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Abstract

We prove that a polar orthogonal representation of a real reductive algebraic group has the same closed
orbits as the isotropy representation of a pseudo-Riemannian symmetric space. We also develop a partial
structural theory of polar orthogonal representations of real reductive algebraic groups which slightly gen-
eralizes some results of the structural theory of real reductive Lie algebras.
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1. Introduction

A representation of a complex reductive algebraic group G on a finite-dimensional complex
vector space V is called polar if there exists a subspace c ⊂ V consisting of semisimple ele-
ments such that dim c = dimV//G (the categorical quotient), and for a dense subset of c, the
tangent spaces to the orbits are parallel [DK85]; then it turns out that every closed orbit of G

meets c [DK85, Prop. 2.2]. The class of polar representations was introduced and studied by
Dadok and Kac in [DK85], and it is very important in invariant theory because it includes the
adjoint actions, the representations associated to symmetric spaces studied by Kostant and Ral-
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lis [KR71] as well as, more generally, the representations associated to automorphisms of finite
order (θ -groups) introduced by Vinberg [Vin76] (see also [Kac80]). At present, there is no com-
plete classification of polar representations although the paper [DK85] contains very important
partial results.

A complex (resp. real) representation admitting a complex-valued (resp. real-valued) invariant
non-degenerate symmetric bilinear form is called orthogonal. It is well known that a complex
orthogonal representation admits a real form invariant under a maximal compact subgroup. Con-
sider in particular the complex polar orthogonal representations and the class of compact real
forms they originate. Since the complex reductive algebraic groups are exactly the complexifica-
tions of the compact Lie groups, one can equivalently define directly the concept of a real polar
representation of a compact Lie group in the differential-geometric setting (as in e.g. [PT87]) and
obtain the same class. Note that orbits of polar representations of compact Lie groups are very
important in submanifold geometry and Morse theory [BS58,Con71,Sze84,PT87,DO01,GT03].
Now, such representations were classified by Dadok in [Dad85], and the following very nice char-
acterization was deduced: A polar representation of a compact Lie group has the same orbits as
the isotropy representation of a Riemannian symmetric space.

The purpose of this paper is to study noncompact real forms of complex polar orthogonal
representations. Equivalently, we define a representation of a real reductive algebraic group (in
the sense of [BH62, §1]) to be polar if and only if its algebraic complexification is polar. In
Section 3 we prove the following theorem.

Theorem 1. A polar orthogonal representation of a connected real reductive algebraic group has
the same closed orbits as the isotropy representation of a pseudo-Riemannian symmetric space.

In Section 4, we discuss some aspects of the submanifold geometry of the closed orbits of the
polar orthogonal representations of the real reductive algebraic groups in that we relate them to
a notion of pseudo-Riemannian isoparametric submanifold of a pseudo-Euclidean space (com-
pare [Hah84,Mag85]).

Finally in Section 5, independently of classification results, we develop a partial structural
theory of polar orthogonal representations of real reductive algebraic groups that generalizes
some results of the structural theory of real reductive Lie algebras. In this regard, we propose to
replace adjoint actions by polar orthogonal ones. The results we prove are slight generalizations
of well known results for the adjoint actions, but we believe our proofs are more geometric. In
particular, we show that a polar orthogonal representation of a real reductive algebraic group
admits finitely many pairwise inequivalent so-called Cartan subspaces in standard position with
respect to a compact real form such that the union of those subspaces meets all the closed orbits
and always orthogonally (Theorem 15 and Corollary 18). We also construct the so-called Cayley
transformations that relate different equivalence classes of Cartan subspaces (Section 5.3), and
use those to show that the equivalence classes of Cartan subspaces in the two extremal positions
with respect to the compact real form are unique (Corollary 25).

Unless explicit mention to the Zariski topology is made, we use throughout the classical topol-
ogy. We always use lowercase gothic letters to denote Lie algebras. For a given homomorphism
of groups, we denote the induced homomorphism on the Lie algebra level by the same letter
whenever the context is clear. Sometimes it is useful to call a representation orthogonalizable
if it admits an invariant non-degenerate symmetric bilinear form but we do not want to fix such
a form.
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2. Preliminaries

Let G be a connected complex reductive algebraic group. Let τ :G → GL(V ) be a complex
representation. A vector v ∈ V is called semisimple if the orbit Gv is closed. Not every orbit of G

in V is closed, but the closure of any orbit contains a unique closed orbit. An element is called
regular if it is semisimple and dimGv � dimGx for all semisimple x ∈ V . The representation τ

is called stable or is said to admit generically closed orbits if there exists an open and dense
subset of V consisting of closed orbits. An orthogonalizable representation is necessarily stable
(see [Sch80, Cor. 5.9] or [Lun72,Lun73]).

Let C[V ] be the polynomial algebra of V , and let C[V ]G be the algebra of G-invariant poly-
nomials. It does not contain nilpotents, and is finitely generated by a theorem of Hilbert, so it
is the coordinate ring of an affine algebraic variety denoted by V//G and called the categorical
quotient of V by G. The embedding C[V ]G → C[V ] induces a surjective morphism of affine
algebraic varieties π :V → V//G. Every fiber of π contains a unique closed orbit. It follows that
V//G can be seen as the parameter set of closed G-orbits in V , and then π(v) represents the
unique closed orbit in the closure of Gv [PV94, §4].

For semisimple v ∈ V , set

cv = {x ∈ V | g · x ⊂ g · v}.
Then cv consists entirely of semisimple elements, and the isotropy subalgebras satisfy gx ⊃ gv

for x ∈ cv [DK85, Lem. 2.1]. The representation τ is called polar if a semisimple v can be chosen
so that dim cv = dimV//G. In this case, cv is called a Cartan subspace. The Cartan subspaces
of a polar representation are all G-conjugate [DK85, Thm. 2.3].

The group G can be seen simply as the complexification of a compact connected Lie group U ;
compare [Sch80, §5] or [BH62, Rmk. 3.4]. Then U is a maximal compact (necessarily con-
nected) subgroup of G, and every maximal compact subgroup of G is G-conjugate to U . It
is easy to see that a representation τ is orthogonalizable if and only if it admits a real form
τu :U → GL(W) [Sch80, Prop. 5.7]. The group U must be the fixed point group Gθ of a unique
anti-holomorphic involutive automorphism θ of G, which is called a Cartan involution of G.
Also, the subspace W is the fixed point set V θ̃ of a conjugate-linear involutive automorphism θ̃

of V , the equation θ̃ (g · v) = θ(g) · θ̃ (v) holds for g ∈ G and v ∈ V , and an invariant form 〈·,·〉
can be chosen on V so that it is real-valued on V θ̃ .

More generally, we consider real forms of τ :G → GL(V ) given by a pair (σ, σ̃ ) where σ is an
anti-holomorphic involution of G and σ̃ is a real structure on V satisfying σ̃ (g · v) = σ(g) · σ̃ (v)

for g ∈ G, v ∈ V . The fixed point subgroup Gσ is a (not necessarily connected) real reductive
algebraic group, and τ of course restricts to a representation of Gσ → GL(V σ̃ ), where V σ̃ is
the fixed point set of σ̃ in V . We say that two real forms (σ, σ̃ ) and (σ ′, σ̃ ′) commute if they
commute componentwise. If τ is orthogonal with respect to 〈·,·〉 and a real form (σ, σ̃ ) is given,
then 〈·,·〉 is said to be defined over R with respect to σ̃ and (σ, σ̃ ) is called an orthogonal real
form if 〈·,·〉 is real-valued on V σ̃ . Note that the latter condition is equivalent to having

〈σ̃ x, σ̃ y〉 = 〈x, y〉
for x, y ∈ V . A Cartan pair of τ is an orthogonal real form (θ, θ̃ ) such that θ is a Cartan invo-
lution of G and 〈·,·〉 is real-valued and negative-definite on V θ̃ . Note that (θ, θ̃ ) is a Cartan pair
of τ with respect to 〈·,·〉 if and only if (θ,−θ̃ ) is a Cartan pair of τ with respect to −〈·,·〉. The
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following result is essentially proved in [Bre93, 7.4], but we find it convenient to include a proof
here because we will need to refer to some of its techniques.

Proposition 2 (Bremigan). Let τ :G → O(V, 〈·,·〉) be an orthogonal representation, and sup-
pose that (σ, σ̃ ) is an orthogonal real form. Then there exists a Cartan pair (θ, θ̃ ) which
commutes with (σ, σ̃ ).

Proof. It is well known that there exists a Cartan involution θ of G such that θσ = σθ . Let
U = Gθ be the associated maximal compact subgroup of G. Consider the realification V r of V ,
and denote the invariant complex structure on V r by J so that V = (V r , J ). Note that

σ̃ τ (g)σ̃−1 = τ
(
σ(g)

)
, J τ(g)J−1 = τ(g) and J σ̃J−1 = −σ̃

for g ∈ G. Let G∗ be the subgroup of GL(V r) generated by τ(G), σ̃ and J . Then G∗ con-
tains τ(G) as a normal subgroup of finite index. Due to θσ = σθ , we have also that σ̃ normal-
izes τ(U). Let U∗ be the subgroup of G∗ generated by τ(U), σ̃ and J . Then U∗ is a compact
subgroup of G∗, so we can find a U∗-invariant positive-definite real inner product on V r which
we denote by “·.” Set

(x, y) = x · y + i(x · Jy)

for x, y ∈ V r . Then it is easily checked that (·,·) is a U -invariant positive-definite Hermitian
form on (V r , J ) = V which is real-valued on V σ̃ . In particular, iu acts on V by Hermitian
endomorphisms. Next, define a conjugate-linear automorphism θ̃ of V by setting

(x, θ̃y) = −〈x, y〉 (1)

for x, y ∈ V . Then

(
x, θ̃(gy)

) = −〈x,gy〉 = −〈
g−1x, y

〉 = (
g−1x, θ̃y

) = (
x, θ(g)θ̃(y)

)
, (2)

so θ̃ τ (g) = τ(θ(g))θ̃ for g ∈ G. Moreover

(x, θ̃ σ̃ y) = −〈x, σ̃ y〉 = −〈σ̃ x, y〉 = (σ̃ x, θ̃y) = (x, σ̃ θ̃y) (3)

implying that θ̃ σ̃ = σ̃ θ̃ . We also have that

(
θ̃2x, y

) = (
y, θ̃2x

) = −〈y, θ̃x〉 = −〈θ̃x, y〉
= (θ̃x, θ̃y) = (θ̃y, θ̃x) = · · ·
= (

x, θ̃2y
)

for x, y ∈ V . It follows that θ̃2 :V → V is a G∗-equivariant C-linear Hermitian automorphism.
Hence there exists a 〈·,·〉- and (·,·)-orthogonal G∗-invariant decomposition V = ⊕

j Vj such that

θ̃2|V = λj idV where λj ∈ R \ {0} and the λj ’s are pairwise distinct.

j j
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Note that λj (x, x) = (θ̃x, θ̃x) > 0 if x ∈ Vj \ {0}, so we also have λj > 0. If we change (·,·)
by a factor of λ

1/2
j on Vj × Vj , as we do, θ̃ is changed by a factor of λ

−1/2
j on Vj , and then the

resulting θ̃ satisfies θ̃2 = idV . Note that Eqs. (2) and (3) are unchanged. Now (θ, θ̃ ) is a real form
of (G,V ) commuting with (σ, σ̃ ). Further,

〈θ̃x, θ̃y〉 = −(
θ̃x, θ̃2y

) = −(θ̃x, y) = −(y, θ̃x) = 〈y, x〉 = 〈x, y〉

for x, y ∈ V and

〈x, x〉 = −(x, θ̃x) = −(x, x) < 0

for x ∈ V θ̃ \ {0}. This completes the proof. �
Proposition 3. Let τ :G → O(V, 〈·,·〉) be an orthogonal representation, and suppose that θ is
a Cartan involution of G. Then there can be at most one real structure θ̃ on V such that (θ, θ̃ ) is
a Cartan pair of τ .

Proof. Suppose that (θ, θ̃ ) and (θ, θ̃ ′) are two Cartan pairs of τ . Define

h(x, y) = −〈x, θ̃y〉 and h′(x, y) = −〈x, θ̃ ′y〉

for x, y ∈ V . It is easy to see that h and h′ are two U -invariant positive-definite Hermitian forms.
Diagonalizing h′ with respect to h, we get a U -invariant, h-orthogonal splitting V = ⊕

j Vj such

that θ̃ ′ = λj θ̃ on Vj , where λj > 0 and the λj ’s are pairwise distinct. Using (θ̃ ′)2 = θ̃2 = 1, we
finally see that θ̃ ′ = θ̃ . �
Corollary 4. Let τ :G → O(V, 〈·,·〉) be an orthogonal representation. Then any two Cartan
pairs of τ are G-conjugate; moreover, if the underlying Cartan involutions commute with a real
form σ of G, then the Cartan pairs are (Gσ )◦-conjugate.

Proof. Let (θ1, θ̃1) and (θ2, θ̃2) be two Cartan pairs of τ . It is known that there exists g ∈ G such
that θ2 = Inng θ1 Inn−1

g . Of course, (Inng θ1 Inn−1
g , gθ̃1g

−1) is also a Cartan pair. Proposition 3

implies that θ̃2 = gθ̃1g
−1. Further, if both θ1 and θ2 commute with σ , it is known that g can be

taken in the identity component of Gσ . �
3. The classification

Let ĜR/GR be a semisimple pseudo-Riemannian symmetric space. Here ĜR is a connected
real semisimple Lie group, τ̂ is a non-trivial involutive automorphism of ĜR and GR is an open
subgroup of the fixed point group of τ̂ . The automorphism τ̂ induces an automorphism of the Lie
algebra ĝR of ĜR which we denote by the same letter. Let ĝR = gR + VR be the decomposition
into ±1-eigenspaces of τ̂ . Of course, gR is the Lie algebra of GR. The restriction of the Killing
form of ĝR to VR × VR is AdGR -invariant and non-degenerate, so it induces a ĜR-invariant
pseudo-Riemannian metric on ĜR/GR. The adjoint action of GR on VR is equivalent to the
isotropy representation of ĜR/GR at the base-point.
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Next, extend τ̂ complex-linearly to an automorphism of the complexification ĝ = (ĝR)c

denoted by the same letter and consider the corresponding decomposition ĝ = g + V into ±1-
eigenspaces. Let Ĝ be the simply-connected complex Lie group with Lie algebra ĝ, view τ̂ as
an involution of Ĝ, and let G be the fixed point group of τ̂ in Ĝ. Note that G is connected. The
adjoint action of G on V is a complex polar action whose Cartan subspaces coincide with the
maximal Abelian subspaces of V consisting of semisimple elements (indeed, this is a θ -group
(see [DK85, Introd.] or [PV94, 8.5, 8.6]); no relation here to the aforementioned Cartan invo-
lution θ ). Further, it is an orthogonal action with respect to the restriction of the Killing form
of ĝ to V . By passing from ĜR to a finite covering if necessary, we may assume that ĜR em-
beds into Ĝ and GR embeds into G, so we can view the adjoint action of GR on VR as an
orthogonal real form of the adjoint action of G on V . We deduce that the isotropy representa-
tion of a pseudo-Riemannian symmetric space is a polar representation. In this section, we prove
Theorem 1 which is essentially a converse to this result.

Before giving the proof of Theorem 1, we prove four lemmas. In the remaining of this section,
let G be a complex reductive algebraic group defined over R and denote by GR the identity
component of its real points.

Lemma 5. Let τ :G → GL(V ) be a polar representation, where V = V1 ⊕ V2 is a G-invariant
decomposition. Assume that the induced representations τi :G → GL(Vi) are stable. Then:

(a) τi is polar, i = 1, 2.
(b) Every Cartan subspace of τ is of the form c = c1 ⊕ c2, where ci is a Cartan subspace of τi ,

i = 1,2.
(c) The closed orbits of G on V2 coincide with those of Gv1 , where v1 is any semisimple vector

of V1. In particular, V1 and V2 are inequivalent representations.
(d) Fix a Cartan subspace c = c1 ⊕ c2, let h1 (resp. h2) denote the centralizer of c2 (resp. c1)

in g, and denote by Hi the connected subgroup of G corresponding to hi . Then the closed
orbits of τ coincide with those of τ̂ :H1 × H2 → GL(V1 ⊕ V2), where τ̂ (g1, g2)(v1 + v2) =
τ1(g1)v1 + τ2(g2)v2.

Proof. Parts (a) and (b) are Prop. 2.14 in [DK85], and (c) is Cor. 2.15 of that paper. Let us
prove (d). Select a regular element v1 + v2 ∈ c1 ⊕ c2 for τ . Then h1 = gv2 , h2 = gv1 and (c)
implies that h1 · v1 = g · v1 and h2 · v2 = g · v2 (note that vi is semisimple for τi since ci is
a Cartan subspace). This implies that g = h1 + h2, so G = H1 · H2 = H2 · H1 by connectedness
of G. For any u1 + u2 ∈ c1 ⊕ c2, we now have that G(u1 + u2) ⊂ (H1 × H2)(u1 + u2). Since
g = h1 + h2, and G(u1 + u2), H1u1 × H2u2 are closed and connected, it follows that the two
orbits coincide. �
Lemma 6. Let ρ :GR → GL(VR) be a polar representation, where VR = (VR)1 ⊕ (VR)2 is a
GR-invariant decomposition. Assume that the induced representations ρi :GR → GL((VR)i)

are orthogonalizable. Then there exist closed connected subgroups H ′
i of GR, i = 1, 2, such

that the restricted representations ρi |H ′
i

:H ′
i → GL((VR)i) are polar and the closed orbits

of ρ coincide with those of ρ̂ :H ′
1 × H ′

2 → GL((VR)1 ⊕ (VR)2), where ρ̂(g1, g2)(v1 + v2) =
ρ1(g1)v1 + ρ2(g2)v2.

Proof. The complexification τ = ρc :G → GL(V ) is polar and each τi = ρc
i is orthogonaliz-

able, hence stable. By Lemma 5, the closed orbits of τ coincide with those of τ̂ :H1 × H2 →
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GL(V1 ⊕ V2), where Vi = (VR)ci , the group H1 (resp. H2) is the connected centralizer of c2
(resp. c1) in G, and c = c1 ⊕ c2 ⊂ V1 ⊕ V2 is a Cartan subspace of τ . As usual, suppose that ρ is
defined by (σ, σ̃ ). Now c can be taken to be σ̃ -stable due to Lemma 13 below. In this case, Hi is
σ -stable; set H ′

i to be subgroup of GR given by the identity component of (Hi)
σ . It is clear that

the groups H ′
i have the desired properties. �

Given a representation ρ :GR → GL(VR), denote by ρ∗ :GR → GL(V ∗
R) the dual representa-

tion. Note that ρ ⊕ ρ∗ :GR → GL(VR ⊕ V ∗
R) is always orthogonal with respect to〈(

v1, v
∗
1

)
,
(
v2, v

∗
2

)〉 = v∗
1(v2) + v∗

2(v1). (4)

The proof of the following lemma is simple and we omit it.

Lemma 7. Let ρ :GR → GL(VR) be orthogonalizable. Then there exists an irreducible decom-
position

VR = (VR)1 ⊕ · · · ⊕ (VR)r ⊕ (VR)r+1 ⊕ (VR)∗r+1 ⊕ · · · ⊕ (VR)s ⊕ (VR)∗s ,

where (VR)1, . . . , (VR)r are orthogonalizable and (VR)r+1, . . . , (VR)s are not orthogonalizable.

The following lemma will be used to show that certain polar representations have the same
closed orbits as a the isotropy representation of a symmetric space.

Lemma 8. Suppose τ :G → GL(V ) is a polar orthogonalizable representation, U is a maximal
compact subgroup of G and τu :U → GL(W) is a real form. Suppose also that U ′ is a connected
closed subgroup of U and G′ ⊂ G is the complexification of U ′. If τu|U ′ has the same orbits in W

as τu, then τ |G′ has the same closed orbits in V as τ . If, in addition, ρ :GR → GL(VR) is a real
form of τ and G′

R ⊂ GR is a connected real form of G′, then ρ|G′
R

has the same closed orbits
in VR as ρ.

Proof. The assertion about ρ immediately follows from that about τ and the facts that GRv is
closed if and only if Gv is closed [Bir71] and dimR GRv = dimGv for v ∈ VR. Let us prove
the assertion about τ . We first claim that if v ∈ V and Gv is closed, then G′v = Gv. Of course,
we already have that G′v ⊂ Gv. In the case in which v ∈ W , we have that both Gv and G′v are
connected, closed and have dimension equal to dimR Uv = dimR U ′v, so the result follows. In
the general case, fix a U -invariant positive-definite Hermitian form (·,·) and choose v1 ∈ Gv of
minimal length [DK85, p. 508]. Of course, Gv1 = Gv and v1 is also of minimal length in G′v1.
It follows that G′v1 is also closed [DK85, Thm. 1.1] and Gv1 , G′

v1
are θ -stable, where θ is the

Cartan involution of G associated to U [DK85, Prop. 1.3]. Let L = (Gv1)
θ and L′ = (G′

v1
)θ .

Now we can choose w ∈ W such that Uw = L by the same argument as in [Sch80, Prop. 5.8],
and it easily follows that U ′

w = L′. We have established that Uw (resp. U ′
w) is a real form of Gv1

(resp. G′
v1

). Therefore

dimGv1 = dimG − dimGv1

= dimR U − dimR Uw

= dimR Uw
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= dimR U ′w

= dimR U ′ − dimR U ′
w

= dimG′ − dimG′
v1

= dimG′v1,

which implies that G′v1 = Gv1. Since Gv1 = Gv, we also have G′v = Gv, proving the claim.
Let c ⊂ V be a Cartan subspace of τ . In view of the claim proved above, c consists of semisim-

ple elements of τ |G′ . Also, dim c = dimV//G = dimV//G′, where the last equality follows
from the fact that τu and τu|U ′ have the same co-homogeneity in W . By [DK85, Prop. 2.2], every
closed G′-orbit meets c, from which it follows that τ |G′ has the same closed orbits in V as τ . �

In order to prove Theorem 1, we will use the explicit lists of polar representations of compact
Lie groups that have been obtained in [EH99] (irreducible case) and [Ber99,Ber01] (reducible
case); see also [GT00] (both cases). For brevity, an isotropy representation of a semisimple sym-
metric space will be called an s-representation. Let ρ :GR → GL(VR) be a polar orthogonal
representation. Let τ = ρc :G → GL(V ), and suppose that ρ is given by (σ, σ̃ ) so that GR is the
identity component of Gσ . Let (θ, θ̃ ) be a Cartan pair as in Proposition 2, U = Gθ , W = V θ̃ ,
and τu :U → GL(W) the associated real form. Then τu is a polar representation of a compact
Lie group. By Dadok’s theorem quoted in the introduction and the results in [EH99,Ber01], τu is
either a Riemannian s-representation or one of the exceptions listed in those papers. We need the
following fundamental lemma.

Lemma 9. If τu is an irreducible Riemannian s-representation, then ρ is a pseudo-Riemannian
s-representation.

Proof. By assumption, û = u + W admits a real Lie algebra structure extending that of u such
that [HZ96, p. 182]

[X,w] = τu(X)w and
〈
X, [w,w′]〉

u
= 〈

τu(X)w,w′〉
for X ∈ u and w,w′ ∈ W , where

〈X,Y 〉u = traceû(adX adY )

for X,Y ∈ u and adX(Z) = [X,Z] for X ∈ u and Z ∈ û. Denote the Killing form of û by β; note
that it is non-degenerate as û is semisimple. Also, it turns out that 〈·,·〉u is the restriction of β

to u.
Now, since β|W×W and 〈·,·〉|W×W are both positive-definite real-valued symmetric bilinear

forms which are u-invariant, and τu is irreducible, there exists λ > 0 such that β(x, y) = λ〈x, y〉
for x, y ∈ W . By C-bilinearity, βc(x, y) = λ〈x, y〉 for x, y ∈ V , where βc is the Killing form of
ûc = g + V . It suffices to prove that ĝR := gR + VR is a real subalgebra of ûc . It is clear that
[gR,gR] ⊂ gR and [gR,VR] ⊂ VR. We claim that also [VR,VR] ⊂ gR. In fact,

βc(σ̃ x, σ̃ y) = λ〈σ̃ x, σ̃ y〉 = λ〈x, y〉 = λ〈x, y〉 = βc(x, y) (5)

for x, y ∈ V . If Z1,Z2 ∈ g, then also
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βc(σZ1, σZ2) = traceûc (adσZ1 adσZ2)

= traceg(adσZ1 adσZ2) + traceV (adσZ1 adσZ2)

= traceg(σ adZ1 adZ2 σ) + traceV (σ̃ adZ1 adZ2 σ̃ )

= traceg(adZ1 adZ2) + traceV (adZ1 adZ2)

= traceûc (adZ1 adZ2)

= βc(Z1,Z2), (6)

where we used in the third equality that

adσZ1 x = σZ1 · x = σ̃ (Z1 · σ̃ x) = σ̃ adZ1 σ̃ x

for x ∈ V . Therefore

βc
(
Z,σ [x, y]) = βc

(
σZ, [x, y]) by (6)

= βc(σZ · x, y)

= βc
(
σ̃ (σZ · x), σ̃ y

)
by (5)

= βc(Z · σ̃ x, σ̃ y)

= βc
(
Z, [σ̃ x, σ̃ y])

for all Z ∈ g and x, y ∈ V . Hence σ [x, y] = [σ̃ x, σ̃ y], proving the claim. Of course, ρ is now
the isotropy representation of the pseudo-Riemannian symmetric space ĜR/GR, where ĜR :=
Int(ĝR) and GR is the connected subgroup associated to gR. �
Proof of Theorem 1. In view of Lemmas 6 and 7, it is enough to consider the following two
cases:

(a) ρ is irreducible.
(b) ρ decomposes as ρ0 ⊕ρ∗

0 , where ρ0 :GR → GL(V0) is irreducible and non-orthogonalizable,
VR = V0 ⊕ V ∗

0 , and the inner product on VR is given by (4).

(a.1) Suppose first that ρ is absolutely irreducible. Then τu is an absolutely irreducible po-
lar representation of a compact Lie group, so it is either a Riemannian s-representation and
then the result follows from Lemma 9, or it is listed in [EH99]. In the latter case, it must be
(SO(3)× Spin(7),R3 ⊗ R8), where R8 denotes the spin representation; according to [Oni04, Ta-
ble 5, p. 79], GR equals SO0(1,2)×Spin(7) (resp. SO(3)×Spin0(3,4), SO0(1,2)×Spin0(3,4);
here the subscript denotes the identity component), and ρ :GR → GL(R3 ⊗ R8) is the tensor
product of the standard representation and the spin representation. Since Spin(7) ⊂ SO(8) and
Spin0(3,4) ⊂ SO0(4,4) [Har90, Thm. 14.2], and ρ extends to a pseudo-Riemannian s-represen-
tation ρ′ of SO0(1,2) × SO(8) (resp. SO(3) × SO0(4,4), SO0(1,2) × SO0(4,4)) on R3 ⊗ R8, it
follows from Lemma 8 that ρ has the same closed orbits as ρ′, so this case is checked.

(a.2) Suppose now that ρ is irreducible but not absolutely irreducible. Then VR admits an
invariant complex structure.
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(a.2.1) If τu is irreducible, then W admits a U -invariant complex structure, and by Lemma 9
we have only to consider the cases in which it is not an s-representation. According to [EH99],
those are

(
SO(2) × G2,R2 ⊗ R7),(

SO(2) × Spin(7),R2 ⊗ R8),(
SU(p) × SU(q),

(
Cp ⊗ Cq

)r)
(p 
= q),(

SU(n),
(
Λ2Cn

)r)
(n odd),(

Spin(10),C16). (7)

We do only the first and third cases, the others being similar in spirit. In the first case, GR must
be SO(2) × G∗

2, where G∗
2 is the automorphism group of the split octonions and ρ is the real

tensor product of the standard representation of SO(2) and the 7-dimensional representation
of G∗

2 since VR admits an invariant complex structure. Now G∗
2 ⊂ SO0(3,4) and there exists

an obvious pseudo-Riemannian s-representation ρ′ of SO(2) × SO0(3,4) on R2 ⊗ R7. It fol-
lows from Lemma 8 that ρ and ρ′ have the same closed orbits and we are done with this case.
In the third case, viewing ρ as a complex representation, its conjugate representation ρ̄ with
respect to GR must be equivalent to ρ∗ because ρ ⊕ ρ̄ = (τu)

c . The only possibility is that ρ

equals (SU(r,p − r) × SU(s, q − s), (Cp ⊗ Cq)r ), which has the same closed orbits as the
s-representation of the pseudo-Riemannian symmetric space

SU(r + s,p + q − r − s)/S
(
U(r,p − r) × U(s, q − s)

)
.

(a.2.2) If τu is not irreducible, then there exists a U -irreducible decomposition W = W1 ⊕W2,
where (τu)i :U → GL(Wi) is absolutely irreducible. Now V = Wc

1 ⊕ Wc
2 is a G-irreducible

decomposition, where Wc
1 and Wc

2 are inequivalent by polarity (Lemma 5(c)) and Wc
2 must be

the conjugate representation to Wc
1 with respect to GR. Denote τi = (τu)

c
i :G → GL(Wc

i ). It
follows that

σ̃Wc
1 = Wc

2 and τ2(g) = τ1
(
σ(g)

) = σ̃ τ1(g)σ̃ (8)

for g ∈ G. Since σ commutes with θ , we can view σ as an automorphism of U . Suppose first
that τu is splitting, that is U = U1 × U2 and τu is the outer direct product of (τu)1|U1 and
(τu)2|U2 . On the level of Lie algebras, (8) implies that u1 = ker(τu)2 = σ(ker(τu)1) = σ(u2).
Now we can assume that u1 = u2, (τu)1 = (τu)2, g = g1 ⊕ ḡ1, where g1 = uc

1 and ḡ1 is
the conjugate Lie algebra of g1, and σ :g → g is given by σ(Z′, Z̄′′) = (Z′′, Z̄′). Moreover,
V = Wc

1 ⊕ Wc
1 and σ̃ :V → V is given by σ̃ (w′, w̄′′) = (w′′, w̄′). Hence gR = {(Z′, Z̄′′) ∈

g1 ⊕ ḡ1: Z′ = Z′′}, VR = {(w′, w̄′′) ∈ Wc
1 ⊕ Wc

1: w′ = w′′}, and ρ is just the realification of the
complexification of the real polar absolutely irreducible representation (τu)1|U1 :U1 → GL(W1).
If (τu)1|U1 is an s-representation, this means that ρ is the s-representation of a complex sym-
metric space viewed as a real representation. The only other possibility is that (τu)1|U1 equals
(SO(3) × Spin(7),R3 ⊗ R8). In this case, ρ : SO(3,C)r × Spin(7,C)r → GL((C3 ⊗ C8)r ) has
the same closed orbits as SO(3,C)r × SO(8,C)r → GL((C3 ⊗ C8)r ), so we are done. Sup-
pose now that τu is not splitting. Then U = U1 × U0 × U2, where U2 (resp. U1) coincides with
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ker(τu)1 (resp. ker(τu)2) up to some discrete part. Since σ(ker(τu)1) = ker(τu)2, the automor-
phism σ :U → U must restrict to isomorphisms U1 → U2 and U0 → U0. It follows that U0 is
essential for (τu)1 if and only if it is essential for (τu)2. Therefore τu is not almost splitting in the
sense of [GT00, p. 58]; we use the classification given there: due to the facts that the (τu)i admits
no invariant complex structure and dimW1 = dimW2, we need only to consider the case in which
U0 = Spin(8), U1 = U2 = {1}, and W1, W2 are two 8-dimensional inequivalent representations
of Spin(8). Referring to [Oni04, Table 5, p. 80], GR must be either Spin0(3,5) or Spin0(1,7),
and ρ must be the realification of an 8-dimensional complex representation of GR which is not of
real type (indeed, in each case there exist two such representations and they are conjugate to one
another). Since τ is (SO(8,C),C8+ ⊕ C8−) (where C8± denote the half-spin representations) with
compact real form (Spin(8),R8+ ⊕ R8−) having the same orbits as (SO(8) × SO(8),R8 ⊕ R8), it
follows that ρ has the same closed orbits as the standard action of (SO(8,C))r on (C8)r . Now
the latter is a pseudo-Riemannian s-representation, so this case is also dealt with.

(b.1) Consider now the case in which ρ = ρ0 ⊕ ρ∗
0 , where ρ0 is absolutely irreducible and

non-orthogonalizable. Then ρc = ρc
0 ⊕ (ρ∗

0 )c is polar and ρc
0 is irreducible. By polarity, ρc

0 and
(ρ∗

0 )c = (ρc
0)∗ are inequivalent, so ρc

0 is not self-dual implying that it is not of real type with
respect to U . Recall that (ρc

0)
∗ is the conjugate representation ρ̂c

0 with respect to U . It follows

that θ̃ (v′, v̂′′) = (v′′, v̂′) for (v′, v̂′′) ∈ V c
0 ⊕ V̂ c

0 , the space W = {(v′, v̂′′) ∈ V c
0 ⊕ V̂ c

0 : v′ = v′′},
and τu :U → GL(W) is irreducible, not absolutely irreducible, and equivalent to (ρc

0)
r |U :U →

GL((V c
0 )r ). In other words, W admits a U -invariant complex structure J and ρ0 is just a real

form of the holomorphic extension of τu :U → GL(W,J ) to a representation of G on (W,J ).
By Lemma 9, it suffices to consider the case in which τu is not an s-representation, namely, given
in (7). We do only the case (SU(n), (Λ2Cn)r ) for n odd, the others being similar in spirit. Since
n is odd, [Oni04, Table 5] gives that GR = SL(n,R) and ρ0 is the representation on Λ2Rn. Now
ρ = ρ0 ⊕ρ∗

0 has the same closed orbits as (GL+(n,R),Λ2Rn ⊕ (Λ2Rn)∗), which turns out to be
the s-representation of the pseudo-Riemannian symmetric space SO(n,n)/GL+(n,R) [Ber57,
Tableau II].

(b.2) Finally, suppose that ρ = ρ0 ⊕ρ∗
0 , where ρ0 is irreducible, not absolutely irreducible and

non-orthogonalizable. Then ρ0, ρ∗
0 can be viewed as complex representations, and ρc = ρ0 ⊕

ρ̄0 ⊕ ρ̂0 ⊕ ˆ̄ρ0 is an irreducible decomposition with pairwise inequivalent summands, where ρ̄0

(resp. ρ̂0 = ρ∗
0 ) is the conjugate representation to ρ0 with respect to GR (resp. U ). We must

have τu = (τu)1 ⊕ (τu)2 :U → GL(W1 ⊕ W2), where (τu)i is polar irreducible, not absolutely
irreducible. Moreover, τ1 = ρ0 ⊕ ρ̂0 and τ2 = ρ̄0 ⊕ ˆ̄ρ0, where we have set τi = (τu)

c
i .

(b.2.1) Suppose τu is splitting. Then U = U1 ×U2 and τu is the outer direct product of (τu)1|U1

and (τu)2|U2 , where each (τu)i |Ui
is irreducible and not absolutely irreducible. The automor-

phism σ :U → U must take U1 to U2, so we can assume U1 = U2 and (τu)1 = (τu)2. Write G =
G1 ×G2 where gi = uc

i . Then ρ is equivalent to the realification of τ1|G1 :G1 → GL(V c
0 ⊕V c∗

0 ),
and τ1|G1 is the complexification of a polar irreducible, not absolutely irreducible representation
(τu)1|U1 :U1 → GL(W1). We have only to consider the case in which it is not an s-representation,
namely, given in (7). We do only the case (Spin(10), (C16)r ), the others being similar in spirit.
Here τ1 is (Spin(10,C),C16 ⊕ C16∗) and ρ is (Spin(10,C)r , (C16)r ⊕ (C16∗)r ), which turns out
to have the same closed orbits as the pseudo-Riemannian s-representation given by the realifica-
tion of (C× × Spin(10,C),C16 ⊕ C16∗).

(b.2.2) Suppose τu is not splitting. Then it is not almost splitting by the same argument as in
case (a.2.2). Owing to the fact that (τu)i admits an invariant complex structure for i = 1,2, we
see from [GT00, p. 59] that this case is not possible. �
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4. Isoparametric submanifolds

Let VR be a finite-dimensional real vector space equipped with a non-degenerate symmetric
bilinear form 〈·,·〉. A submanifold M of VR is called a pseudo-Riemannian submanifold if the
restrictions of 〈·,·〉 to the tangent spaces of M are always non-degenerate. If M is a pseudo-
Riemannian submanifold, the canonical flat connection D in VR induces the Levi-Cività con-
nection ∇ in M , the second fundamental form B of M , and the connection ∇⊥ in the normal
bundle νM of M in the usual way. Namely,

DXY = ∇XY + B(X,Y ),

and

DXξ = −AξX + ∇⊥
Xξ,

where X and Y are sections of T M and ξ is a section of νM , and the Weingarten operator
Aξ :T M → T M is defined by

〈AξX,Y 〉 = 〈
B(X,Y ), ξ

〉
.

For each p ∈ M , the map Aξ |p :TpM → TpM is a symmetric endomorphism with respect to
the induced inner product in TpM . Note that in the case in which this induced inner product is
definite, the Weingarten operator is automatically diagonalizable over R, whereas in the general
case it may happen that Aξ |p is not diagonalizable, not even over C.

A properly embedded pseudo-Riemannian submanifold M of VR will be called isoparametric
if the following two conditions are satisfied:

(a) the normal connection is flat;
(b) the eigenvalues of the Weingarten operator along a locally defined parallel normal vector

field together with their algebraic multiplicities are constant.

Isoparametric submanifolds of Euclidean spaces are very important in submanifold geometry
and share a very rich history and an extensive literature, see [Ter85,Tho00,BCO03] and the ref-
erences therein. On the other hand, isoparametric submanifolds of indefinite space forms are
not as common, but have already been considered before in codimension one, see e.g. [Hah84,
Mag85].

In this section, we will consider homogeneous isoparametric submanifolds whose Weingarten
operators are everywhere diagonalizable over C. We start with the following lemma.

Lemma 10. Let τ :G → O(V, 〈·,·〉) be a complex polar orthogonal representation of a complex
reductive algebraic group.

(a) For v ∈ V , we have cv ⊂ (g · v)⊥, and the equality holds if and only if v is regular.
(b) If c ⊂ V is a Cartan subspace, then 〈c,g · c〉 = 0. In particular, the restrictions of 〈·,·〉 to c

and g · v for regular v are non-degenerate.
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Proof. (a) If x ∈ cv , then g · x ⊂ g · v, so

〈x,g · v〉 = 〈g · x, v〉 = 〈g · v, v〉 = 0

by G-invariance of 〈·,·〉, proving the inclusion. If v is regular,

dim cv = dimV//G

= dimV − max
u∈V

dimGu (τ is stable)

= dimV − dimg · v,

and this shows that cv is the orthocomplement of g · v in V .
(b) follows from (a). �
Before stating the next theorem, a couple of remarks are in order. Let GR be a connected real

form of a connected complex reductive algebraic group G, let ρ :GR → GL(VR) be an arbitrary
real representation, and let τ :G → GL(V ) be the complexification of ρ. If v ∈ V is semisimple,
then the isotropy subgroup Gv is reductive; hence, there exists a Gv-invariant subspace Nv ⊂ V

such that V = g · v ⊕ Nv . The restriction of τ to Gv → GL(Nv) is called the slice representa-
tion at v. If v ∈ VR, then Gv , Nv and the slice representation are defined over R. There exists
a Zariski-open and dense subset Vpr of V such that all isotropy subgroups Gv for semisimple
v ∈ Vpr are in one conjugacy class [Sch80, Cor. 5.6]. A semisimple point v ∈ Vpr is called prin-
cipal. Every principal point is regular. We have that Vpr ∩ VR is dense in VR [Bre93, 13.4]. If
v ∈ VR, then GRv is closed if and only if Gv is closed [Bir71], and dimR GRv = dimGv; it
follows that maxv∈VR dimR GRv = maxv∈V dimGv. Suppose now that ρ is orthogonalizable;
then so is τ , hence τ is stable; in this case, Vpr consists of semisimple elements only, and it fol-
lows from this discussion that Vpr ∩ VR is an open and dense subset of VR consisting of closed
GR-orbits. Suppose now, in addition, that τ is polar. Since the slice representations of τ are the
complexifications of the slice representations of the real form τu :U → GL(W) [Sch80, Cor. 5.9],
it follows from [BCO03, Cor. 5.4.3] that Vpr is precisely the set of regular points of τ .

Theorem 11. Let ρ :GR → O(VR, 〈·,·〉) be an orthogonal representation. If ρ is polar then every
orbit of ρ through a regular element v ∈ VR is isoparametric with diagonalizable Weingarten
operators. Conversely, if ρ is irreducible and there exists a regular element v ∈ VR such that
GRv is isoparametric with diagonalizable Weingarten operators then ρ is polar.

Proof. Suppose ρ is polar and v ∈ VR is regular. Then cv = (g · v)⊥ is a Cartan subspace of
τ = ρc defined over R. Denote the set of real points of cv by (cv)R and let M = GRv. Then the
normal space νvM = (cv)R. Since gv ·cv = 0 [DK85, Lem. 2.1(iii)], any ξ ∈ νvM extends to a lo-
cally defined equivariant normal vector field ξ̂ along M given by ξ̂ (gv) = gξ for g ∈ (GR)◦ (the
connected component of the identity). For X ∈ gR, we have that ∇⊥

X·vξ̂ is the orthogonal projec-
tion in νvM of d

dt
|t=0(exp tX)ξ = X · ξ ∈ gR · ξ . Since gR · ξ ⊂ gR · v, it follows that ∇⊥

X·vξ̂ = 0.
This proves that a locally defined equivariant normal vector field along M is parallel. By taking
a basis of νvM , we get a locally defined parallel normal frame along νvM , which implies that
νvM is flat. It is clear that the eigenvalues of the Weingarten operator along an equivariant normal
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vector field together with their algebraic multiplicities are constant, and that operator is diagonal-
izable over C by Example 12 below. Hence M is isoparametric with diagonalizable Weingarten
operators.

Conversely, suppose ρ is irreducible and there exists a regular element v ∈ VR such that M =
GRv is isoparametric with diagonalizable Weingarten operators. Irreducibility of ρ yields that M

is full in VR, that is, not contained in a proper affine subspace. We first claim that a locally
defined parallel normal vector field ξ̂ along M is equivariant. Let U be a neighborhood of v in M

where ξ̂ is defined, and let ξ̂ (v) = ξ . Suppose that g(t) is a continuous curve in GR satisfying
g(0) = 1 and g(t)v ∈ U . Consider the continuous curve ξ(t) = g(t)−1ξ̂ (g(t)v) in νvM . By the
isoparametric condition and the fact that the action of GR is orthogonal, we have that Aξ(t)

and Aξ have the same complex eigenvalues with the same multiplicities. By connectedness of
the domain interval of g(t) and the facts that they are diagonalizable and commute, we get that
Aξ(t) = Aξ for all t . Fullness of M implies the injectivity of the map ξ �→ Aξ , so ξ(t) = ξ for
all t . This proves the claim. Since the locally defined equivariant normal vector fields are parallel
with respect to the normal connection,

X · ξ = DX·vξ̂ = −Aξ(X · v) + ∇⊥
X·vξ̂ = −Aξ(X · v) ∈ gR · v,

where ξ ∈ νvM and X ∈ gR. This proves that νvM ⊂ (cv)R. Since

dimR νvM = dimR VR − dimR M = dimV − dimGv = dimV//G,

we get that dim cv = dimV//G and hence τ = ρc (resp. ρ) is polar. �
Example 12. Let τ :G → O(V, 〈·,·〉) be a complex polar orthogonal representation and fix an
orthogonal real form ρ :GR → O(VR, 〈·,·〉) defined by (σ, σ̃ ). In this example, we compute the
Weingarten operator of an orbit M = GRv for a regular v ∈ VR = V σ̃ . Let c be a θ̃ - and σ̃ -stable
Cartan subspace of τ and consider the corresponding root space decomposition

g = m +
∑
α∈A

g̃α

(see Subsection 5.2 for the notation and terminology used in this example). By Proposition 14
below, we may assume that v ∈ cσ̃ . Let ξ be a vector normal to M at v in VR. Then also ξ ∈ cσ̃ .

If α is a noncomplex root, g̃α is σ -stable. We have (the superscript “�” denotes the tangential
component to the orbit)

Aξ (Xα · v) = −(Xα · ξ)�,

where Xα ∈ g̃σ
α , and

Xα · v = α(v)Xα · vα, Xα · ξ = α(ξ)Xα · vα,

so

Aξ(Xα · vα) = λXα · vα

(
resp. Aξ(iXα · vα) = λi(Xα · vα)

)
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where λ = −α(ξ)
α(v)

is a real eigenvalue and Xα · vα (resp. i(Xα · vα)) is the associated eigenvector
if α is real (resp. imaginary).

If α is a complex root, g̃α is not σ -stable and (g̃α ⊕ g̃|σα|)σ is spanned by Xα + σXα and
i(Xα − σXα) for Xα ∈ g̃θ

α . The associated subspace of TvM is spanned by

α(v)Xα · vα + α(v)σ̃ (Xα · vα), i
(
α(v)Xα · vα − α(v)σ̃ (Xα · vα)

)
(9)

for Xα ∈ g̃θ
α .

Now λ = −α(ξ)
α(v)

is not real and the matrix of Aξ in the basis (9) is given by

(�λ −�λ

�λ �λ

)
,

which is of course diagonalizable over C.

5. Structural theory of polar representations of real reductive algebraic groups

Consider a semisimple pseudo-Riemannian symmetric space ĜR/GR and its complexifica-
tion Ĝ/G as in the first two paragraphs of Section 3. Let σ̂ denote the conjugation of Ĝ over ĜR.
We can choose a Cartan involution θ̂ of ĜR that commutes with τ̂ on ĜR. Since Ĝ is simply-
connected, we can extend θ̂ anti-holomorphically to a Cartan involution of Ĝ which will be
denoted by the same letter. Note that θ̂ commutes with τ̂ and σ̂ on Ĝ. Set θ (resp. θ̃ ) to be the
restriction of θ̂ to G (resp. V ), and set σ (resp. σ̃ ) to be the restriction of σ̂ to G (resp. V ). Then

Û = Ĝθ̂ (resp. U = Gθ ) is a compact real form of Ĝ (resp. G). Write W = V θ̃ . Now we have
the combined decomposition

ĝR = (
gR ∩ u︸ ︷︷ ︸

:=kR

θ+ gR ∩ iu︸ ︷︷ ︸
:=pR

) τ̂+ (
VR ∩ W

θ̃+ VR ∩ iW
)
. (10)

In this context, an element v ∈ VR is called semisimple if adv is a semisimple endomorphism
of ĝ, and a Cartan subspace of ĝR is a maximal Abelian subspace of VR consisting of semisimple
elements. It is known that the AdGR -orbit of v ∈ VR is closed if and only if v is semisim-
ple [BH62, Cor. 10.3]; every semisimple element of VR belongs to some Cartan subspace; every
Cartan subspace of VR is Ad(GR)◦ -conjugate to a θ̃ -stable Cartan subspace; there exist finitely
many Ad(GR)◦ -conjugacy classes of θ̃ -stable Cartan subspaces in VR; two such θ̃ -stable Cartan
subspaces are Ad(KR)◦ -conjugate if and only they are Ad(GR)◦ -conjugate if and only they are
AdG-conjugate [HHNO99].

Throughout this section, we let τ :G → GL(V ) be a complex polar representation of a con-
nected complex reductive algebraic group, consider a real form ρ :GR → GL(VR) defined by
(σ, σ̃ ), where GR is the identity component of Gσ , and prove a collection of results for ρ similar
to those stated in the previous paragraph for an s-representation. The first three results do not
require that τ and ρ be orthogonalizable.

5.1. General facts about Cartan subspaces

A Cartan subspace of ρ is a subspace of V σ̃ which is the σ̃ -fixed point vector space of a
σ̃ -stable Cartan subspace of τ .



L. Geatti, C. Gorodski / Journal of Algebra 320 (2008) 3036–3061 3051
Lemma 13. There exist σ̃ -stable Cartan subspaces of τ .

Proof. Owing to the remarks preceding Theorem 11, the set Vpr ∩VR is a nonempty open subset
of VR = V σ̃ consisting of regular elements of τ ; it suffices to take cv where v lies therein. �

We will use the following notion in the proof of the next proposition. The rank of τ is de-
fined to be the difference dim c − dim cg, where c ⊂ V is a Cartan subspace and cg denotes the
subspace of G-fixed points in c.

Proposition 14. Given a semisimple x ∈ V σ̃ , there exists a Cartan subspace of V σ̃ which con-
tains x.

Proof. Note that for a regular x ∈ V σ̃ , one can simply take c = cx . In the general case, we
proceed by induction on the rank of τ . Since x is semisimple, there exists a Cartan subspace c′
such that x ∈ c′. If x ∈ (c′)g, then x belongs to any σ̃ -stable Cartan subspace of τ . Suppose
now x /∈ (c′)g. Then the slice representation (Gx,Nx) is polar with rank strictly lower than τ ,
and c′ ⊂ Nx is a Cartan subspace of (Gx,Nx) [DK85, Thm. 2.4]. Without loss of generality, x is
a minimal vector with respect to some U -invariant positive-definite Hermitian form (·,·) which is
real-valued on V σ̃ , and Nx is the orthocomplement of g ·x with respect to (·,·) [DK85, Rmk. 1.4].
Since x ∈ V σ̃ , it follows that Gx is σ -stable, Nx is σ̃ -stable and (Gx,Nx) is defined over R with
respect to (σ, σ̃ ). By the induction hypothesis, there exists a σ̃ -stable Cartan subspace c ⊂ Nx

such that x ∈ c. Now c, c′ are two Cartan subspaces of (Gx,Nx), so there exists g ∈ Gx such
that g · c′ = c. It follows that c is a Cartan subspace of τ . �
Theorem 15. There exist only finitely many GR-conjugacy classes of Cartan subspaces of VR.

Proof. According to the remarks preceding Theorem 11, the set of regular points of τ is a
Zariski-open and dense subset Vpr of V . By a theorem of Whitney [Whi57], Vpr ∩VR has finitely
many connected components.

Suppose now that cσ̃ is a Cartan subspace of VR. Consider the map

GR × cσ̃ → VR, (g, v) �→ g · v;

it is easily seen to be a smooth submersion at v if v is a regular point of τ . It follows that
GR · (cσ̃ ∩ Vpr) is open in VR. But the sets GR · (cσ̃ ∩ Vpr) for varying cσ̃ obviously cover
Vpr ∩ VR. Any two of them are not disjoint if and only if the corresponding Cartan subspaces are
conjugate, in which case the sets coincide. The result follows. �

Consider the categorical quotient map π :V → V//G. Since G, V , and the action of G on V

are defined over R, so is the variety V//G; denote its set of real points by (V//G)R. By a the-
orem of Tarski and Seidenberg, π(VR) is a real semialgebraic subset of (V//G)R. Recall that
π(Vpr ∩ VR) is an open and dense subset of π(VR). We propose the following conjecture (com-
pare [Rot71]).

Conjecture 16. The map π sets up a one-to-one correspondence between the GR-conjugacy
classes of Cartan subspaces of VR and the connected components of the stratum π(Vpr ∩ VR).
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Henceforth we assume that ρ (and hence τ ) is orthogonal with respect to 〈·,·〉.

Theorem 17.

(a) Given a σ̃ -stable Cartan subspace c ⊂ V , there exists a Cartan pair (η, η̃) commuting with
(σ, σ̃ ) such that c is η̃-stable.

(b) Given a Cartan pair (θ, θ̃ ) commuting with (σ, σ̃ ), every σ̃ -stable Cartan subspace c ⊂ V

is (Gσ )◦-conjugate to a θ̃ -stable one (hence also σ̃ -stable).

Proof. We begin by showing that there exists a Cartan pair (μ, μ̃) of τ such that μ̃(c) = c.
Indeed, suppose (θ ′, θ̃ ′) is any Cartan pair. We can select v ∈ V θ̃ ′

regular. Since c meets all the
closed orbits, there exists g ∈ G such that g · v ∈ c. Define μ = Inng θ ′ Inn−1

g and μ̃ = gθ̃ ′g−1.
Then (μ, μ̃) is a Cartan pair and μ̃(g · v) = g · v. Hence c = cg·v is μ̃-stable.

The following construction of η is standard (compare [Oni04, §3, Prop. 6]). Set ω = σμ.
We can view ω as a complex linear automorphism of g. Consider the decomposition into the
center and semisimple factor g = z ⊕ gss . Let β be the Killing form of gss . We can extend β to
an ad-invariant symmetric bilinear form on g, denoted by the same letter, which is real-valued
on gμ, gσ and negative-definite on gμ. Then one easily sees that ω is Hermitian with respect to
the positive-definite Hermitian form Bμ(X,Y ) = −β(X,μY), where X, Y ∈ g. It follows that
ω2 is Hermitian and positive-definite, and hence belongs to a one-parameter family of Hermitian
and positive-definite automorphisms of g. Therefore there exists a unique Hermitian, positive-
definite automorphism ϕ of g such that ϕ4 = ω2. Since ϕ|gss belongs to a one-parameter group
of automorphisms of g, we have that ϕ|gss is inner, that is, equals Adh for some h ∈ Gss . Set
η = Innh μ Inn−1

h . Then η is a Cartan involution of G. Also, on the Lie algebra level, μωμ = ω−1,
so μω2μ = ω−2 and μϕμ = ϕ−1. Of course, ωω2ω−1 = ω2, so ωϕω−1 = ϕ and ωϕ2ω−1 = ϕ2.
Now we have

ησ = ϕμϕ−1σ = ϕ2μσ = ϕ2ω−1 = ω−1ϕ2,

ση = σϕμϕ−1 = σμϕ−2 = ωϕ−2,

so ϕ4 = ω2 implies that ησ = ση on g, and also on G.
For the next step, define ω̃ = σ̃ μ̃. Then ω̃ is a G-equivariant complex automorphism of V .

Further, ω̃ is Hermitian with respect to the positive-definite Hermitian form Bμ̃(x, y) = −〈x, μ̃y〉
on V . It follows that ω̃2 is Hermitian and positive-definite, so as above there is a unique Hermitian
and positive-definite automorphism ϕ̃ of V such that ϕ̃4 = ω̃2. Setting η̃ = ϕ̃μ̃ϕ̃−1, we have that
η̃σ̃ = σ̃ η̃ by a computation similar to that in the previous paragraph. Moreover, η̃(c) = c, because
σ̃ (c) = c and μ̃(c) = c. We also have (x, y ∈ V )

〈η̃x, η̃y〉 = 〈
ϕ̃μ̃ϕ̃−1x, ϕ̃μ̃ϕ̃−1y

〉
= 〈

μ̃ϕ̃−1x, μ̃ϕ̃−1y
〉

= 〈
ϕ̃−1x, ϕ̃−1y

〉
= 〈x, y〉

and, if 0 
= x ∈ V η̃,
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〈x, x〉 = 〈
ϕ̃−1x, ϕ̃−1x

〉
< 0

(
ϕ̃−1x ∈ V η̃

)
,

where we have used that (x, y ∈ V )

〈ϕ̃x, ϕ̃y〉 = −Bμ̃(ϕ̃x, μ̃ϕ̃y)

= −Bμ̃

(
ϕ̃x, ϕ̃−1μ̃y

) (
μ̃ϕ̃μ̃ = ϕ̃−1)

= −Bμ̃(x, μ̃y) (ϕ̃ is Hermitian)

= 〈x, y〉
= 〈

ϕ̃−1x, ϕ̃−1y
〉
.

In order to see that (η, η̃) is a Cartan pair, it only remains to check that η̃(g ·v) = η(g) · η̃(v) for
g ∈ G, v ∈ V . It suffices to prove that ϕ̃ = τ(h). Denote the induced representation g → gl(V )

by dτ . Since Adh is Hermitian, positive-definite with respect to Bμ, the element h can be taken
of the form expY , where Y ∈ ig

μ
ss . Then τ(h) = edτ(Y ). This implies that τ(h) is Hermitian,

positive-definite with respect to Bμ̃. Since (X ∈ g)

σ̃ dτ (X)σ̃−1 = dτ(σX) and μ̃dτ(X)μ̃−1 = dτ(μX),

we also have that

ω̃dτ (X)ω̃−1 = dτ(ωX). (11)

Since the irreducible summands of V must be pairwise inequivalent by polarity, each one of them
is ω̃-invariant. Let V0 be an irreducible summand of V and suppose that the action of z on V0 is
given by a linear functional Λ : z → C. Eq. (11) implies that Λ(X) = Λ(ωX) for X ∈ z. Now, if
X ∈ z and v ∈ V0, we have

τ(h)4dτ(X)τ(h)−4v = Λ(X)v = Λ
(
ω2(X)

)
v = dτ

(
ω2(X)

)
v, (12)

and if X ∈ gss ,

τ(h)4dτ(X)τ(h)−4 = dτ
(
Ad4

hX
)

= dτ
(
ϕ4(X)

)
= dτ

(
ω2(X)

)
. (13)

Eqs. (11), (12) and (13) imply that ω̃2 and τ(h)4 are two intertwining maps between the
representations dτ and dτ ◦ω2. It follows that they are multiples of each other on each irreducible
summand. Since both maps are positive-definite, τ(h)4 = λω̃2 for λ ∈ R, λ > 0. Since both are
isometries with respect to 〈·,·〉, one has λ = 1. Now (a) is proved. For proving (b), construct
(η, η̃) as in (a) and note that it is conjugate to (θ, θ̃ ) by an element g′ ∈ (Gσ )◦ by Corollary 4.
Now c′ = g′ · c is a θ̃ -stable Cartan subspace. �
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In case a Cartan pair (θ, θ̃ ) commuting with (σ, σ̃ ) is fixed, a θ̃ -stable Cartan subspace of ρ

will sometimes be called standard.

Corollary 18. If (θ, θ̃ ) is a Cartan pair commuting with (σ, σ̃ ), then every closed (Gσ )◦-orbit
in V σ̃ intersects a standard Cartan subspace of V σ̃ .

Proof. Suppose that (Gσ )◦x is a closed orbit in V σ̃ . By Proposition 14, there exists a σ̃ -stable
Cartan subspace c ⊂ V such that x ∈ cσ̃ . By Theorem 17, there exists g ∈ (Gσ )◦ such that g · c
is a σ̃ - and θ̃ -stable Cartan subspace. Of course, (Gσ )◦x meets g · c. �
5.2. Roots and co-roots

In the rest of the paper, we assume that ρ is orthogonal with respect to 〈·,·〉 and a Cartan
pair (θ, θ̃ ) commuting with (σ, σ̃ ) has been fixed according to Proposition 2. We also recall the
Hermitian form (·,·) that was introduced in that proposition and satisfies Eq. (1).

For a given Cartan subspace c ⊂ V , the set of singular elements csing ⊂ c is by definition the
complement of the set of regular elements in c. If the rank of τ is not zero, it is known that csing
is a union of finitely many complex hyperplanes

csing =
⋃

α∈A

cα,

where A is a finite index set [DK85, Lem. 2.11]. Fix a σ̃ - and θ̃ -stable Cartan subspace c ⊂ V ,
set gα to be the centralizer of cα in g and Gα to be the corresponding connected subgroup of G.

Lemma 19. We have that 〈gα · c,gβ · c〉 = 0 for α 
= β .

Proof. It follows from Lemma 10 that c ⊂ (g · v)⊥ for v ∈ c. Since (g · v)⊥ is gv-invariant, this
implies 〈gv · c,g · v〉 = 0. In particular, if v ∈ cα \ ⋃

β 
=α cβ , then gv = gα [DK85, p. 516], so
〈gα · c,g · v〉 = 0 implying that 〈gα · c,g · cα〉 = 0. Since gβ · c ⊂ g · cα for α 
= β [DK85, p. 517],
the desired result follows. �
Lemma 20. Each cα meets V ±θ̃ in a real hyperplane.

Proof. It is equivalent to prove that each cα is θ̃ -stable. Of course, (·,·) is non-degenerate on
cα × cα as (·,·) is positive-definite. Choose vα ∈ c to be (·,·)-orthogonal to cα . We claim that
the decomposition c = cα ⊕ Cvα is 〈·,·〉-orthogonal. Since 〈x, θ̃y〉 = −(x, y) for x, y ∈ V , this
will prove the desired result. In order to prove the claim, note that c ⊕ gα · c is a Gα-invariant
subspace [DK85, Thm. 2.12(ii)] and 〈·,·〉 is non-degenerate on c ⊕ gα · c by Lemmas 10 and 19.
Since Gα acts trivially on cα and gα · c = gα · vα , it follows that cα ⊕ Cvα ⊕ gα · vα is 〈·,·〉-
orthogonal. �

Since 〈·,·〉 is positive-definite on V −θ̃ × V −θ̃ , the vector vα in the proof of Lemma 20 can be
chosen to satisfy

vα ∈ V −θ̃ ,
〈
vα, c−θ̃

α

〉 = 0 and 〈vα, vα〉 = 1,
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and then it is uniquely defined up to a sign. We select a connected component of c−θ̃ −⋃
α∈A c−θ̃

α

once and for all, and then vα is uniquely defined (but the sign of vα will not actually matter for
our purposes). The vector vα is called a (unnormalized ) co-root. The associated root is the linear
functional α : c → C obtained by setting

α(v) = 〈v, vα〉 ∈ R

for v ∈ c−θ̃ and then considering its complex-linear extension to c. A root is called: real
(resp. imaginary) if α is real-valued (resp. purely imaginary-valued) on cσ̃ , and it is called com-

plex otherwise. It follows from the 〈·,·〉-orthogonality of the decomposition c−θ̃ = cσ̃ ∩ c−θ̃ ⊕
c−σ̃ ∩ c−θ̃ that α is real (resp. imaginary) if and only if it vanishes on c−σ̃ ∩ c−θ̃ (resp. cσ̃ ∩ c−θ̃ ),
in which case vα belongs to cσ̃ ∩ c−θ̃ (resp. c−σ̃ ∩ c−θ̃ ). It follows that α in noncomplex if and
only if cα is σ̃ -invariant if and only if it is ω̃-invariant, where ω̃ = σ̃ θ̃ = θ̃ σ̃ . Recall that θ̃ gets
replaced by its opposite by changing the sign of 〈·,·〉, so the choice of some signs above does not
have intrinsic meaning, as compared to the case of an s-representation in which the sign of 〈·,·〉
is fixed by the Killing form of ĝR (see (10)).

Let m be the centralizer of c in g. Then m is σ -, θ -stable. Since m is a reductive subalgebra
of gα , there exists a θ - and adm-stable splitting

gα = m ⊕ g̃α,

where g̃α is a subspace, which is called a root space. Now assume α is noncomplex. Then g̃α

can be taken ω-stable, so that g̃α = g̃ω
α ⊕ g̃−ω

α . An imaginary root α ∈ A is called noncompact
imaginary if g̃−ω

α 
= 0 and compact imaginary otherwise. A real root α ∈ A is called compact
real if g̃ω

α 
= 0 and noncompact real otherwise. Finally, define

σ̃ α(v) = α(σ̃ v),

where v ∈ c. Since σ̃ takes singular orbits to singular orbits and maps hyperplanes of c to hyper-
planes of c, this defines an action on A ∪ (−A ). Also, σ̃ α = α (resp. σ̃ α = −α) if and only if α

is real (resp. imaginary). We can choose the root spaces so that σ g̃α = g̃|σ̃ α| for all α ∈ A , where
| · | :A ∪ (−A ) → A has its obvious meaning.

5.3. Cayley transforms

By Corollary 18, every closed GR-orbit in VR meets some standard Cartan subspace of VR.
We want to study standard Cartan subspaces of VR, so consider a σ̃ - and θ̃ -stable Cartan subspace
c ⊂ V . Note that

cσ̃ = cσ̃ ∩ cθ̃ ⊕ cσ̃ ∩ c−θ̃ ,

and dimR cσ̃ ∩cθ̃ (resp. dimR cσ̃ ∩c−θ̃ ) is an invariant of the GR-conjugacy class of cσ̃ , called the
compact dimension (resp. noncompact dimension) of cσ̃ . We call a standard Cartan subspace cσ̃

maximally compact (resp. maximally noncompact) if its compact dimension (resp. noncompact
dimension) is as large as possible. Note that the compact and noncompact dimensions of cσ̃ are
interchanged if we replace 〈·,·〉 and θ̃ by their opposites. A maximally compact or maximally
noncompact standard Cartan subspace will also be called extremal. Cayley transforms are used
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to pass from one GR-conjugacy class of Cartan subspaces to another one, namely, to increase or
decrease its compact dimension by one (and correspondingly decrease or increase its noncompact
dimension by one). In general, an element g ∈ G maps a σ̃ - and θ̃ -stable Cartan subspace c

of V to another σ̃ - and θ̃ -stable Cartan subspace if and only if σ(g)g−1 and θ(g)g−1 belong to
the normalizer NG(c) of c in G, as is easily seen. Recall that the Weyl group of c is the finite
group [DK85, p. 513]

W(c) = NG(c)/ZG(c),

where ZG(c) denotes the centralizer of c in G. We will construct a special kind of Cayley
transform. We first consider the case of a rank one polar orthogonal irreducible representation
τ :G → O(V, 〈·,·〉). Fix a standard Cartan subspace c which is extremal, say maximally com-
pact. Here cσ̃ = cσ̃ ∩ cθ̃ and A = {α}. Assume that α is an imaginary root. We will show how
one can pass from cσ̃ to a Cartan subspace ĉ in another GR-conjugacy class which in this case,
by dimensional reasons, must be maximally noncompact, namely, ĉσ̃ = ĉσ̃ ∩ ĉ−θ̃ . Since the
rank is one, τu :U → O(W, 〈·,·〉) is a co-homogeneity one action of a compact Lie group. Let
v = ivα ∈ cσ̃ ∩ cθ̃ . Then 〈v, v〉 = −1 and U(v) is a round sphere Sn−1 ≈ U/Uv in W . Introduce
the following notation: g = k + p is the decomposition into ±1-eigenspaces of ω, kR = kσ = kθ ,
pR = pσ , and KR = Uσ = U ∩ GR; note that KR is a maximal compact subgroup of GR and
hence it is connected since GR is so.

Claim 21. We have that α is compact imaginary if and only if KR ⊂ U is transitive on Sn−1.

In fact, here we have gα = m⊕ g̃α where gα = g, m = gv , and g = gv ⊕ g̃α is θ -stable. Taking
θ -fixed points, we get u = uv ⊕ g̃θ

α . Now KR is transitive on Sn−1 if and only if uv + kR = u if
and only if kR ⊃ g̃θ

α if and only if k ⊃ g̃α if and only if g̃−ω
α = {0}.

Claim 22. If KR is not transitive on Sn−1, then we can take g ∈ G such that θ(g) = g, σ(g) =
g−1 and g2 = − id ∈ W(c).

Indeed, the assumption is equivalent to g̃θ
α ∩ g̃−σ

α 
= {0}; take a nonzero X therein. We can
choose X so that γ (t) = exp tX · v is a unit speed geodesic of Sn−1 connecting γ (0) = v

to γ (π) = −v. Set g = exp π
2 X ∈ U . Clearly, θ(g) = g. Also, σ(g) = g−1, and g2 · v =

expπX · v = −v, so g2 = − id on Cv = c.

Claim 23. If g is as in the previous claim and ĉ = g · c, then ĉσ̃ is a maximally noncompact
Cartan subspace of V σ̃ .

In fact, θ(g)g−1 = id and σ(g)g−1 = g−2 = − id both belong to W(c), so ĉ is σ̃ - and θ̃ -stable.
Also,

σ̃ (gv) = σ(g)σ̃ (v) = g−1v = −g−1g2v = −gv,

so

ĉσ̃ = R(igv) and θ̃ (igv) = −iθ(g)θ̃(v) = −igv.
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We have shown that in the rank one case, associated to a noncompact imaginary root α, a Cay-
ley transformation cα = τ(g) can be constructed so that it maps a given σ̃ - and θ̃ -stable Cartan
subspace c to a σ̃ - and θ̃ -stable Cartan subspace ĉ = cα(c) such that the noncompact dimension
of ĉσ̃ is one higher than that of cσ̃ . In the sequel, we want to generalize this construction to an
arbitrary polar orthogonal representation τ :G → O(V, 〈·,·〉).

Indeed, suppose now that the rank of τ is arbitrary, let c be an arbitrary σ̃ - and θ̃ -stable Cartan
subspace and assume there exists a noncompact imaginary root α ∈ A which we suppose fixed.
Write c = cα ⊕ Cvα where vα ∈ i(cσ̃ ∩ cθ̃ ) = c−σ̃ ∩ c−θ̃ is the co-root. Note that

cσ̃ = cσ̃
α ⊕ R(ivα),

and ivα ∈ cθ̃ . Now (gα, c ⊕ gα · c) is a rank one polar action [DK85, Thm. 2.12]. Since V =
c ⊕ ⊕

α∈A gα · c is a 〈·,·〉-orthogonal direct sum, (gα, c ⊕ gα · c) is orthogonal with respect to
the restriction of 〈·,·〉; we restrict it to (gα,Cvα ⊕ g̃α · vα) to get an irreducible polar orthogonal
action of rank one. Since X ∈ gα �→ X · vα is injective on g̃α , the kernel of this representation
is contained in m. Let Z ∈ m. Then Z · vα = 0. If Z · g̃α · vα = 0, then [Z, g̃α] · vα = 0. Since
[Z, g̃α] ⊂ g̃α , we get that [Z, g̃α] = 0, so Z ∈ Zm(g̃α). Now (g′

α,Vα) is an effective irreducible
polar orthogonal action of rank one, where we have set

g′
α = gα/Zm(g̃α) and Vα = Cvα ⊕ g̃α · vα.

Note that α can also be considered as a root of (g′
α,Vα), and then it is a noncompact imaginary

root, so by the previous discussion we can find g ∈ Gα as above and perform a Cayley transform
cα = τ(g) as follows:

ĉ = cα(c) = cα ⊕ C(gvα).

Note that

ĉσ̃ = cσ̃
α ⊕ R(gvα),

and gvα ∈ c−θ̃ , so the noncompact dimension of ĉσ̃ is one higher than that of cσ̃ . In a completely
analogous way, one can define a Cayley transform that increases the compact dimension of cσ̃

by one by using a compact real root.

5.4. Uniqueness of extremal Cartan subspaces

The Cayley transform allows us to derive some important properties of extremal Cartan sub-
spaces.

Theorem 24. We have that (KR,VR ∩ iW) (resp. (KR,VR ∩ W)) is a polar representation. The
sections are given by cσ̃ ∩ c−θ̃ (resp. cσ̃ ∩ cθ̃ ), where cσ̃ is a maximally noncompact (resp. com-
pact) Cartan subspace of VR = V σ̃ .

Proof. It suffices to treat the case of (KR,VR ∩ iW). Let cσ̃ be a maximally noncompact Cartan
subspace. Then there are no noncompact imaginary roots, for otherwise a Cayley transform could
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be performed increasing the noncompact dimension of cσ̃ . We claim that there exists v2 ∈ cσ̃ ∩
c−θ̃ such that

kR(v2) ⊕ cσ̃ ∩ c−θ̃ = V σ̃ ∩ V −θ̃ = VR ∩ iW.

In order to prove this claim, we first remark that [DK85, Thm. 2.12]

gv = m +
∑

α(v)=0

g̃α

for v ∈ c,

gv =
{

m + ∑
α imag g̃α for generic v ∈ c−ω̃,

m + ∑
α real g̃α for generic v ∈ cω̃,

and

gv1 =
(

mω +
∑
α real

g̃ω
α

)
︸ ︷︷ ︸

⊂k

⊕
(

m−ω +
∑
α real

g̃−ω
α

)
︸ ︷︷ ︸

⊂p

for generic v1 ∈ cσ̃ ∩ cθ̃ ,

gv2 =
(

mω +
∑

α imag

g̃ω
α

)
︸ ︷︷ ︸

⊂k

⊕m−ω︸︷︷︸
⊂p

for generic v2 ∈ cσ̃ ∩ c−θ̃ ,

where in the last line we have used the nonexistence of noncompact imaginary roots. Select
generic v1 ∈ cσ̃ ∩ cθ̃ , v2 ∈ cσ̃ ∩ c−θ̃ and set v = v1 + v2 ∈ cσ̃ . For each α ∈ A ,

α(v) = α(v1)︸ ︷︷ ︸
∈iR

+α(v2)︸ ︷︷ ︸
∈R

,

where at least one of the two summands on the right-hand side in not zero by the choice
of v1, v2. This shows that v is regular for (G,V ). By polarity, g · v ⊕ c = V . Taking real parts
in VR yields

gR(v) ⊕ cσ̃ = VR,

which is the same as(
kR(v1) + pR(v2)

) ⊕ (
kR(v2) + pR(v1)

) ⊕ cσ̃ ∩ cθ̃ ⊕ cσ̃ ∩ c−θ̃ = VR ∩ W ⊕ VR ∩ iW.

In particular,

(
kR(v2) + pR(v1)

) ⊕ cσ̃ ∩ c−θ̃ = VR ∩ iW.

The claim will follow if we show that kR(v2) ⊃ pR(v1). This is to be a consequence of k · v2 ⊃
p · v1, as k · v2 and p · v1 are σ̃ -stable and kR(v2) = (k · v2)

σ̃ , pR(v1) = (p · v1)
σ̃ .
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Now p · v1 is spanned by

g̃−ω
α︸︷︷︸
=0

·v1 for α imaginary, and

(Xα − ωXα) · v1 = Xα · v1 − ω̃(Xα · v1)

= α(v1)︸ ︷︷ ︸

=0

(1 − ω̃)(Xα · vα) for α complex and Xα ∈ g̃α.

On the other hand, k(v2) is spanned by

g̃ω
α · v2 for α real, and

(Xα + ωXα) · v2 = Xα · v2 − ω̃(Xα · v2)

= α(v2)︸ ︷︷ ︸

=0

(1 − ω̃)(Xα · vα) for α complex and Xα ∈ g̃α.

This proves that p · v1 ⊂ k · v2, and hence that kR(v2)⊕ cσ̃ ∩ c−θ̃ = VR ∩ iW . Since 〈g · c, c〉 = 0,
we get that cσ̃ ∩ c−θ̃ is the 〈·,·〉-orthogonal complement of KR(v2) in VR ∩ iW . Since KR is
compact and 〈·,·〉 is positive-definite on VR ∩ iW , it easily follows that cσ̃ ∩ c−θ̃ meets all the
KR-orbits in VR ∩ iW . Again by 〈g ·c, c〉 = 0, one has that cσ̃ ∩c−θ̃ meets all the other KR-orbits
orthogonally. This finishes the proof. �
Corollary 25. Two maximally noncompact (resp. compact) Cartan subspaces cσ̃

1 and cσ̃
2 of

V σ̃ = VR are KR-conjugate. As a consequence, there exists a unique GR-conjugacy class of
maximally noncompact (resp. compact) Cartan subspaces of VR.

Proof. Again, it suffices to treat the case of maximally noncompact Cartan subspaces. By The-
orem 24, we may assume that

cσ̃
1 ∩ c−θ̃

1 = cσ̃
2 ∩ c−θ̃

2 .

Take a generic point v2 lying therein. Since v2 ∈ VR ∩ iW , we have that uv2 = (kR)v2 + (ipR)v2 ,
and this is a decomposition into the ±1-eigenspaces of σ on uv2 , so

(Uv2)
◦ = (KR)v2 exp

[
(ipR)v2

]
.

Consider the slice of the polar action (U,V −θ̃ ) at v2; it is also polar with the same sections:

c−θ̃
i = c−σ̃

i ∩ c−θ̃
i ⊕ cσ̃

i ∩ c−θ̃
i

for i = 1,2. Now c−θ̃
1 and c−θ̃

2 must be conjugate by an element of (Uv2)
◦. Since exp[(ipR)v2]

centralizes c (for (ipR)v2 = m−σ ∩ mθ ), they must indeed be conjugate by an element of (KR)v2

(which necessarily fixes cσ̃ ∩ c−θ̃ = cσ̃ ∩ c−θ̃ since this is a section of (KR,VR ∩ iW) and
1 1 2 2
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v2 is a regular point of that action). Hence, so are cσ̃
1 ∩ cθ̃

1 = i(c−σ̃
1 ∩ c−θ̃

1 ) and cσ̃
2 ∩ cθ̃

2 =
i(c−σ̃

2 ∩ c−θ̃
2 ). �
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