ORBIT STRUCTURE OF A DISTINGUISHED STEIN
INVARIANT DOMAIN IN THE COMPLEXIFICATION OF A
HERMITIAN SYMMETRIC SPACE

L. GEATTI AND A. IANNUZZI

ABSTRACT. We carry out a detailed study of 21, a distinguished G-invariant
Stein domain in the complexification of an irreducible Hermitian symmetric

space G/K. The domain =T contains the crown domain = and is naturally
diffeomorphic to the anti-holomorphic tangent bundle of G/K. The unipotent
parametrization of 2 introduced in [KrOp08] and [Kr&08] suggests that =+
also admits the structure of a twisted bundle G x g N7, with fiber a nilpotent
cone N'T. Here we give a complete proof of this fact and use it to describe the
G-orbit structure of =% via the K-orbit structure of AN't. In the tube case, we
also single out a Stein, G-invariant domain contained in =% \ = which is relevant
in the classification of envelopes of holomorphy of invariant subdomains of Z+.

1. INTRODUCTION

Let G/K be a non-compact, irreducible, Riemannian symmetric space. Its
Lie group complexification G¢/K€ is a Stein manifold and left translations by ele-
ments of G are holomorphic transformations of G¢/KC. In [AkGi90], Akhiezer and
Gindikin introduced the crown domain = in G¢/KC, with the aim of determining
a complex G-manifold whose analytic properties would reflect the harmonic anal-
ysis of G/K and the representation theory of G. Since then its complex analytic
properties have been extensively studied by several authors.

In the Hermitian case, Krotz and Opdam recently introduced two Stein G-
invariant domains Z* and Z~ in G¢/K®, with ZF N E~ = Z, which are maximal
with respect to properness of the G-action on G/K®. The relevance of = and of the
domains =T and =~ for the representation theory of G was underlined in Theorem
1.1 in [Kro08]. Here we carry out a detailed analysis of the G-orbit structure of =*.
Since 2T and 2~ are G-equivariantly anti-biholomorphic, the same analysis applies
to 27 as well.

Let G/K be an irreducible Hermitian symmetric space and let G¢/Q be its
compact dual symmetric space, which is denoted by G¢/Q when endowed with the
opposite complex structure. The space G¢/K® admits an equivariant holomorphic
embedding

GC/KC€~=GC . 20 c G°/Q x GT/Q

as the open dense orbit through =g := (eQ,eQ) € G/Q x G€/Q, under the G°-
action defined by

g-(x,y)=(g9-z,0(9)-y).
Here o denotes the conjugation of G® with respect to G. Let m : G*/Q x G€/Q —
G®/Q be the projection onto the first factor. The G-invariant domain =+ is defined
by

2t = (m) YD) NG - x,
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2 GEATTI AND IANNUZZI

where D := G - eQ is the Borel embedding of G/K in G¢/Q. The domain =+
contains the crown Z as the subset D x D and the G-action on Z7 is proper.

The above definition leads to a natural G-equivariant diffeomorphism between
the anti-holomorphic tangent bundle of G/K and =%, via the map

G xip¥t - =T, l9,Z] — gexp Z - xg. (1)
The anti-holomorphic G-equivariant involution on G/K® induced by o maps =+
diffeomorphically onto =~ := 75 (D) N GC - x.

An alternative construction of the domain Z* was given in [Kro08] and [KrOp08],

via its unipotent parametrization. In the notation of Section 2, let A1,..., A\, be a
maximal set of long strongly orthogonal real restricted roots, and let E; € g, for
j =1,...,7, be root vectors normalized as in Definition 2.1. Consider the closed
hyperoctant

AL :=spangzo{E1,...,E.}
and the subcone Nt := Adg A% of the nilpotent cone of g. Then

=t = Gexpi@(—l, 00)E; - xg = GexpiAy - xo.
J

It was also suggested in [KrOp08] and [Kr608] that the map
V: Gxg Nt == [g,X] > gexpiX - xg

is a G-equivariant homeomorphism.

The first goal of the paper is to give a complete and selfcontained proof of this
fact. The main difficulty is to show that the map 1 is open. This is not a priori
obvious because at every point of the slice expiAL - zy C =1, lying on a singular
G-orbit, the tangent spaces to the orbit and to the slice itself do not span the whole
tangent space to =+.

Let P :=expp®! - zg be the K-invariant fiber in the domain =+ 22 G x g p%L.
We first use a topological argument (Lemma 4.2) to show that our goal is equivalent
to proving that the projection

A —- P/K, Xw— GexpiX -zoNP,

is proper. Then we check that such a projection is proper by using a novel de-
composition inside GC, relating a unipotent element expiX, with X € A%, to an
element in exp Z K€, with Z € p®! lying on the same G-orbit (see Lemma 4.5
and Thm. 4.7). Possibly, a similar argument leads to a characterization of smooth
twisted bundles in the context of proper G-actions on differentiable manifolds, as
considered by R. S. Palais and C.-L. Terng in [PaTe87].

In view of the bundle structure defined by 1, the G-orbit structure of =T is
completely determined by the Adg-orbit structure of the cone N'T. We show that a
fundamental domain for the action of the Weyl group W (A%) on the hyperoctant
AL is a perfect slice for the K-action on /T and hence it determines a perfect slice
for the G-action on Z%. Moreover, there is a one-to-one correspondence between
the orbit strata of the W (A%)-action on the closed hyperoctant AL and the orbit
strata of the G-action on Z+.

The second goal of the paper is to prove that, in the tube-case, =% contains
a distinguished Stein, G-invariant subdomain S, which arises from the compactly
causal structure of a semisimple symmetric orbit G/H in the boundary of Z. A
first evidence of this fact comes from the rank-one case SL(2,R)/SO(2,R) studied
in [Gela08], where it is also shown that every proper, Stein, invariant subdomain of
=% is either contained in = or in ST.

The domain S is G-equivariantly biholomorphic to an invariant domain in
the Lie group complexification of the symmetric space G/H and its Steiness follows
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from a result of K. H. Neeb in [Nee99]. Here we show that it is contained in Z% by
proving the following identity (Prop. 7.5)

.
St = Gexpi@(l, 00)E; - xo.
j=1

From the classification of envelopes of holomorphy of invariant domains in =% (see
[Gelal3]), it follows that, like in the rank-one case, every proper, Stein, invariant
domain of =T is contained either in = or in S*. In the non-tube case, there is no
Stein analogue of S*. At the end of the paper we give some details on the non-tube
case.

The paper is organized as follows. In Section 2 we set up the notation and
collect some basic facts about Hermitian symmetric spaces. In Section 3 we study
the action of the Weyl group Wi (A%) of the hyperoctant AL. In Section 4 we recall
the unipotent model of % and prove that the map

V: Gxg Nt == [g9,X] = gexpiX - xg

is a G-equivariant homeomorphism. In Section 5 we give an alternative proof of
the above fact for the symmetric spaces SL(2,R)/SO(2,R) and Sp(2,R)/U(2), by
using global G-invariant functions on concrete models of G®/KC. In Section 6 we
study the G-orbit structure of =¥ by means of the Adg-orbit structure of N 7.
Finally, in Section 7 we show that the domain S* is contained in Z% by expressing
it in the unipotent parametrization of V.

2. PRELIMINARIES

Let G/K be an irreducible Hermitian symmetric space of the non-compact
type. We may assume G to be a connected, non-compact, real simple Lie group
contained in its simple, simply connected universal complexification G, and K to
be a maximal compact subgroup of G. Denote by g and ¢ the Lie algebras of G
and K respectively. Denote by 6 both the Cartan involution of G with respect to
K and the derived involution of g. Let g = ¢ @ p be the corresponding Cartan
decomposition. Let a be a maximal abelian subspace in p. The rank of G/K is by
definition » = dima. The adjoint action of a on g determines the restricted root
decomposition

g=a® Z(a)® @ g%,
acA(g,a)
where A(g,a) = {a € a*\ {0} : g* # {0}} is the restricted root system, g* =
{Xeg|[H,X]|=a(H)X, H € a} is the a-restricted root space, and Z;(a) is the
centralizer of a in €. A set of simple roots II, in A(g, a) uniquely determines a set
of positive restricted roots A*(g,a) and an Iwasawa decomposition of g

g=tdadn, where n = @ g,
aeAt(g,a)
The restricted root system of a Lie algebra g of Hermitian type is either of type C,
(if G/K is of tube type) or of type BC, (if G/K is not of tube type) (cf. [Moo64]),
i.e. there exists a basis {e1,...,e,} of a* for which
A(g,a) = {£2¢;, 1 <j<r, FejLep, 1<j#k<r}, fortype Cp,
A(g,a) = {xej, £2e;, 1 <j<r *ejtex, 1<j#k<r}, fortype BC,.
Since g admits a compact Cartan subalgebra t C £ C g, there exists a set of 7 long
strongly orthogonal restricted roots {A1,..., A} (i.e. such that \; £ Ay & A(g,a),

for j # k), which are restrictions of real roots with respect to a maximally split
f-stable Cartan subalgebra [ of g extending a. Choosing as simple roots
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Iy ={e; —ea,...,e,—1 —e€r,2¢.}, for type C,, (2)
I, ={e; —eq,...,e,_1 —e,e.}, for type BC,, (3)

the roots {A1,..., A} are given by
Al =2e1,..., A\ = 2e,. (4)

In both cases, the Weyl group Wi (a) = Nk (a)/Zk(a) is isomorphic to the group
of signed permutations of {ej,...,e.}, and therefore of {A1,...,\.}. Denote by
Wi (a)™ the subgroup of Wi (a) isomorphic to the the group of ordinary permuta-
tions of {ej,...,e,}. This subgroup is generated by the reflections in the first r — 1
simple restricted roots.

For j =1,...,r, choose E; € g* such that the s[(2)-triple

{E;, 0E;, A;:=[0E;, Ej]} (5)
is normalized as follows
The vectors {41, ..., A,} form a basis of a which is orthogonal with respect to the
restriction of the Killing form and one has
[Ej, Ex] = [E;,0E,] =0, [A;j, Ey] = M(Aj)Ex =0, for j # k. (7)
In particular the above sl(2)-triples commute with each other and {A4,...,A,} is
the dual basis of {e1, ..., e,}. Asa consequence, the action of W (a) and of Wk (a)™
on a is by signed permutations and by ordinary permutations of {Aj,..., 4.},

respectively.

Observe that relations (6) and (5) determine the vectors E; only up to sign. Fix
an invariant complex structure Jy of G/K. We are going to define the unique choice
of the vectors I; which is compatible with Jy, in the sense that the r-dimensional
polydisk, associated with the r commuting s[(2)-triples in g, is holomorphically
embedded in G/K.

Identify p with the tangent space to G/K at the base point eK. The com-
plex structure Jy is uniquely determined by its restriction to p and it is given by
Jo = adg,|p, for some Z, € Z(¥). More precisely, consider a compact Cartan
subalgebra of g of the form t = s @ ¢, where s is a Cartan subalgebra of Z(a),
¢ :=span{Th,..., T}, and T; := E; + 0E;, for j =1,...,r. Then Z, € t and can
be written as Zg = S + Zj a;1}, for some S € 5 and a; € R. Since J& = —1Id and

the algebra Z;(a) acts trivially on the 1-dimensional root spaces g and g=*

has

7, one
1
J()(Ej - GEJ) = [Zo,Ej - HE]] = 2ajAj, with a; = :|:§

Definition 2.1. The choice of the E; is compatible with the complex structure Jy
if, forall j =1,...,r, one has

Jo(E; — 0E;) = A;.

Equivalently, a; = %, forallj=1,... r.

Consider the Lie algebra homomorphism s[(2,R) — g mapping the triple

(0 () a0 o

to {E;,0E;, A;}, for some j. Endow SL(2,R)/SO(2,R) with the unique invariant
0 1
-1 0

SL(2,R)/SO(2,R) — G/K

complex structure defined by % ) . Then the induced embedding
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is holomorphic if and only if the choice of the vector E; agrees with Definition 2.1.
Otherwise it is anti-holomorphic.

Remark 2.2. Fix the vectors E; as in Definition 2.1 and set

1 [
Wj=5 (B —0E;) —idy), W :=Wj. (9)
Then the vectors W; in g© span the root spaces gV of a set of strongly orthogonal,
non-compact, imaginary roots Xl,...,XT in A(g®, (%), satisfying Xj(*?lZO) = 1.
Moreover [W;, W_,] = —iT}, for j = 1,...,r. Then, by the discussion on p. 254 and
Koranyi-Wolf’s Theorem A.3.5 in [HiO197], the following conditions are equivalent
(a) G/K is of tube type, i.e. A(g,a) is reduced of type C,,

(b) Zy = %ZJ Tj-

3. THE WEYL GROUP Wik (A,)

Resume the notation of Section 2. For j =1,...,7, let I; be the unique vector
in g% which is compatible with the complex structure Jy of G/K in the sense of
Definition 2.1. Define

A, :=spang{E,...,E.} and A::=spang>o{E1,...,E}. (10)
Consider the Adjoint action of K on g and define the groups
Zr(Ay) ={ke K : AdgX =X,VX € A}, Nx(Ay):={ke€ K : AdgA, = A},
Wk (A,) := Nk(A)/Zk(Ar)
Consider the K-equivariant map
U:g—p, X [Zo,X—-0X]=Jy(X—-60X), (11)

where Zy € Z(t) is the element defining the complex structure Jo = adz, of G/K.
Note that its restriction ¥|s, : A, — a is a linear isomorphism (cf. Def. 2.1).

Lemma 3.1.

(i) Zrk(Ay) = Zk(a).

(ii) Nx(A;) is a subgroup of Nk (a), implying that Wg (A,) is a subgroup of W (a).
(iii) The group Wi (A,.) coincides with the subgroup Wi (a)* of Wi (a), acting on a
by permutations of {Ay,..., A.}. Moreover, Wi (A,) acts on A, by permutations
Of {E17 ey Er}

Proof. Since the map ¥ defined in (11) is K-equivariant and W[, : A, — a is an
isomorphism, there are inclusions Nk (A,) C Ni(a) and Zx(A,) C Zk(a). In order
to show that Zx(a) C Zx(A,), recall that every restricted root space is invariant
under the Adjont action of Zx(a) on g. Since A, is the direct sum of the one-
dimensional restricted root spaces g, for j = 1,...,r, it follows that Zk(a) is a
subgroup of Ng(A;). The injectivity of the N (A, )-equivariant isomorphism ¥|,
implies that Zx(a) C Zx(A,), proving (i) and (ii).

(iii) We already showed that Wi (A,) C Wk(a). Next we show that Wg(A,)
contains the subgroup Wi (a)™. Recall that the subgroup W (a)™ acts on a by

permutations of Ay, ..., A, and on a* by permutations of the basis vectors ey, . .., e,
defined in Section 2. As a result, the corresponding elements in K permute the root
spaces g™, ..., g and thus normalize A,. This proves the inclusion

V[/K(Cl)+ C Wk (A,).
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In order to prove equality, assume by contradiction that there exists k € Nk (A;)
lying in Wk (a) \ Wk(a)™. Since Wk (a) acts on a by signed permutations of
Ai,..., A, there exist indices j,h € {1,...,r} for which Ady(4;) = —Ax. By
applying Ady to both terms of the relation [A;, E;] = 2E;, we obtain

(A, AdyE;] = —2Ad4E;.
We claim that [A;, AdiE;] = 0, for all | # h. From the identity
(A, AdyE,] = Ady[Ady—1 Ay, B

and the fact that k normalizes a, we have that Ad,-14; € {+A,,}, for some m # j.
Thus

Adk[Adk—lAl, Ej] = Adk[zl:Am, EJ} = 0,

as claimed. It follows that AdypFE; € g, contradicting the assumption that k
normalizes A,. So Wi (a)™ = Wi (A,), proving the first part of (iii).

Finally, since W[y, (E;) = A; and Wg(a)T acts on a by permutations of
Ai,..., A, the equivariance of the isomorphism W¥|, implies that Wk (A,) =
Wik (a)T acts on A, by permutations of Fi,...,E,.. This concludes the proof of
(iii) and of the lemma. O

Corollary 3.2. The group Wi (A,) preserves the closed hyperoctant A%. Hence

Wk (Ar) == Nk (Ar)/Zk (Ar) = Nk (A7) / Zk (A7)

4. THE DOMAIN =t AS A NILPOTENT CONE BUNDLE

As it was mentioned in the introduction, an alternative description of the
domain E* was given in [Kro08], p.286, and [KrOp08], Sect.8, via its unipotent
parametrization. For j =1,...,r, fix the unique vectors E; € g% compatible with
the complex structure Jy of G/K (see Def.2.1). Define A, and A: as in (10) and
consider the subcone N := Adx AL of the nilpotent cone of g. In [Kro08] it was
shown that

Et = Gexpi@(—l, 00)E; - xg = GexpiArL - xo,
j=1

and it was suggested that the map
V: Gxg NT == [g,X] > gexpiX - xq

is a G-equivariant homeomorphism. The main result of this section is a complete
self-contained proof of this fact. It is obtained by combining a topological approach
with a novel decomposition in G© relating a unipotent element exp i X, with X € A,
to an element exp Z K, with Z € p®!, lying on the same G-orbit (see Lemma 4.5
and Thm. 4.7).
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4.1. Some topological lemmas. This subsection contains some preliminary re-
sults, which are of topological nature. Our setting is as follows. Let G be a con-
nected Lie group acting properly on a connected Hausdorff topological space Z,
and let K be a compact subgroup of G. Let IV be a Hausdorff topological K-space.
Assume that there exists a K-equivariant continuous map j : N — Z such that the
continuous map
V:GxgN—=Z [g,2] > g-jx)

is bijective. Denote by ¥ a closed subset of N such that K - ¥ = N. We discuss
necessary and sufficient conditions for 1 to be a homeomorphism.

Lemma 4.1. The following three conditons are equivalent:
(i) the map J: GxX—Z, (g9,) = g-j(x) is proper,
(ii) the map 12: GxN—=Z, (g,) = g-j(x) is proper,
(iii) the map ¢ : G xxg N = Z, [g,2] — g - j(x) is proper.
If any of the above conditions is satisfied, then 1 is a homeomorphism, the map
j: N = j(N) is a homeomorphism, and j(N) is closed in Z.

Proof. We first show that (i) is equivalent to (ii). Consider the commutative dia-
gram
GxXY
N
Gx N T) Z,
where the vertical arrow is the inclusion map. Since X is closed in IV, such a map is
proper. Therefore, if 1/1 is proper, so is 1/) Conversely, assume that w is proper and
let C' be a compact subset of Z. We claim that the closed subset 1/) L(C) coincides
with K -¢~1(C), where the K-action on G x N is given by k- (g, z) := (gk™', k- ).
In order to see that ¢~1(C) C K - ¥~(C), let (g, ) be an element in ¥ ~(C) and
choose k € K and 2/ € ¥ such that « = k- 2’. Then gk - j(z') = g j(z) € C,
implying that (gk,2') € %»~1(C). Thus (g,x) = k - (gk,2') belongs to K - ~(C).
The opposite inclusion is straightforward, and the claim follows
Since ¢~1(C) is compact by assumption, it follows that 1»—1(C) = K - ~(C)
is compact (cf. [Bou89], Cor. 1, p.251). This concludes the proof of the first equiv-
alence. In order to show that (ii) is equivalent to (iii), consider the commutative
diagram
GxN
ﬁj/ K

GXKNT>Z,

where 7 is the natural quotient map with respect to the twisted K-action. Since
K is compact, such a map is proper (cf.[Bou89], Prop.2, p.252). Therefore, if ¢
is proper, so is @Z Conversely, assume that 1? is proper and let C' be a compact
subset of Z. Then the inverse image 1~!(C) coincides with W((Z’l(C)). Thus it is
compact, implying that v is proper and concluding the proof of the lemma. (|

Note that assuming j : ¥ — Z proper does not imply G x ¥ — Z proper. For
instance, let G = R act on R? by ¢ - (z,y) = (t + z,y). Set N=X:={seR :
s < 0ors > 1} and define j : ¥ — R? by j(s) := (0,s), for s € (—00,0], and
j(s) == (In(s — 1),s — 1), for s € (1,400). Then 1 : R x X — R? is continuous and
bijective but it is not a homeomorphism. In this example ¥ 2 j(3) is a disconnected,
closed submanifold (with boundary) of Z. In higher dimension, e.g. dimg Z = 3,
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one can constuct a similar example with ¥ a contractible, closed submanifold (with
boundary) of Z.

Now we assume that in addition Z has the structure of a G-equivariant fiber
bundle, i.e. that there exists a closed topological K-subspace P of Z such that the
map

GxgP—2Z, [9,p)>9Dp

is a homeomorphism.

Lemma 4.2. If the map q : ¥ — P/K, given by x — PN G - j(x) is proper, then
V:Gxg N —=Z [g,z] = g-j(z) is a homeomorphism.

Proof. By Lemma 4.1, it is sufficient to show that the map {Z; : G XY — Z is proper.
Let {(gn,xn)}n be a sequence in G x X, with g, - j(z,,) — 20. Choose {(hn,pn)}n in
G x P such that g,,-j(x,,) = hy,-pp. Since the canonical projection GX P — GX g P is
proper (cf. [Bou89], Prop. 2, p. 252), the map G x P — Z, given by (¢,2) = ¢ - z,
is proper. Thus, by passing to a subsequence if necessary, we may assume that
(hn,pn) = (ho,po). In particular, ¢(z,) := PNG - j(xz,) = K - p, — K - pg. Since
the map ¢ is proper by assumption, by passing to a subsequence if necessary, one
has that z, — xq, for some zy € ¥. Thus j(z,) — j(z¢). By the properness of
the G-action, the map G x Z — Z x Z, given by (g,2) — (2,9 - 2), is proper as
well. Therefore, the sequence {(gn,Zn)}n converges to (go, o), for some gg in G.
As a result the map {Dv : G XX — Z is proper, and the statement follows from
Lemma 4.1. (]

As a matter of fact, the converse of the above lemma holds true as well. Indeed
ify: GXxgN — Z, [g,2] — g-j(z) is a homeomorphism, then Z/G is homeomorphic
to N/K, as well as to P/K, being Z homeomorphic to G X i P. Therefore there is
a commutative diagram

Y — GxxN %z

N !

N/K — P/K,

where the map N/K — P/K is a homeomorphism. As ¥ is closed in N, the
restriction ¥ — N/K of the natural projection G X N — N/K is proper. Hence
the map ¢ : ¥ — P/K, © — PNG - j(x), given in the above diagram as the
composition of proper maps, is proper, as claimed.

Note that, being Z connected by assumption, if 1) is a homeomorphism and
K is connected, then N is necessarily connected. Indeed, in this case the principal
bundle G x N — G xXg N has connected base and fibers. Thus the total space
G x N is connected, implying that NV is connected.

For later use we also mention the following corollary.

Corollary 4.3. Assume that there exists a continuous, G-invariant function f: Z —
R such that f o jls : 3 — R is proper. Then v is a homeomorphism.

Proof. By Lemma 4.1, it is sufficient to show that the map
V:GxE =7, (g.2) = g-j(x)

is proper. Let {(gn, Zn)}n be a sequence in G x ¥ such that {g,,-j(z,)}» converges to
an element zg in Z. We need to show that, by passing to a subsequence if necessary,
the sequence {(gn,Zn)}n converges in G x X. Let U be a compact neighborhood
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of f(z0) in R. By assumption, the set V := (f o j|x)~}(U) is a compact subset of
Y. By the continuity and the G-invariance of f one has f(j(z,)) = f(gn - j(2n)) —
f(20). Therefore x,, € V for n large enough. Thus, by passing to a subsequence if
necessary, {zn}, converges to an element zo of ¥ and j(z,) — j(z¢). Finally, by
the properness of the G-action, the map G X Z — Z x Z, given by (g,2) — (2,9 2),
is proper. Hence, by passing to a subsequence if necessary, {(gn, Tn)}n converges
o (go, o), for some gg in G. This concludes the proof of the corollary. O

Remark 4.4. The function f o j|x is proper if and only if f o j is proper. As ¥ is
closed in IV, one implication is clear. For the converse, let C' be a compact subset
of R. Then

(foi)THO) =K (foils)H(C),
which is compact if (f o j|s) "1 (C) is compact (cf. [Bou89], Cor. I, p. 251).

4.2. A slice in the anti-holomorphic tangent bundle. Let G/K be an irre-
ducible Hermitian symmetric space. Resuming the notation of Section 2, denote by
at the open positive Weyl chamber in a and by at its topological closure, given by

+—{ij : <o >z > 0} a*—{z% cwy > > x>0}
Define the closed hyperoctant

,
L::{ijAj cx; >0, 5=1,...,r}h
j=1

The set aT is a perfect slice for the adjoint action of K on p, and
a- = Wg(a)" - at.

Similarly, denote by (A%)* the open positive Weyl chamber in A%, and by (AL its
topological closure, given by

(AT ::{ijEj cap > o>, >0}, (AD)T —{ij Gyt x> > x>0},
j=1

respectively. By Lemma 3.1 and Corollary 3.2, one has
AL =Wk (Ar) - (AR)*+

Consider the homeomorphism
L L 1
O AL —at, Z:rjEj — 5Ejlog(l +x;)A;,
and the K-equivariant linear isomorphism
1
Tip—pt Y = (Y +iloY). (12)

The isomorphism 7 maps a, a slice for the Ad g-action on p, onto a slice for the Ad k-
action on p%!, and induces a homeomorphism between the respective fundamental
domains a* C a and 7(at) in p®!

The next lemma is crucial for the main result of this section. It states that
inside T the nilpotent slice expiAL - zo can be mapped continuously onto a slice
in expp®! - 2o, by elements of the abelian group A = expa.
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Lemma 4.5. For every X in AL one has

exp(iX) = exp ®(X) exp (—;(\IJ(X) + iJO\IJ(X)> expix(X),

where x : A5 — € is defined by > x;F; — Y sinh ™! (2\/?_’_7%> (E; +0E;). Thus

exp(iX) - xog = exp ®(X) exp (—;(\II(X) + iJO\I!(X)> T .

Proof. Write X = 3" x;F; as a sum of nilpotent elements in the embedded s[(2)-
triples defined in (5). By Definition 2.1, the complex structure Jy of G/K induces

the invariant complex structure defined by % (_01 (1)> on each of the associated

rank-one symmetric spaces. This fact, together with the commutativity of such
triples in g and of the corresponding groups in G, reduces the proof to the case of
G = SL(2,R). Then the equality to be proved reads as

(0 x 0 =z 1 z 0 (0 —x
expz(o O)Eexp(I><O O)exp—2<(0 —x)+l<—x O))SO(Z,(C).

One can easily check that the matrix

Mzexpisinh1<x><0 1): 1 (1+§ z%)
2y1+z2)\—1 0 itz \—i2 142

belongs to expiso(2,R) C SO(2,C), and that the following identity holds

1 iz  (Vi+w 0 -5 05\,
o 1) "\ o vite J\iz 1+3)7

This concludes the proof of the lemma. (|

Lemma 4.6.
(i) Let X be an element in (AL)*. Then

Zk(X) = Zr(V(X)) = Zk (®(X)).

(ii) Let X and X' be elements in (AL)t such that
U(X') = Adp¥(X), for someke€ K.
Then X' = X and k € Zg(X).

Proof. (i) We begin by proving that Zx (X) = Zx(¥(X)). Since the map ¥(X) =
[Zo, X — 0X] defined in (11) is K-equivariant, there is an inclusion

Zk(X) C Zg (¥ (X)).
We prove the opposite one by showing that an element k € Zx (VU (X)) centralizes
both X — 60X and X 4+ 6X. From
[Zo, X — 0X] = Adg[Zy, X — 6X] = [Zp, Adp(X — 6X)]

and the fact that ady, is bijective on p (it is a complex structure), we obtain that
k € Zx(X—0X). Before showing that k € Zx (X +6X), we make a small digression.

Given a subset A of A(g,a)™, the associated orbit stratum in the closure of
the Weyl chamber at is by definition

al:={Acat : BA)=0if BeA, B(A)>0if B Ag,a)" \ A}.
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Let H be an element in a. Since G© is simply connected, the centralizer Zgc(H) of
H in G is a connected group (see [Hum95], p.33) with Lie algebra

Ze(H)=Ze(@ede o~ (13)

aeA(gC,aC)
a(H)=0

Moreover, since o(H) = H and 0(H) = —H, the group Zgc(H) is both o and 6-
stable. As a result, if two elements H; and Hy of at lie in the same orbit stratum,
then Zge(Hy) = Zge(Hs) and likewise Zx (Hq) = Zi (Ho).

Write X = Y «;F; and ¥(X) = Y x;A;. Since the elements ) z;A; and

>4/ % Aj lie in the same orbit stratum of a™, one has Zx (¥(X)) = Zx (3 /5 4;).

Moreover, since
SEICETIN S !

one also has Zx (V(X)) C Zx (X /% (E; — 0E;)). Then the equality
Zr(U(X)) = Zr(X +0X)

follows from
Adg(X +6X)

Ady, ijE-JrGE Adkz\/E J,Z\/>
Ad,gz\/E Adkz\/EE —0E;) :Z\/EAJ,Z\rE —0E;)

Zx] 4+ 0E;) = X +0X.

Since X = (X — 0X) + %(X + 6X), we conclude that
Zk(X) = Zr (Y (X)).

Next we show that

Zi(W(X)) = Zie(B(X)).
From the definition of the maps W, ® and of the roots defining a* (cf. Sect.2) it
is clear that ¥(X) and ®(X) lie in the same orbit stratum of at. Then the desired
equality follows from the above considerations.
(ii) By definition of (AL)*, the elements (X ) and ¥(X') lie in a*, which is a perfect
slice for the Adg-action on p. Then ¥(X') = ¥(X) and k € Zg (¥ (X)) = Zg(X).
Since the map ¥: A, — a is injective, it follows that X' = X. O

Theorem 4.7. Let G/K be an irreducible Hermitian symmetric space. Then the
map
Y:Gxg Nt =1 [g,X] = gexpiX -1

is a G-equivariant homeomorphism.

Proof. The map 1 is G-equivariant by construction. Since Z* = G'exp p®! - x¢ (see
(1)), Lemma 4.5 implies that v is surjective. Recall that by Corollary 3.2, one has
NT = Adg(AL)+. Hence, in order to prove that ¢ is injective, it is sufficient to
show that if the identity

gexpiX - xg = expiX' - xo, (14)
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holds true for some g € G and X, X’ € (A%)*, then
geK, and X' =Ad,X.
By Lemma 4.5, equation (14) is equivalent to

gexp ®(X) exp (;(\II(X) + iJO\I/(X))> “xp =

exp ®(X') exp (—;(\IJ(X’) + iJO\I'(X’))) T -

Then, by identifying =t with G x g p%! under the G-equivariant diffeomorphism
(1), the above identity becomes

1 1
g exp (X)), =5 (V(X) +iJo¥(X))] = [exp ®(X), =5 ((X') + iU (X))].
In other words, there exists k € K such that

exp®(X') = gexp®(X)k™! and V(X)) = Adp¥(X). (15)
From the second equality in (15) and Lemma 4.6, one obtains the relations
X=X and ke Zg(¥(X))=2Zk(®X))=2Zx(X),

which plugged in the first equality of (15) yield ¢ = k. In conclusion, we have
obtained

g€ Zrk(X) and X' =X =Ad,X,
as desired.

Next we are going to show that v is a homeomorphism. Consider the K-
invariant fiber P := expp®! - 2o in 2+ =2 G x g p»!. Since the map G xx P — =,
given by [g,z] — ¢ -z, is a G-equivariant diffeomorphism, by Lemma 4.2 it is
sufficient to show that the following map is proper

g: AN, - P/K, X—>PNGexpiX -x.
So let {X,}n be a sequence diverging in AL. Then {—4(¥(X,) + iJoW(X,))}n
diverges in p®'. Consequently, the sequence {exp —3(¥(X,,) +iJoU(X,)) - 2o}y di-
verges in exp p®!-xy and, by Lemma, 4.5, every element exp —%(\I/(Xn)—l—iJo\IJ(Xn))-
xq lies in GexpiX,, - xo Nexpp®! - zo. Since the canonical projection expp®! -
ro — expp®l - 29/K is proper, the sequence {expp®! - zo N GexpiX, - zg =
exp (=3 (¥(X) +iJo¥(X) - x0)}n diverges in expp®! - zo/K. Thus the map g is
proper, as wished. O

From the above proposition we obtain the following consequences.

Corollary 4.8. The restriction of the map (11)
U Nt —p, U(X)=[Zy, X —0X] = Jo(X —0X)
is a K-equivariant homeomorphism. Likewise, the maps
Nt = p, X = X -0X

and
1
WOl N Ot X — 5(\IJ(X) +iJo¥ (X))

are K -equivariant homeomorphisms.
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Proof. The map ¥ is K-equivariant, since both adz, and the Cartan involution
f commute with the Adjoint action of K. It is also surjective, since its image
contains the closure of the Weyl chamber at. In order to show that ¥ is injective,
it is enough to consider pairs of elements X and Adg(X’), with X, X’ € (A%)*t and
k € K. Assume that U(X) = U(Adg(X’)). Then by Lemma 4.6, one obtains

X=X, ke Zg(U(X)) = Zx(X).

In particular X = Ad(X’), as wished.

It remains to show that ¥ is proper. This follows from the fact that ¥(X) # 0,
if X #0, and U(tX) = tU(X), for all t € R. As a consequence, the image of any
divergent sequence in N'* under ¥ is a divergent sequence in p.

The second part of the statement follows directly from the fact that both
Jo : p — p and the map p — p%!, given by YV — 3 (Y +iJo(Y)), are K-equivariant
linear isomorphisms. O

5. AN EXAMPLE.

In this section, we give a different proof of Theorem 4.7 in the cases of G =
Sp(2,R) and G = Sp(1,R) = SL(2,R). This proof uses Corollary 4.3 and a global
G-invariant function f : 2% — R, with the property that the map

AL =R, X — f(expiX - xo)

is proper. As a matter of fact, the function f is the restriction of a G-invariant
function defined on G®/KF.

Consider the real symplectic group

G = Sp(r,R) = {Z = (é g) e M (R) : 'ZJZ = J}7 J = (_OIT 10>
and its complexification G = Sp(r,C). By Witt’s theorem, G* acts transitively
on the Grassmannian of J-isotropic complex r-planes in C?"

Y = {x complex r-plane in C*" : J|xxx =0}.
By considering all possible bases of x, given as r-tuples of column vectors in C?",

we view Y as the quotient of

Yy .= {R - (Z”l) : Ry, Ry € M™*"(C), rankR =r, "RJR = 0}
2

by the right action of GL(r,C) defined by
M- -R:=RM™*, M € GL(r,C).
Note that G€ acts on Y by left multiplication and that the canonical projection
Y=Y, R-I[R]
.
I,
GC/KC of G/K can be realized in the product Y x Y as the open dense orbit
GE/KC€ =G 2o ={([R],[S]) €Y xY :|RS|#0},
where 29 = (x4,x4) and |R§| denotes the determinant of the matrix formed by

R and S (see [FHWO05], p. 68). Define two real G-invariant functions on G¢/K® as
follows

is GC-equivariant. Fix the base point x; = [ ] € Y. Then the complexification

2

TRISHE 4, (m), 1))

|'RIR||1S TS|
IRS]| N ’

=112
7S]

f(R]L 18] =
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A simple computation shows that for

O D . ,
X_(O O>€Ar’ with D = diag(z1,...,x.),

one has

filexpiX -xo) = (1 —2%)... (1 —2?) and folexpiX - o) = a7 ... 22,

kA
For r = 2, define the G-invariant function f := 1— f1+ fo on G¢/K®. By composing
f with the embedding A5 — expiA5 - o, given by X — expiX - xg, one obtains an
exhaustion function of Aj

A5 = R, X =a1Ey + 29y — f(expiX - x0) = 27 + 5.

This fact, together with Corollary 4.3, yields an alternative proof of Theorem 4.7
for G = Sp(2,R). A similar proof works for G = SL(2,R) = Sp(1,R), using the
global G-invariant function fs.

It would be interesting to obtain similar global smooth G-invariant functions
on G®/K® in the higher rank case and in general for all Hermitian symmetric
spaces. For instance, in the case of G = Sp(r,R), for r > 3, we know no global
G-invariant function whose restriction to expiAL - zp determines a non-constant
symmetric polynomial on A, other than (1 —z%)...(1 —22) or 2% ... 22

Note that as a consequence of Theorem 4.7, every function h on expiA, - xg,
arising from a symmetric polynomial in the ring R[x?, ..., z2], extends continuously
and G-equivariantly at least to 2 UZ~. It would be interesting to know whether
such an extension is smooth and if a further extension to a G-invariant, smooth
function defined on G®/K€® exists. If so, one could look for an explicit global

realization of h, e.g. in terms of the coordinates of G®/K® in Y x Y.

6. G-ORBIT STRUCTURE OF =t.

By Theorem 4.7, the map
P Gxg Nt = 2T, l[g, X] = gexpiX -z

is a G-equivariant homeomorphism. Hence, every G-orbit in 2 meets exp iN*t -z
in a K-orbit and the G-orbit structure of =t is completely determined by the K-
orbit structure of the nilpotent cone Nt = AdgAL. Moreover, by Corollary 4.8,
the cone N is K-equivariantly homeomorphic to p. In this section we give further
details.

Corollary 6.1. Let X be an element in A%, and let expiX -xg be the corresponding

T2

point in 2T, Then the isotropy subgroup of expiX - xo in G is given by
GexpiX~x0 = ZK(X) = ZK(lIJ(X)) .

Proof. Since expiX - zo = 9([e, X]), by Theorem 4.7 one has
GexpiX~wo = G[e,X] = ZK(X) )
which proves the first equality. The second equality follows from Corollary 4.8. [J

Definition 6.2. An element X € AL is generic if expiX - xg lies on a mazimal
dimensional G-orbit in 2. Equivalently, if Zx(X) = Zk(AL). The set of generic
elements in AL is denoted by (A%)gen.
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Lemma 6.3. An element X in AL is generic if and only if U(X) = [Zp, X — 0X]
is generic in a. In particular the set (AL)gen is given by

(A} ) gen = {Z:UjEj s x; #0and z; #xy, for j,l=1,...,r and j # I},
J
and is dense in A%.

Proof. By Corollary 6.1 one has Zx(X) = Zx(¥(X)). Moreover ¥(AL) = a- and
Zr(AL) = Zrx(Ar) = Zk(a) (see Lemma 3.1). Hence X is generic if and only if
Zr(P(X)) = Zk(a), i.e. if and only if ¥(X) is a generic element of a.
For H € a the Lie algebra of Zx (H) is given by
Zy(H) = a® Ze(a) ® @ glale,
a(H)=0

where g[a]e is the E-component of the f-stable subspace gla] = g*® g~ of g. From
this and the fact that A(g, a) is either of type C,. or BC,, one has

agen:{ZajAj : aj #0 and a; # *ai, forj,l:l,...,randj;él}.

Given an element X =5 z;E; € A%, one has \I/( ) =>.x;A;. Thus X is generic
if and only if z; # 0 and z; # x, for 4, l=1,...,r and j # [, as claimed. |

Proposition 6.4. Let X € AL and k € K be elements such that AdX € A,.. Then
(i) AdrX lies in AL, implying that Nt N A, = AL,
(ii) there exists n € Nk (A,) such that AdX = Ad, X.

In particular A% is closed in N and the intersection Adg X N A, of the Adg-orbit
of X with A, is given by the Wi (A,)-orbit of X in AL.

Proof. (i) We first consider the case when k is an element of Nk (a) and we set
n = k. Then Ad,, acts on a by signed permutations of the A;.

Claim. If for some indices i, h € {1,...,r} one has Ad,,(4;) = Ay, then Ad,(E;) €
g if Ady(A;) = —Ap, then Ad,(E;) € g~

Proof of the claim. From [A;, E;] = 2F;, by applying Ad, to both terms of the
equation, we obtain

[Ad,A;, Ad, E;] = [An, Ad, E;] = 2Ad, E;.

Then, in order to show that Ad, E; € g**, we need to show that [A;, Ad, E;] = 0,
for all [ # h. Write [A;, Ad, E;] = Ad,[Ad,-1 4}, E;], and observe that Ad,,—14; €
{£A,,}, for some m # i. Then

Adn[AdnflAl,Ei] = Adn[iAm,Ez] =0,

as desired. A similar argument shows the second statement, and concludes the proof
of the claim.

Write X = > z,;E;, with z; > 0, and Ad, X = > y;E;, with y; € R. Then
U(X)=> x;A; and, since ¥ is Adx-equivariant, one has

Adp (U(X)) = zjAdp A = U(Ad,X) = > y;4;

Thus, given i € {1,. r} one has y, = x; > 0, if Ad,A; = Ap, and y,, = —x; <0,
if Ad,A4; = —Ay. In order to show that Ad, X ="y, E; lies in A%, we prove that
r; = 0 whenever Ad, A; = —Ay,.

Assume by contradiction that this is not the case. By the above claim, each
Ad, E; lies in one of the root spaces of the direct sum A, ® 0A, = @j oV @
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g~ M. Moreover, Ad,,X = Y 2;Ad,E; has a non-zero component in g=—*». This
contradicts the fact that Ad, X lies in A, and concludes the proof in the case when
k = n is an element of Nk (a).

Next, the general case. Both elements ¥(X) and U(Ad;X) = Adg(P(X))
belong to a and, by [Kna04], Lemma 7.38, p.459, there exists an element n € Nk (a)
such that

Adi(W(X)) = Ad, ((X)).
Thus n~ 1k lies in Zx (¥ (X)) and also in Zx(X), by (i) of Lemma 4.6. Therefore
AdpX = Ad,, X.

Since we already showed that Ad, X belongs to AL, the proof of (i) is now complete.
(ii) By (i), both X and AdiX lie in AL. Since ¥: Nt — p is a K-equivariant
homeomorphism (Cor. 4.8) and ¥(AL) = a-, both U(X) and Ad, ¥(X) belong to a-.
Of course they lie on the same Wi (a)-orbit. Recall that W (a) acts on a by signed
permutations and that, by definition, a- := {3°7_, z;4; : z; >0, j=1,...,r}.
Thus there exists v € Wi (a)t such that

AdpU(X) = - U(X).

Furthermore, Wi (a)™ = Wi (A%) by Lemma 3.1, implying that there exists n €
Ng (A%) such that v = nZg(a) and

Adp¥(X) = Ad,,P(X).
Now, by applying ¥=1: p — N'T to both sides of the above equality, one obtains
Adp X = Ad, X, as wished. O
By Lemma 3.1 the closure (A;)+ of the open chamber
(AT ={z1 B+ -+ 2,.F, ¢ 1y >x9> - > 2, >0}

is a perfect slice for the Wi (A, )-action on AL.

Corollary 6.5.

(i) The closure (A;)Jr of the open chamber (AL)V is a perfect slice for the Adk -
action on N'*.
(ii) For X € A% one has

GexpiX - xo ﬂexp iA; - xo = expi(Wk(Ay) - X) - xo.

(iii) There are homeomorphisms of orbit spaces

=G 2 AL/ Wi(A) = (A5

Proof. Part (i) follows from Proposition 6.4. For parts (ii) and (iii), Proposition
6.4(ii) implies that every G-orbit in G x g NV intersects the closed subset AL =
{l[e, X] € Gxxg Nt : X € AL } of N in a Wi(A,) orbit. Then the statements
follow from the G-equivariance of the homeomorphism 9 : G x g NT — ZET (see
Thm. 4.7). m

Remark 6.6. Observe that inside =% there is a proper inclusion
expils-xg C ET NexpiA, -z,

and that the sets {X € A, : expiX -z € 7} and @]_,(~1,00)E; coincide (see
[Kr608], p. 286). In fact, there exist elements X € A%, Y € A, \ As and g € G\ K
such that

gexpiX - xg = expiY - xg.
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For example, for G/K = SL(2,R)/SO(2,R), take —1 < z < 1 and b := /1 — 22.

0 b —iz/b  1/b .
Then (—l/b 0) € G and (—1/6 —ix/b) € SO(2,C). The relation

(50 0696 ) )

shows that the elements exp i (O x) -xg and (8 g) -x¢ lie on the same G-orbit

0 O
in 2T, even though not on the same K-orbit.
In the higher rank case, for 7 € {1,...,r}, consider the subdomains
(—1,0)E1 ® - @& (-1,1)E;& -+ @ (—1,00)E, (16)

of @;:1 (—1,00)E; C A,. On each of them there are additional symmetries (induced
by the G-action on =%) which identify elements which do not lie on the same Adk-
orbit in g (cf. Prop. 6.4). Namely, for —1 < z < 1, let g; be the image of the

element
0 V1— 22
—1/v1 — a? 0
in the SL(2,R)-subgroup of G generated by the s[(2)-triple {E},0E;, A;}. Then

grexpi(z1Er+- - +a;E5+ 4o, Er) -z = expi(v1 Ev+- - — x5 B+ 4o Er) -2

This shows that inside the 7'* subdomain of A, defined in (16), the element g;
induces the reflection with respect to the 7**-coordinate plane.

7. A DISTINGUISHED STEIN SUBDOMAIN OF =7,

Let G/K be an irreducible Hermitian symmetric space. The boundary of the
crown domain = contains a point whose G-orbit has locally minimal dimension. In
the tube case, such an orbit is a Cayley type symmetric space G/H. From the
compactly causal structure of G/H two distinguished G-invariant Stein domains
S* in G¢/KC arise, whose boundary contains G//H. The purpose of this section is
to prove that one of these domains, namely S, is contained in Z%. In the non-tube
case, there is no Stein analogue of the domains S* (see Rem. 7.7).

Denote by {wi,...,w,} the dual basis of the simple roots {a1,...,a,}, where r =
rank(G/K). Define
g1 = exp (zg:—:) € expia, (17)

where k, is the coefficient of the r-th simple restricted root «,. in the highest root
ap € A(g,a)*. If G/K is of tube type, then the restricted root system is of type
C, and the highest root is given by aj = 2a7 + ...+ 2a,_1 + .. Hence k. = 1 and
g1 = exp(ijw,). If G/K is not of tube type, then the restricted root system is of
type BC, and aj, = 201 + ... + 2a,.. Hence k, = 2 and g1 = exp(i§ %~).

In both cases |a(33=)| < 7, for all restricted roots a, and [A(F%5)] = 3,
where A, is as in (4). This shows that 1y = g; - g is a point on the boundary of

the crown domain. For j =1,...,r, define
T A
s (3),
where A; is as in (5). The element g; ; lies in the SL(2,C)-subgroup of G corre-
sponding to the j* triple defined in (5).
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Lemma 7.1. One has

-
g1 = Hng-
j=1

Proof. In the tube case, (2) and the relations A;(34;) = &;;, imply that a;((A; +
Ay +...+A,)) =0, for j=1,...,r. Therefore w, = %(Al +A+...+A).

In the non-tube case, (3) and the relations X;($4;) = &;; imply that o; (A1 + Az +
oo+ A) =0, for j=1,...,r. Thus w, = A1 + Az + ...+ A,. Since a is abelian,
the identity

A T A, B
g1,1---"g1,r = €Xp (25—) ©...-exp (257) =
1
holds true, as claimed. ([l

From now on, we assume the space G/K to be of tube type. We refer to
Remark 7.7 for some details about the non-tube case.

Lemma 7.2. Let G/K be an irreducible symmetric space of tube type. Then the
G-orbit of the point 1 = g1 - v in GC/KC is a semisimple symmetric space G /H
of Cayley type, with involution T = Adg20 and H = G™. The space G/H has the
same rank, real rank and dimension as G/K.

Proof. In the tube case w, = 3(A; + Az + ...+ A;). One easily verifies that
a(Fw,) € Z%, for every o € A(g,a), i.e. g satisfies conditions (5) in [Geal2].
Then the orbit G - x;, with the involution 7 = Ady, 9Adg;1 = Adgfﬂ, is a pseudo-
Riemannian symmetric space, say G/H, of the same rank, real rank and dimension
as G/K. In addition, G/H is a totally real submanifold of G¢/K® of maximal
dimension (see [Geal2], Lemma 2.2). Since z; lies on the semisimple boundary of
=, by [GiKr02], Thm. B, the space G/H is a non-compactly causal symmetric space.

To prove that G/H is also compactly causal, we use the characterisation of
Theorem 4.1 in [FaOl95], stating that an irreducible symmetric space (G/H,T) is
compactly causal if and only if G/K is a non-compact Hermitian symmetric space
and the involution 7: G/K — G/K is antiholomorphic. Since 7 defines an involu-
tion of g commuting with 6, it also determines an involution of G/K. It remains to
show that, the action of 7 on p anticommutes with the complex structure Jy = adz,,
where Zy = %ZJ T; (see Rem. 2.2). From the definition of 7 and Lemma 7.1, one
can see that the further conditions 0E; = —7E;, for j = 1,...,r, are satisfied.
Consequently, all the vectors T := E; + 0E;, and in particular Zy = %Z] T}, are
contained in q N €. Then, for all X € p, one has

adz,7(X) = [Zo, 7(X)] = 7[1(Zp), X]| = —7[Z0, X] = —T(adZO(X)),

as wished. This concludes the proof of the lemma. |

Let (g = bh @ q,7) be the symmetric algebra associated to the symmetric space
G/H and let W* denote the mazimal proper, open, convex, Adg-invariant, elliptic
cones in q.

It is important to observe that for the Cayley type symmetric space G/H,
the mazimal and the minimal proper, open, convex, Adg-invariant elliptic cones in
q coincide: under the Adjoint action of H, the space q decomposes as the direct
sum of irreducibles subspaces q7 @ q~, with the property that q= = 0q™. Each
summand contains closed, convex, Ady-invariant cones +£C, C q7 and £C_ C
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q~, with the property that the minimal elliptic and hyperbolic closed cones in g
are given by £(Cy — C_) and +(Cy + C_), respectively (cf. [HiOl97], p.53). In
particular, for the minimal closed, Ady-invariant elliptic cone W,
isomorphism W' = = Cy+ 04

Denote by C’S)_ the interior of C;. Since the symmetric space G/K is biholo-
morphic to the tube domain g +4iC (see [HiO197], Rem.2.6.9, p.55), the cone C}.
is selfadjoint (i.e. it coincides with its dual cone). As a consequence, the minimal

proper, closed, convex, Adg-invariant, elliptic cone in q is selfadjoint and coincides
*
) . The same is

there is an

n?

with the maximal one, which by definition is its dual cone (ng
true for the respective interior parts.

The domains G expiW® - x; are G-invariant Stein domains in G¢/HC, where
H® = g1 KCg; ! is the isotropy subgroup of z; in G€ (cf. [Nee99], Thm. 3.5, p. 205).

Under the G-equivariant biholomorphism

G°/H® — G®/K®, gH® — g K",
they can be identified with the G-invariant Stein domains ST := G expiW® g1 -z
in G¢/KC.

Since the involutions § and 7 commute, g has a joint eigenspace decomposition
g=(HNE) & (hNnp) @& (qN€) ® (qNp). Let a be a maximal abelian subspace in
qNp. Then a is maximal abelian in p and in g (see [HiO197], Prop. 3.1.11, p.77).

Fix a set of commuting (2, R)-triples {E;,0E;, A;} as in (5). As we remarked
in the proof of Lemma 7.2, each T} := F; 4+ 0F; is contained in q N € and ¢ :=
spang{T1,...,T,} is a compact Cartan subspace in g. In particular, ¢ contains the
element Zo = $(Ty + ...+ T,) € Z(k) (see Rem.2.2).

Lemma 7.3. One has

St=@G expi@(O,oo)Tj g1+ Zo-

j=1

Proof. A proper, closed, convex, Adg-invariant, elliptic cone in q intersects the
compact Cartan subspace ¢ in a proper, closed, convex, Wy (c¢)-invariant, elliptic
cone. Here Wg(c) := Ng(c)/Zg(c). Since the cone W+ is selfadjoint (i.e.both
maximal and minimal), we can identify the intersection W' := W+ N ¢ with a
minimal proper, closed, convex, Wy (¢)-invariant, elliptic cone in ¢. We prove the

lemma by showing that
ks

W = B0, 00)T;.
j=1
In order to do this we first observe that

W(c) = Whnk(c) = Wrhong(c),

where the second isomorphism follows from the fact that the c-dual symmetric space
G°¢/H is non-compactly causal. In addition, ic is a hyperbolic maximal abelian
subspace in iq. Then, by [HiO197], Thm.3.1.18 and Thm. 3.1.20, the group H is
essentially connected, i.e. H = H°Zyng (ic) (see [HiO197], Def. 3.1.16).

Next we recall the characterization of the minimal proper, closed, convex,
Wiyo(c)-invariant, elliptic cones in ¢ (see [KrNe96]). Consider the restricted root
system A(g®, ) of g€ with respect to ¢©. Define the Lie subalgebra t = qN € ®
[gNEqgNE C € A root a € A(gS,c®) is called compact if g* Nt* # {0}, and
non-compact otherwise. Denote by A(g®,¢%). and A(g®, %), the compact and
non-compact roots in A(g®, ¢©), respectively. The root system A(g®, ¢®) is called
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split if g C £C, for all compact roots . The Weyl group Woqx (¢) is isomorphic to
the group W, generated by the reflections in the compact roots ([KrNe96], Def.II1.9
and Prop. V.2.i). If the positive non-compact roots A(g®, ¢©),, are stable under the
group W, the system A(g®,®)" is called t-adapted.

If the symmetric algebra (g,7) is compactly causal then the restricted root
system A(g®, ¢©) is split and admits an t-adapted positive system. Moreover the
minimal proper, closed, convex, Wgonx (¢)-invariant, elliptic cones in ¢ have the
following characterization

iWE = Feone({hataca (gt ), )

where h,, € ic is defined by a(H) = B(H, hy).

Now we come to our situation: since ¢ is the image of a under a Cayley trans-
form, the root system A(g®, ¢©) is isomorphic to the ordinary restricted root system
A(g, a), and is of type C,. For simplicity, identify cg = ic with ¢} using the Killing
form. Since the restrictions to ¢€ of the roots Aq, ..., A, defined in Remark 2.2 are
non-compact in A(g®, ¢®), one has the inclusion

cone({2¢;};) CiW, .

The fact that the image of cone({2e;};=1, . ) under the reflections with respect to
roots of the form +(e; +€;), for 1 <i < j <, is not contained in any regular cone
in ic, implies that such roots are necessarily non-compact. It follows that

cone({2¢;};) = cone({2e;, (€; + ex)}; izk)-

We claim that all roots of the form +(e; —e;), for 1 < ¢ < j < r, are necessarily
compact. In order to see this, first observe that the compact roots are a non-empty
proper subset of A(g®, ). Then assume by contradiction that there is a non-
compact root of the form e; — ey, for some ¢ < k. Without loss of generality, we
may also assume that either e; — e;, for some i < j, or e; — ey, for some j < k, is

compact. From the W -invariance of the cone iW:" and the relations

Tei—e;(€i —€r) =ej —er and 1o, ¢ (e; —ep) =e; —ej,
we deduce that either e; —e; or e; —e; is a non-compact root and lies in Wt as
well. From (e; — e;) + (ej — ex) = (e; + €j) — 2ej, we obtain that R2e; C iW.";
similarly, from (e;—ey)+(e;—e;) = 2e;—(ex+e€;), we obtain that R(ey+e;) C iWr.

In both cases the assumption that iW" is a proper cone is violated. Hence

cone({2e;};) = iW.,
as desired. O

The next lemma proves that ST is contained Z* in the rank-one case. It
also provides the main tool for the proof of the same inclusion in the higher rank
case, which is based on the rank-one reduction. Fix the basis of s[(2) given in (8),
normalized as in (6), and set T := E + 0E.

Lemma 7.4. Set kg =exp 77T

(i) Forte (—n/4,m/4) define a1(t) = exp (ln(\/c;ﬁ)/l). One has

expitA - xg = koa1(t) expisin 2tE - xg . (18)

In particular expitA - xg € Gexpisin2tE - xg and
E=Gexpil0,1)E - xo.



ORBIT STRUCTURE 21

(ii) Fort € (0,00) define as(t) = exp (ln(\/ﬁ)A) One has
expitT g1 - xg = koaz(t) expicosh 2tE - xg . (19)

In particular expitT g1 - xg € Gexpicosh2tE - xy and
St = Gexpi(l,00)E - .

Proof. Formula (18) is proved by showing that
expitA = koaq(t) exp(isin 2tE) k,

for some k € SO(2,C). The above identity follows from a simple matrix computa-
tion with

ez’t 0 L L . 0
tA = N, k=2 2 t) = Ve
expi (0 e—zt) 0 <_\}§ jﬁ) ;o ai(t) ( 0 V/cos 2t

expisin2tE = (

1 dsin 2t> po 1 <e—“ —e”)
0 1 7 © V2cos2t \ €t e
The second statement in (i) follows directly from equation (18) and the definition of
=. An analogous computation was carried out in [KrOp08], Sect. 3.2, for the crown
domain using the hyperbolic model SOy(1,2,C)/SO(2,C).

Formula (19) is proved by showing that

k =gy ! (expitT) ™ ko as(t) exp(icosh 2t E)

is an element of SO(2,C). The above identity follows from a simple matrix compu-
tation with

-1 17_51 0 ( 7)) = cosht —isinht b — % %
=\ o i) \&P? ~ \isinht cosht ) "0 —% %

0 Vsinh 2t 0 1

The second statement in (ii) follows directly from equation (19) and Lemma 7.3. O

1 .
—— 0
GQ(t) = <m > , eXpiCOSh NUE = (1 3 cosh 2t) .

Proposition 7.5. Let G/K be an irreducible Hermitian symmetric space of tube
type. Then the domain Z% contains the crown

E=Gexpi@PI0,1)E; - 2,

j=1
and the domain

St = Gexpi@(l,oo)Ej - Zp.

j=1

Proof. The first equality was proved in [KrOp08]. The second one follows from
G-invariance, and rank-1 reduction. Indeed by Lemma 7.3 and Lemma 7.4, we have

St=aG Hexpi(O,oo)Tj g1z =G Hexpi(O,oo)Tj Hgl’j S Lo =
j=1 j=1 j=1

=G H expi(0,00)Tj91,; | -0 =G H expi(1,00)E; - xo,
j=1 j=1

as claimed. O
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Recall that the domain =7 is G-equivariantly diffeomorphic to the anti-holomorphic
tangent bundle G x g p®'. From Lemma 4.5, we obtain another natural description
of the crown = and of the domain S™ inside Z*, by means of their intersections
with the slice defined by 7(a) in p®! (see (12)).

Corollary 7.6. One has

- 1 - 1
== Gexpi( EPI, 1)5(4; + iJoA;)) - o = Gexpi( (-1, 1)5(4; + iJoA;)) - xo

Jj=1 Jj=1

and
-

1

j=1

Gexpi@D ((—00, 1) U (1,00)) = (A; +iJoA;) -z .
j=1

DO =

Remark 7.7. If G/K is an irreducible Hermitian symmetric space, which is not of
tube type, then the element g7 in (17) satisfies conditions (3) in [Geal2] (while it
does not satisfy conditions (5) therein). Then, by Lemma 2.1 in [Geal2], the orbit
G - x1 of the point x1 = g1 -z is not a symmetric space. However, the orbit G- 1,
under the action of the proper reductive subgroup G:= Za(g1) of G, is a reductive
symmetric space with involution 7 = Adg%ﬁ. The space G - 71 has the same rank
and real rank as G/K, but strictly smaller dimension. The isotropy subgroups of
z1 in G and in G coincide and the slice representation at x; with respect to the
G-action is equivalent to the isotropy representation of G- 1.

The orbit G - x1 is diffeomorphic to the Cayley symmetric space associated to
the Hermitian symmetric space of tube type contained in G/K. In order to see this,
observe that Adglll is an involution of G which commutes both with the Cartan
involution of G and the conjugation defining G. Since G® is simply connected,
GC = Ze(gt) is connected. Moreover it is reductive, being the complexification
of U = Zir(g1), the fixed point subgroup of the restriction of Adg% to the simply
connected compact real form U of GC. From the classification of simply connected,
compact symmetric spaces one sees that the following three cases occur:

G=_S8U(rs), (r<s) G®=S8L(r+sC) G®=S(GL(s—r,C)x GL(2r,C))
G = Spin*(2r) GC = Spin*(2r,C) G° = C*Spin*(2(r — 1),C)
G =FEs_1y, r=2) G°=E; G® = C*Spin(10,C).

One can show that GC can be written as the commuting product GC = MCGE, .,
where M€ is a subgroup of Zgc(a®) and Gt denotes the simply connected com-
plexification of the connected, Hermitian simple group acting on the tube-type sym-
metric space contained in G/K. Moreover there are isomorphisms of coset spaces
GE/(GO) = G /(Ghpe)™ and G/GT = Grupe/ (Grupe) ™

Recall that in the non-tube case the element Zy € Z(¥) determining the complex
structure of G/K can be written as Zo = S+7Tp, where S € Z (a) and Ty = > T},
with T; = E; + 0E;. Hence Z lies in g and T} lies in Giype. Denote by W+ the
maximal proper, open, convex, Ad(Gmbe)T—invariant elliptic cone in T}, (@tube 21,

which satisfies W+ = conv (Ad(q,,,.)- (R*Tp)). Then
Of =GexpiW™' 21 =GexpiWtg; -0
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is an open G-invariant domain in G¢/K® and, by similar considerations as in the
tube case, an analogue of Proposition 7.5 holds true. Namely

ot = Gexpi@(o, 00)T} g1 - xo.
j=1
It turns out that QT is not Stein and contains no proper G-invariant Stein subdo-
mains (see [Gelal3], Thm. 5.1, Case(2)).
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