ξ and of the domain S+ inside Ξ+, by means of their intersections
with the slice defined by τ(a) in p0,1 (see (12)).

Corollary 7.6. One has

Ξ = G exp i
( r⊕
j=1

[0, 1)
1

2
(Aj + iJ0Aj)

)
· x0 = G exp i

( r⊕
j=1

(−1, 1)
1

2
(Aj + iJ0Aj)

)
· x0

and

S+ = G exp i
( r⊕
j=1

(1,∞)
1

2
(Aj + iJ0Aj)

)
· x0 =

G exp i

r⊕
j=1

(
(−∞,−1) ∪ (1,∞)

)1

2
(Aj + iJ0Aj) · x0 .

Remark 7.7. If G/K is an irreducible Hermitian symmetric space, which is not of
tube type, then the element g1 in (17) satisfies conditions (3) in [Gea12] (while it
does not satisfy conditions (5) therein). Then, by Lemma 2.1 in [Gea12], the orbit

G · x1 of the point x1 = g1 · x0 is not a symmetric space. However, the orbit Ĝ · x1,

under the action of the proper reductive subgroup Ĝ := ZG(g4
1) of G, is a reductive

symmetric space with involution τ = Adg2
1
θ. The space Ĝ · x1 has the same rank

and real rank as G/K, but strictly smaller dimension. The isotropy subgroups of

x1 in G and in Ĝ coincide and the slice representation at x1 with respect to the

G-action is equivalent to the isotropy representation of Ĝ · x1.

The orbit Ĝ · x1 is diffeomorphic to the Cayley symmetric space associated to
the Hermitian symmetric space of tube type contained in G/K. In order to see this,
observe that Adg4

1
is an involution of GC which commutes both with the Cartan

involution of GC and the conjugation defining G. Since GC is simply connected,

ĜC = ZGC(g4
1) is connected. Moreover it is reductive, being the complexification

of Û = ZU (g4
1), the fixed point subgroup of the restriction of Adg4

1
to the simply

connected compact real form U of GC. From the classification of simply connected,
compact symmetric spaces one sees that the following three cases occur:

G = SU(r, s), (r < s) GC = SL(r + s,C) ĜC = S(GL(s− r,C)×GL(2r,C))

G = Spin∗(2r) GC = Spin∗(2r,C) ĜC = C∗Spin∗(2(r − 1),C)

G = E6(−14), (r = 2) GC = E6 ĜC = C∗Spin(10,C).

One can show that ĜC can be written as the commuting product ĜC = MCGC
tube,

where MC is a subgroup of ZKC(aC) and GC
tube denotes the simply connected com-

plexification of the connected, Hermitian simple group acting on the tube-type sym-
metric space contained in G/K. Moreover there are isomorphisms of coset spaces

ĜC/(ĜC)τ ∼= GC
tube/(G

C
tube)

τ and Ĝ/Ĝτ ∼= Gtube/(Gtube)
τ .

Recall that in the non-tube case the element Z0 ∈ Z(k) determining the complex
structure of G/K can be written as Z0 = S+T0, where S ∈ ZK(a) and T0 = 1

2

∑
Tj ,

with Tj = Ej + θEj . Hence Z0 lies in ĝ and T0 lies in ĝtube. Denote by W+ the

maximal proper, open, convex, Ad(Gtube)τ -invariant elliptic cone in Tx1
(Ĝtube · x1),

which satisfies W+ = conv
(
Ad(Gtube)τ (R+T0)

)
. Then

Ω+ = G exp iW+ · x1 = G exp iW+g1 · x0
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is an open G-invariant domain in GC/KC and, by similar considerations as in the
tube case, an analogue of Proposition 7.5 holds true. Namely

Ω+ = G exp i

r⊕
j=1

(0,∞)Tj g1 · x0.

It turns out that Ω+ is not Stein and contains no proper G-invariant Stein subdo-
mains (see [GeIa13], Thm. 5.1, Case(2)).

Aknowledgments. We are grateful to the referee for his accurate comments
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[HiOl97] Hilgert J., Ólafsson G. Causal symmetric spaces. Geometry and harmonic analysis.

Perspectives in Mathematics, Vol.18, Academic Press, London, 1997.

[Hum95] Humphreys J.E. Conjugacy Classes in Semisimple Algebraic Groups. Math. Surveys
Monographs, Vol.43, Amer. Math. Soc., Providence, RI, 1995.

[Kna04] Knapp A. W. Lie groups beyond an introduction. Birkhäuser, Boston, 2004.

[KoWo65] Koranyi A., Wolf J.A. Realizations of Hermitian symmetric spaces as generalized

half-planes. Ann. of Math. 81 (1965) 265-288.
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