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Let G/K be a noncompact Riemannian symmetric space and let G�/K� be
its complexification. Then G acts on G�/K� by left translations. We study the
invariant CR-structure of the closed G-orbits of maximal dimension and deter-
mine which ones can lie in the boundary of an invariant Stein domain. In
this way, we obtain information on the G-invariant Stein domains in G�/K�.
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INTRODUCTION

Let G/K be an irreducible Riemannian symmetric space. Its complex-
ification G�/K� is a Stein manifold and left translations by elements of
G are holomorphic automorphisms of G�/K�. Invariant Stein domains in
G�/K� and invariant plurisubharmonic functions are natural objects to
investigate. In the case when the symmetric space G/K is compact, such
objects are well understood. Every G-invariant domain � ⊆ G�/K� inter-
sects a certain analytic set D in a lower dimensional domain �D, biholo-
morphic to a Reinhardt domain in ��∗�r �r = rank G/K�. Invariant Stein
domains in G�/K� are precisely the ones for which this intersection is
connected and Stein (cf. [FH, La]). Moreover, there is a one-to-one cor-
respondence between invariant plurisubharmonic functions on � and loga-
rithmically convex Weyl-invariant functions on �D (see [AL]).
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In this paper, we consider the case when G/K is a noncompact
Riemannian symmetric space. Under these assumptions, global results like
in the compact case are no longer true. Local slices only exist at closed
G-orbits and there are no nonconstant global G-invariant plurisubharmonic
functions on G�/K� (see [L]).
The G-action determines a finite number of invariant regions, whose

union is dense in G�/K� and which roughly correspond to the different
types of closed orbits of maximal dimension (generic orbits). We study the
invariant CR-structure that generic orbits inherit from the complex man-
ifold G�/K�. We compute the corresponding Levi form and Levi cone,
which governs the local extension of CR-functions to holomorphic func-
tions. In this way, we determine which generic orbits can be contained in
the boundary of an invariant Stein domain in G�/K� or in a level set of
an invariant plurisubharmonic function. It turns out that regions associated
to different types of generic orbits have rather different complex analytic
properties: for example, only some of them contain invariant Stein subdo-
mains and admit nonconstant invariant plurisubharmonic functions.
One of them is the region �X0, which consists of all G-orbits intersect-

ing the compact dual symmetric space U · ē ∼= U/K, embedded in G�/K�

as the U-orbit of the base point ē (here U denotes the compact real form
of G�) (see [AG]). In general, �X0 contains several copies of the symmetric
space G/K, and each of them comes with a distinguished invariant neigh-
borhood D ⊂ �X0. D is the largest connected invariant domain which admits
a retraction to G/K and carries a canonical G-invariant Kaehler structure
compatible with the Riemannian structure of G/K (see [GS1, GS2, LS,
Sz]). These domains, say D0	 
 
 
 	Dm, contain Stein-invariant subdomains
and carry nonconstant invariant plurisubharmonic functions. They are con-
jectured to be Stein [AG] and to be related to the parameter space of linear
cycles in flag domains [WZ].
When the group G is of Hermitian type and G�/K� contains com-

pactly causal symmetric spaces G/H as minimal orbits, then there are other
regions in G�/K� containing invariant Stein subdomains. Let p be a point
on one such orbit G/H and let W (resp. −W ) be the maximal AdH-stable
regular elliptic cone in the tangent space T �G/H�p. Then SW �= G exp iW
and S−W �= G exp i�−W � are G-invariant domains in G�/K� containing
G/H in their boundary. The domains S±W were showed to be Stein in
[Ne]. Moreover, their invariant plurisubharmonic functions and Stein sub-
domains were completely characterized.
In this paper, we show that, with few possible exceptions, all proper

G-invariant Stein domains in G�/K� are contained either in one of
the domains D0	 
 
 
 	Dm or in one of the domains S±W1	 
 
 
 	 S±Ws

. The
same holds for domains admitting nonconstant invariant plurisubharmonic
functions.
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The possible exceptions are among the domains whose boundary entirely
consists of nongeneric orbits. The domains D0	 
 
 
 	Dm are of this type.
Unfortunately, the techniques of this paper do not apply to such domains
and their Steinness remains an open question.
One of the motivations for this study comes from representation theory.

A natural G-manifold like G�/K� may provide a setting for the geometric
realization of unitary representations of G. For example, the invariant Stein
domains contained in S±W carry Hilbert spaces of holomorphic functions
where the group G acts in a unitary fashion. The representations of G
which are realized in this way are unitary highest weight representations
with spherical lowest K-type [Ne]. On the other hand, the results of this
paper show that being Stein is an uncommon property among G-invariant
domains in G�/K�. One may wonder whether G�/K� contains invariant
domains which are q-complete or the generic orbits themselves carry some
natural Hilbert space where the group G acts by a unitary representation.
In other words, these results are just a first step in the investigation of the
G-invariant objects in G�/K�.
The paper is organized as follows. In Section 1, we recall some general

facts about CR-structures; in Section 2, we recall Matsuki’s results about
the double coset decomposition of a complex reductive group G� under
the action by the fixed point sets of a pair of involutions. Matsuki’s results
yield a parametrization of the generic orbits in G�/K� in terms of Cartan
subsets, i.e., cross sections of the form C = exp J� · p, where � is an r-
dimensional abelian subspace of � and p is a base point in G�/K�. We
show that each Cartan subset admits a base point p which satisfies some
very restrictive algebraic conditions. This fact is crucial for the computa-
tion of the Levi form of the generic orbits. For most reduced restricted
root systems, such conditions imply that the G-orbit of p is a semisimple
symmetric space G/H, embedded in G�/K� as a totally real submanifold.
In particular, G/H has minimal dimension. In Section 3, we determine the
invariant CR-structure of generic orbits. This is done by explicitly comput-
ing the vector fields generating the tangent space and the complex tangent
space at a reference point in terms of some generalized restricted root sys-
tems of ��. We also determine all the isotropy types of generic orbits. In
Section 4, we set up the general formulas for the calculation of the Levi
form. In Section 5, we carry out the computation of the Levi form and
the Levi cone of all generic orbits. In Section 6, we apply the results of
Section 5 to the study of invariant domains in G�/K� and of their invari-
ant plurisubharmonic functions. As an example, we carry out the rank-one
case.
The author is indebted to Gregor Fels for several useful discussions and

remarks.
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1. CR-STRUCTURES AND LEVI FORM

Generalities about CR-structures

Let M be a complex manifold with tangent bundle TM and let J� TM →
TM denote its complex structure. Let T�M �= TM ⊗� � denote the formal
complexification of TM . Then J extends to a �-linear morphism of T�M
and decomposes T�M as

T�M = HM ⊕AM (1.1)

into the holomorphic and antiholomorphic tangent bundles of M . The bun-
dles HM and AM are by definition the ±i-eigenspaces of J on T�M ,
respectively. The complex conjugation

−� T�M −→ T�M	 X ⊗ z �−→ X ⊗ z̄	

defines a �-antilinear bundle isomorphism −� HM → AM . The map X �→
X ⊗ 1 defines a canonical embedding TM → T�M identifying TM with
the real part of T�M with respect to the complex conjugation, i.e.,

TM = �Z ∈ T�M � �Z = Z�

The bundle maps πH � TM → HM given by X �→ 1

2 �X − iJX� and
πA� TM → AM given by X �→ 1

2 �X + iJX� define �-isomorphisms
satisfying πH�JX� = iπH�X� and πA�JX� = −iπA�X�, respectively.
Let S be a real submanifold of M with tangent bundle TS. Let x ∈ S.

Denote by TSx the tangent space to S at x and by

T�Sx �= TSx ∩ JTSx

the maximal J-stable subspace of TSx. If the complex dimension d of T�Sx
is independent of x, then S is a CR-manifold and d is called the CR-
dimension of S. Moreover, T�S = TS ∩ JTS is a well-defined J-stable sub-
bundle of TS. Denote by codim��S	M� the real codimension of S in M .
Definition 1.1. A CR-submanifold S ⊂ M is called generic if

codim��S	M� ≤ dim�M − d


The vector bundles T�S and TS can be formally complexified as well. The
decomposition (1.1) induces a decomposition of T�

� S as

T�
� S = HS ⊕AS	

where HS = T�S ∩ HM and AS = T�S ∩ AM . One has that a CR-
submanifold S of a complex manifold is involutive: if Z	W are local
sections of HS, so is �Z	W �. As a consequence, if X	Y are local sections
of T�S, the same is true for both

�X	Y � − �JX	 JY � and �JX	Y � + �X	 JY �
 (1.2)
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The Levi Form

Let S be a CR-submanifold of a complex manifold M . We recall the
definition of the Levi form of S (see [Bo] or [Tu]).
Let x ∈ S. Denote by Zx a tangent vector in T�Sx and by Ẑ an arbitrary

extension of Zx to a local section of T�S. Then the vector fields πH�Ẑ� =
1
2 �Ẑ − iJẐ� and πA�Ẑ� = 1

2 �Ẑ + iJẐ� are local sections of the bundles HS
and AS.

Definition 1.2. The Levi form L of S at x is the map L� T�Sx ×
T�Sx → T�Sx/T

�
� Sx given by

L�Xx	Yx� �= i

4
�X̂ − iJX̂	 Ŷ + iJŶ �x modT�

� Sx


Remark 1.3. The Levi form L at x is well defined, as it does not depend
on the choice of the extensions X̂ and Ŷ . Moreover, L is an �-bilinear
Hermitian form satisfying

L�Xx	Yx� = L�JXx	 JYx� and L�Xx	Yx� = L�Yx	Xx�	
where the conjugation on T�Sx/T

�
� Sx is the restriction of the conjuga-

tion on T�Mx. It follows that L�Xx	Xx� is real valued, i.e., L�Xx	Xx� ∈
TSx/T�Sx. By (1.2), for all Xx	Yx ∈ T�Sx the following identities hold
modulo T�

� Sx:

L�Xx	Yx� = i

2
�X̂	 Ŷ �x − 1

2
�X̂	 JŶ �x and L�Xx	Xx� = 1

2
�JX̂	 X̂�x


A key geometric object associated with the Levi form is the Levi cone,
which is the higher codimensional analogue of the signature of the classical
Levi form of a CR-hypersurface.

Definition 1.4. Let S be a CR-manifold in M and let x ∈ S. The Levi
cone �x�S� of S at x is defined by

�x�S� �= �L�Xx	Xx� � Xx ∈ T�Sx� ⊂ TSx/T�Sx


Observe that �x�S� is a real cone (i.e., satisfies the condition �+ ·�x�S� ⊂
�x�S�) and may have an empty interior. The cone �x�S� governs the holo-
morphic extension of CR-functions defined on a neighborhood of x in S. In
this regard, we mention a theorem which will be applied in Section 6 (cf.
[Bo, p. 202]).

Theorem 1.5. Let S be a generic CR-submanifold of a complex manifold
M . Let x ∈ S and assume that the Levi cone at x satisfies the condition

�x�S� = TSx/T�Sx


Then, for each neighborhood ω of x in S, there exists a neighborhood � of
x in M satisfying � ∩ S ⊂ ω and with the property that every CR-function of
class C1 on � ∩ S extends to a unique holomorphic function on �.
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2. GENERIC ORBITS IN G�/K�

2.1. Preliminaries

A semisimple Riemannian symmetric space of the noncompact type is a
coset space G/K, where G is a real semisimple Lie group and K ⊂ G is a
maximal compact subgroup. Even when G is a complex group, it is viewed
as a real Lie group. Since G/K is simply connected, it decomposes as the
Riemannian product of irreducible symmetric spaces

G/K = G1/K1 × · · · ×Gn/Kn


Throughout the paper, we assume for simplicity that G/K is irreducible.
(Later on, we show how to extend our results from the irreducible case to
the general case (Section 6).) Without loss of generality, G can be assumed
to be a connected real simple Lie group and to admit a faithful linear
representation. Then G and K have complexifications G� and K�, and the
coset space G�/K� is a Stein manifold. The group G� can be assumed to
be simply connected. When G itself is a complex group, it can be assumed
simply connected.
Denote by π the canonical projection π� G� → G�/K�. Throughout the

paper, we indicate the image of an object in G� under π by overlining the
corresponding symbol (e.g., �S �= π�S� for S ⊂ G�). Left translations by
elements of G on G�/K� are defined by

Lg · x̄ = g · x̄ �= gx	 g ∈ G	 x̄ ∈ G�/K�	

and are holomorphic automorphisms of G�/K�.
The aim of this section is to give a parametrization of the closed G-orbits

of maximal dimension in G�/K�. Such a parametrization is based on a
result by Matsuki about the double coset decomposition of a complex
reductive group G� under the action by the fixed point sets of a pair of
involutions [Ma1]. In the case we consider, one involution is the conjuga-
tion σ of G� corresponding to the noncompact real form G, and the other
one is τ = θ�, the complexification of the Cartan involution θ of G. It is
easy to check that

στ = τσ and στ = &	

where & denotes the Cartan involution of G�. The fixed point sets of the
above involutions are given by

�G��σ = G	 �G��τ = K�	 �G��& = U	

respectively, where U is the compact real form of G�.
We denote the Lie algebra of a group by the corresponding gothic letter.

For example, � and �� denote the Lie algebras of G and G�, respectively.



invariant domains 625

We denote by the same symbol an involution of a group and the derived
involution of its Lie algebra. Recall that there is a one-to-one correspon-
dence between involutions of a simply connected group and those of its
Lie algebra. Moreover, the fixed point set of a simply connected group is
always connected [S].
Let � = �⊕ � be the Cartan decomposition of � and let J denote the com-

plex structure of ��. To σ	 τ, and & there correspond three decompositions
of �� into ±1-eigenspaces

�� = ����σ ⊕ ����−σ = �⊕ J�	 �� = ����τ ⊕ ����−τ = �� ⊕ ��	

�� = ����& ⊕ ����−& = �⊕ J�	

where � = � ⊕ J� is the compact real form of ��.

2.2. Semisimple Elements, Cartan Subsets, and Generic Orbits

The group G×K� acts on G� by

�g	 k� · x �−→ gxk−1	

and two elements x	 y sit on the same G × K�-orbit in G� if and only if
x̄	 ȳ sit on the same G-orbit in G�/K�. Before we can state Matsuki’s result
about closed G×K�-orbits in G�, we need some preliminaries.
For g ∈ G�, consider the involution of �� defined by

τg = AdgτAdg−1 (2.1)

and the (real) automorphism of �� given by

fg �= στg


Definition 2.1. An element g ∈ G� is called semisimple with respect
to σ	 τ if the corresponding automorphism fg is semisimple. The set of
semisimple elements with respect to σ	 τ in G� is denoted by G�

ss	 σ	 τ.

Definition 2.2. An element g ∈ G�
ss	 σ	 τ is called regular semisimple with

respect to σ	 τ if the intersection ����−σ ∩ ����−τg is commutative. The set of
regular semisimple elements with respect to σ	 τ in G� is denoted by G�

rs	 σ	 τ.

Both sets of semisimple and regular semisimple elements with respect to
σ	 τ are G × K�-stable and there are inclusions G�

rs	 σ	 τ ⊂ G�
ss	 σ	 τ ⊂ G�.

The set G�
ss	 σ	 τ is open and dense in G� and consists of the elements in

G� sitting on closed G × K�-orbits (cf. [Ma1, Proposition 4, p. 67]). The
set G�

rs	 σ	 τ is open and dense in G
�
ss	 σ	 τ and consists of the elements in G

�

sitting on closed G×K�-orbits of maximal dimension (cf. Section 3).
Following Matsuki [Ma1, Sect. 4.4], we now introduce Cartan subsets in

G� in our special case, together with the appropriate notion of conjugacy
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and of Weyl group. Cartan subsets are cross sections for the closed G×K�-
orbits in G�: every such orbit intersects some Cartan subset and every
closed orbit of maximal dimension intersects precisely one Cartan subset
(up to conjugacy) along the orbit of the corresponding Weyl group.

Definition 2.3. Let 	 ⊂ � ⊂ � be a maximal abelian subspace. 	 is
called a fundamental Cartan subspace. The torus group A �= exp J	 ⊂ G�

is called a fundamental Cartan subset.

Definition 2.4. A standard Cartan subset is a set of the form

C �= exp J� · p ⊂ G�	

where p is a point in A = exp J	 and
� = �� ⊕ �� for �� = � ∩ �	 �� = � ∩ � ⊂ 		

is a θ-stable (maximal) abelian subspace in � ∩Adp�� with dim � = dim 	.
The space � is called a standard Cartan subspace.

Remark 2.5. Observe that in general the base point p of a standard
Cartan subset C = exp J� · p is not uniquely determined: for all p′ ∈
exp J�� · p, one has that � is a maximal abelian subspace of � ∩ Adp′��

and exp J� · p′ defines the same Cartan subset C.

For a fundamental Cartan subset A, define a Weyl group as

WK×K�A� = NK×K�A�/ZK×K�A�	
where

NK×K�A� = ��h	 l� ∈ K ×K � hAl−1 = A�
and

ZK×K�A� = ��h	 l� ∈ K ×K � hal−1 = a	∀ a ∈ A�

There is a notion of conjugacy between Cartan subsets which goes as
follows.
Let C1 = exp J�1� ·A1 and C2 = exp J�2� ·A2 be standard Cartan subsets,

where A1 = exp J�1� · p1 and A2 = exp J�2� · p2. Then C1 and C2 are said to
be WK×K�A�-conjugate if

A2 = hA1k
−1 for some �h	 k� ∈ NK×K�A�


For a standard Cartan subset C = exp J� · p, define a Weyl group as

WK×K�C� = NK×K�C�/ZK×K�C�	
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where

NK×K�C� = ��h	 l� ∈ K ×K � hCl−1 = C�
and

ZK×K�C� = ��h	 l� ∈ K ×K � hcl−1 = c	∀ c ∈ C�

Remark 2.6. (i) By [Ma1, Lemma 10(ii)], if two Cartan subsets C1 and

C2 are conjugate, then C2 = mC1l
−1 for some �m	 l� ∈ K × K. In other

words, conjugate Cartan subsets intersect the same G×K�-orbits in G�.
(ii) The group WK×K�A� and its action on A have been described in

[AG, Proposition 6]:

WK×K�A� = ��h	 l� ∈ K ×K � h ∈ NK�	�	 hl−1 ∈ exp J/�
is isomorphic to the semidirect product of the Weyl group WK�	� and /, the
kernel of the map exp� 	 → exp J	/ exp J	 ∩ K. Precisely, / is the lattice
in 	 given by

/ = ∑
α∈1	


π
2hα

B�hα	 hα�
	

where, for each root α, the vector hα is defined by α�H� = B�H	hα�	H ∈ 	.
If �h	 l� ∈ WK×K�A� and x = eJX ∈ A, then

�h	 l� · x = eJAdhXhl−1 = eJ�AdhX+γ�	 γ ∈ /


In particular, there is an embedding NK�	� ↪→ NK×K�A�	 h �→ �h	 h�.
(iii) Let C = exp J� · p be a Cartan subset and let H be the isotropy

subgroup in G of the base point p̄ ∈ G�/K�. Then, for each h ∈ NK∩H���,
one has that

h exp J� · ph−1 = exp JAdh� · hph−1 = exp J� · pkh−1	 k	 kh−1 ∈ K�


This means that C and hCh−1 are Cartan subsets in G� with the same
image �C in G�/K�. In particular, they intersect precisely the same G-orbits
in G�/K�.

Standard Cartan subsets can be described in terms of orthogonal systems
of restricted root vectors in �. In our situation, this description is equivalent
to the one given in [Ma1, p. 83]. Let 1	 denote the restricted root system
of � with respect to 	 and let

� = �0 ⊕ ⊕
α∈1	

�α	 �0 = Z��	� = �⊕ 		 � = Z��	�

be the corresponding root decomposition.
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An orthogonal system of restricted root vectors is a setQ = �Xα1
	 
 
 
 	Xαm

�
of restricted root vectors Xαj

∈ �αj satisfying the conditions �Xαi
	Xαj

� =
�Xαi

	 θXαj
� = 0 for i �= j.

Define

�Q � = ��Xα1
+ θXα1

� ⊕ · · · ⊕ ��Xαm
+ θXαm

� ⊂ �	

	Q � =
m⋂
j=1
Ker�αj� = �H ∈ 	 � αj�H� = 0 for j = 1	 
 
 
 	m� ⊂ 		 (2.2)

AQ � = �eJH ∈ A = exp J	 � e2iαj�H� = −1 for j = 1	 
 
 
 	m�

Each connected component of the set

CQ = exp J�Q ·AQ (2.3)

is a standard Cartan subset. All standard Cartan subsets arise in this way.
The connected components of CQ are in one-to-one correspondence with

the ones of AQ. A connected component C of CQ can be written as

C = exp J�Q · exp J	Q · p	 (2.4)

where the �r −m�-dimensional torus
exp J	Q = A0

Q = �e2JH ∈ A � e2iαj�H� = 1 for j = 1	 
 
 
 	m�
is the connected component of the identity of AQ, and p is a base point
satisfying the conditions

p = eJA0 ∈ exp J	 and αj�A0� ≡ π/2 modπ	 j = 1	 
 
 
 	m

(2.5)

Remark 2.7. (i) Denote by RQ = �α1	 
 
 
 	 αm� the set of restricted
roots corresponding to an orthogonal system of restricted root vectors
Q = �Xα1

	 
 
 
 	Xαm
�. Then the roots in RQ are orthogonal with respect

to the Killing form, i.e.,  αi	 αj! = 0 for all i �= j (see [Ma2]). In general,
they may not be strongly orthogonal. For example, when G = SO0�6	 8�
there are orthogonal systems of restricted root vectors arising from
orthogonal, nonstrongly orthogonal roots. However, a set of orthogo-
nal, nonstrongly orthogonal restricted roots may not admit an orthogonal
system of restricted root vectors.

(ii) Conjugacy of Cartan subsets can be formulated in terms of
orthogonal systems as follows:

• Let Q1 = �Xα1
	 
 
 
 	Xαm

� be an orthogonal system of restricted
root vectors of an orthogonal set of roots RQ1

= �α1	 
 
 
 	 αm�. Let w ∈
NK�	� and let RQ2

= w · RQ1
= �wα1	 
 
 
 	 wαm�. Then Q1 and Q2 =

�wXα1
	 
 
 
 	 wXαm

� give rise to families of pairwise conjugate Cartan sub-
sets CQ1

and CQ2
.
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• Let C1 ∼= C2 be conjugate standard Cartan subsets. If C1 is asso-
ciated to an orthogonal system of root vectors Q1 = �Xα1

	 
 
 
 	Xαm
� of

an orthogonal set of roots RQ1
, then C2 is conjugate to a Cartan subset

associated to the orthogonal system Q2 = w · Q1 of the set of orthogonal
roots RQ2

= w · RQ1
. Precisely, A2 is a connected component of AQ2

, for
Q2 = w ·Q1.
As a consequence, WK�	�-equivalence classes of sets of positive orthogo-

nal restricted roots, admitting an orthogonal system of restricted root vec-
tors, yield a complete set of representatives of WK×K�	�-conjugacy classes
of standard Cartan subsets.

Let �Ci = exp J�i · pi�i∈I be a complete set of representatives of the
WK×K�A�-conjugacy classes of standard Cartan subsets in G�. By the above
description, such a set is finite. For i ∈ I, denote by

Xi �= G · exp J�i · pi ·K�

the set of the G×K�-orbits in G� intersecting Ci, and by

X0 = G · exp J	 ·K�

the set of the G × K�-orbits in G� intersecting the fundamental Cartan
subset A �= exp J	. In our situation, Theorem 3 in [Ma1, p. 80], can be
summarized as follows.

Theorem 2.8. (i) Every closedG×K�-orbit inG� intersects a standard
Cartan subset Ci for some i ∈ I.

(ii) Closed G × K�-orbits consisting of regular semisimple elements
with respect to σ	 τ intersect precisely one Cartan subset Ci in the orbit of
the Weyl group WK×K�Ci�.

(iii) There is identification of orbit spaces X0/G×K� ∼= A/WK×K�A�.
In other words, x	 y ∈ A lie on the same G×K�-orbit if and only if they lie
on the same WK×K�A�-orbit.
Since the canonical projection π is equivariant, continuous, and closed,

the sets of elements in G�/K� sitting on closed G-orbits and on closed
G-orbits of maximal dimension are given by G�

ss	 σ	 τ and G�
rs	 σ	 τ, respec-

tively. We call the closed G-orbits of maximal dimension generic orbits. By
the above theorem,

G�
ss	 σ	 τ = ⋃�Xi


Moreover, every generic orbit S admits a reference point on a set �Ci, where
Ci	 i ∈ I, is a uniquely determined Cartan subset. Sometimes, for simplicity,
we call �Ci a Cartan subset as well.
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2.3. Standard Cartan Subsets and Minimal Orbits

In this section, we prove that every standard Cartan subset admits a base
point p which satisfies some very restrictive algebraic conditions. Under
such conditions, the G-orbit of p̄ ∈ G�/K� has locally minimal dimension
(cf. Sections 3.2 and 3.3). For most reduced restricted root systems, such
conditions also imply that the G-orbit of p̄ is a semisimple symmetric space,
embedded in G�/K� as a totally real submanifold. In this case, the G-orbit
of p̄ has absolute minimal dimension.

Lemma 2.9. Let � be a simple real Lie algebra. Let C ⊂ CQ be a standard
Cartan subset associated to an orthogonal system of restricted root vectors
Q = �Xα1

	 
 
 
 	Xαm
�.

(i) If the restricted root system 1	 of � is reduced, not of type Cr or F4,
there exists a base point p = eJA0 ∈ AQ of C satisfying

α�A0� ≡ 0 modπ/2 for all α ∈ 1	
 (2.6)

(ii) If the restricted root system 1	 of � is of type Cr	 �BC�r , or F4, there
exists a base point p = eJA0 ∈ AQ of C satisfying either conditions (2.6) or

2α�A0� ≡ 0 modπ/2 for all α ∈ 1	
 (2.7)

Proof. Let � be a simple real Lie algebra of real rank r (i.e., dim�	 = r).
Then the restricted root system 1	 is irreducible and it is either isomorphic
to one of the rank-r reduced root systems, or it is of type �BC�r (see [He,
Kn2]). Let RQ = �α1	 
 
 
 	 αm� be the set of (orthogonal) restricted roots
corresponding to Q.
By definition, a base point p = eJA0 of a Cartan subset C ⊂ CQ satisfies

the system of equations
α1�A0� = �2n1 + 1�

π

2





αm�A0� = �2nm + 1�π
2

for some integers n1	 
 
 
 	 nm ∈ 

 (2.8)

The proof of the lemma is equivalent to showing that in AQ there exists a
base point p = eJA0 for C, satisfying either

αj�A0� = �2nj + 1�
π

2
	 j = 1	 
 
 
 	m	

α�A0� ∈ 

π

2
	 ∀α ∈ 1		

(2.9)

or 
αj�A0� = �2nj + 1�

π

2
	 j = 1	 
 
 
 	m	

2α�A0� ∈ 

π

2
	 ∀α ∈ 1	


�2
9�′
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Observe that when the orthogonal roots α1	 
 
 
 	 αm span the space 	∗, then
	Q = �0� and the base point p is uniquely determined by conditions (2.8).
So it is not a priori obvious that conditions (2.9) or (2.9)′ can be fulfilled
by some base point p.
When 1	 is of type Ar	Dr	G2	 E6	 E7	 E8, orthogonal restricted roots

are automatically strongly orthogonal (cf. [Ma2]). In all these cases, the sets
RQ of strongly orthogonal restricted roots, up to Weyl group equivalence,
have been determined in [Su]. (They coincide with the sets of strongly
orthogonal roots of the split real form of a complex Lie algebra of type
Ar	Dr	G2	 E6	 E7	 E8, respectively.) For the sake of completeness we list
them hereby.

Ar 1 = �±�ei − ej�	 1 ≤ i < j ≤ r + 1� ⊂ �r+1 ∩ �e1 + · · · + er+1�⊥.
> = ��e1 − e2�	 
 
 
 	 �er − er+1��.
Every set of strongly orthogonal roots is conjugate to a set of the form
RQ = ��ei1 − ei2�	 
 
 
 	 �ei2k−1 − ei2k�	 k ≥ 1	 i1 < i2	 
 
 
 	 i2k−1 < i2k�, where
i1	 i2	 
 
 
 	 i2k ∈ �1	 2	 
 
 
 	 r + 1� are distinct integers.

Dr 1 = �±�ei ± ej�	 1 ≤ i < j ≤ r� ⊂ �r .
> = ��e1 − e2�	 
 
 
 	 �er−1 − er�	 �er−1 + er��.
Every set of strongly orthogonal roots is conjugate to a set of the form
RQ = R�l	 k� = ��e1 ± e2�	 
 
 
 	 �e2l−1 ± e2l�	 �e2l+1 − e2l+k+1�	 
 
 
 	 �e2l+k −
e2l+2k�� for l	 k ≥ 0	 2l + 2k ≤ r.
For r even, there is also the possibility RQ = R�0	 r/2 − 1� ∪ �er−1 + er�.

G2 1 = �±�e2 − e3�	±�e3 − e1�	±�e1 − e2�	±�2e1 − e2 − e3�	
±�2e2 − e1 − e3�	±�2e3 − e1 − e2�� ⊂ �3 ∩ �e1 + e2 + e3�⊥.
> = ��e1 − e2�	 �−2e1 + e2 + e3��.
Every set RQ of strongly orthogonal roots is conjugate to a subset of the
maximal set R = ��e2 − e3�	 �2e1 − e2 − e3��.

E8 1 = �±�ei ± ej�	 1 ≤ i < j ≤ 8	 12
∑8

i=1�−1�ν�i�ei	
∑
ν�i� even�⊂

�8.
> = � 12 �e1 − e2 − e3 − e4 − e5 − e6 − e7 + e8�	 �e2 + e1�	 �e2 − e1�	 �e3 −
e2�	 �e4 − e3�	 �e5 − e4�	 �e6 − e5�	 �e7 − e6��.
Every set RQ of strongly orthogonal roots is conjugate to a subset of the
maximal set
R = � 12 �e1 − e2 + e3 − e4 + e5 − e6 − e7 + e8�	 12 �e1 + e2 − e3 + e4 − e5 −
e6− e7+ e8�	 �e3+ e4�	 �e2 + e5�	 �e1+ e6�	 12 �−e1− e2 − e3+ e4+ e5+ e6−
e7 + e8�	 12 �−e1 + e2 + e3 − e4 − e5 + e6 − e7 + e8�	 �e8 + e7��.

E7 1 = �roots in E8 orthogonal to the root �e8 + e7��.
> = � 12 �e1 − e2 − e3 − e4 − e5 − e6 − e7 + e8�	 �e2 + e1�	 �e2 − e1�	 �e3 −
e2�	 �e4 − e3�	 �e5 − e4�	 �e6 − e5��.
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Every set RQ of strongly orthogonal roots in E7 is conjugate to a subset of
the maximal set given by the first seven vectors of R ⊂ E8.

E6 1 = �roots in E8 orthogonal to the roots �e8 + e7�	 �e8 + e6��.
> = � 12 �e1 − e2 − e3 − e4 − e5 − e6 − e7 + e8�	 �e2 + e1�	 �e2 − e1�	 �e3 −
e2�	 �e4 − e3�	 �e5 − e4��.
Every set RQ of strongly orthogonal roots in E6 is conjugate to a subset of
the maximal set given by the first four vectors of R ⊂ E8.

When 1	 is of type Br	 Cr	 �BC�r	 F4, sets of orthogonal restricted roots
are not necessarily strongly orthogonal. For these types of root systems, sets
of orthogonal roots can be described as follows.

Br 1 = �±ei	 1 ≤ i ≤ r	 ±�ei ± ej�	 1 ≤ i < j ≤ r� ⊂ �r .
> = ��e1 − e2�	 
 
 
 	 �er−1 − er�	 er�.
Every set of orthogonal roots is conjugate to a set of the form
RQ = ��ei1 ± ej1�	 
 
 
 	 �eik ± ejk�	 eh1	 
 
 
 	 ehn�, where k	 n ≥ 0	 i1 <
j1	 
 
 
 	 ik < jk, and i1	 j1	 
 
 
 	 ik	 jk	 h1	 
 
 
 	 hn ∈ �1	 2	 
 
 
 	 r� are distinct
integers.

Cr 1 = �±2ei	 1 ≤ i ≤ r	 ±�ei ± ej�	 1 ≤ i < j ≤ r� ⊂ �r .
> = ��e1 − e2�	 
 
 
 	 �er−1 − er�	 2er�.
Every set of orthogonal roots is conjugate to a set of the form
RQ = ��ei1 ± ej1�	 
 
 
 	 �eik ± ejk�	 2eh1	 
 
 
 	 2ehn�, where k	 n ≥ 0	 i1 <
j1	 
 
 
 	 ik < jk, and i1	 j1	 
 
 
 	 ik	 jk	 h1	 
 
 
 	 hn ∈ �1	 2	 
 
 
 	 r� are distinct
integers.

�BC�r 1 = �±ei	±2ei	 1 ≤ i ≤ r	 ±�ei ± ej�	 1 ≤ i < j ≤ r� ⊂ �r .
> = ��e1 − e2�	 
 
 
 	 �er−1 − er�	 er�.
Every set of orthogonal roots is conjugate to a set of the form
RQ = ��ei1 ± ej1�	 
 
 
 	 �eik ± ejk�	 em1	 
 
 
 	 emp

	 2eh1	 
 
 
 	 2ehn�, where
k	p	 n ≥ 0	 i1 < j1	 
 
 
 	 ik < jk, and i1	 j1	 
 
 
 	 ik	 jk	m1	 
 
 
 	mp	 h1	 
 
 
 	
hn ∈ �1	 2	 
 
 
 	 r� are distinct integers.

F4 1 = �±ei	 1 ≤ i ≤ 4	 ±�ei ± ej�	 1 ≤ i < j ≤ 4	 12 �±e1 ± e2 ±
e3 ± e4�� ⊂ �4.
> = � 12 �e1 − e2 − e3 − e4�	 e4	 �e3 − e4�	 �e2 − e3��.
Every orthogonal set RQ of roots is conjugate to a subset of
R1 = ��e1 ± e2�	 �e3 ± e4��, R2 = �e1	 
 
 
 	 e4�,
R3 = ��ei ± ej�	 eh	 ek	 i < j	 i	 j	 h	 k	 all distinct�.
In the above lists, we have identified 	∗ with a subspace of some

euclidean space �n. In this way, every root in 1	 can be written as a lin-
ear combination of the functionals e1	 
 
 
 	 en ∈ �n, and conditions (2.8)
translate into a linear system of equations in ei1�A0�	 
 
 
 	 eik�A0� for some
�i1	 
 
 
 	 ik� ⊂ �1	 
 
 
 	 n�.
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For 1	 = Ar	Br	Dr , the systems (2.8) arising in this way have the fol-
lowing properties:

• The equations are either of the form

ek�A0� ± eh�A0� = �2s + 1�π
2

or ei�A0� = �2t + 1�π
2
	 t	 s ∈ 



(2.10)

• Different equations involve ei’s with different indices, except for
pairs of equations of the form

ep�A0� + eq�A0� = �2a+ 1�π
2
	

ep�A0� − eq�A0� = �2b+ 1�π
2
	

a	 b ∈ 

 (2.11)

One can check that it is always possible to find A0 ∈ 	 such that ei�A0� ∈

π
2 , for all i and conditions (2.9) are satisfied.

For 1	 = G2	 E6	 E7	 E8 and every set of strongly orthogonal roots RQ,
it is always possible to find A0 ∈ 	 such that conditions (2.9) are satisfied.
An easy calculation proves it for G2.
Let R be the maximal set of strongly orthogonal roots in E8. The corre-

sponding 8× 8 system (2.8) uniquely determines the values �ei�A0��i=1	


	8
and the values of the simple roots in >

1
2
�e1 − e2 − e3 − e4 − e5 − e6 − e7 + e8�	 �e2 + e1�	 �e2 − e1�	 �e3 − e2�	

�e4 − e3�	 �e5 − e4�	 �e6 − e5�	 �e7 − e6�
on A0, which are respectively given by

�n1 + n2 − n3 − n4�
π

2
	 �1+ n2 + n4 + n5 − n6�

π

2
	

−�n1 − n4 + n5 − n7�
π

2
	 �n1 − n2 + n3 − n4�

π

2
	

�−n1 + n2 + n6 − n7�
π

2
	 �n1 − n2 − n3 + n4�

π

2
	

�−n1 − n4 + n5 + n7�
π

2
	 −�1+ n5 + n6 + n7 − n8�

π

2



It follows that A0 satisfies conditions (2.9) for the maximal set R and there-
fore for every subset RQ ⊂ R. The discussion of E6 and E7 is included in
that of E8.
For 1	 = Cr , systems (2.8) arising from a set RQ of orthogonal roots

contain a number of systems like (2.11) and equations of the form

2ej�A0� = �2u+ 1�π
2
	 u ∈ 
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which have solutions in 1
2


π
2 . If the roots in RQ are actually strongly orthog-

onal, it is always possible to find A0 ∈ 	 satisfying conditions (2.9). How-
ever, there are sets of orthogonal, nonstrongly orthogonal roots for which
it is only possible to find A0 ∈ 	 satisfying conditions (2.9)′. (In some cases,
such roots also admit an orthogonal systems of restricted root vectors: for
example when � = EVII.)
For 1	 = F4, conditions (2.9) can be satisfied for all orthogonal sets of

roots contained in R1 and R2 and all strongly orthogonal sets contained in
R3. For orthogonal sets contained in R3, conditions (2.9)′ can be satisfied.
(However, only when � = EVI and � = EIX do such sets of roots actually
admit an orthogonal system of restricted root vectors.)
In the nonreduced case �BC�r , because of double roots, conditions (2.9)

generally need to be replaced by conditions (2.9)′, even for sets of strongly
orthogonal roots. Then the arguments used for Br apply to this case as well.
We conclude by observing that when � admits a complex structure, the

restricted root system 1	 is isomorphic to the ordinary root system 1 and
orthogonal systems of restricted root vectors only occur in connection with
strongly orthogonal roots. In particular, every Cartan subset admits a base
point satisfying conditions (2.6).
Conditions (2.6) and (2.7) put severe restrictions on a point p = eJA0 ∈

exp J	 on the associated involution τp of �� (see (2.1)) and on the G-orbit
of p̄ ∈ G�/K�.

Lemma 2.10. Let p = eJA0 ∈ exp J	. Then
(i) τp = Adp2τ and τpτp−1 = Adp4 .
(ii) στp = τp−1σ	 ττp = τp−1τ	 and τp& = &τp.
(iii) Let C = exp J�Q ·p be a Cartan subset associated to the orthogonal

system of restricted root vectors Q = �Xα1
	 
 
 
 	Xαm

�. Then the base point p
satisfies

τp���Q = τp−1 ���Q = −Id and τpτp−1 ���Q = Adp4 ���Q = Id

Proof. If p ∈ exp J	, then τ�p� = σ�p� = p−1. It follows that

σAdp = Adp−1σ	 τAdp = Adp−1τ


The above relations together with the definitions of τp and τp−1 imply parts
(i) and (ii). Observe that τp�	Q = τp−1 �	Q = −Id, since p ∈ exp J	. More-
over, by (2.2), one has that

τp�Xαi
+ θXαi

� = τp−1�Xαi
+ θXαi

� = −�Xαi
+ θXαi

� for all Xαi
∈ Q


All the statements in part (iii) are now immediate.
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Lemma 2.11. Let p = eJA0 ∈ exp J	 be a point satisfying conditions (2.6).
Then

(i) Adp4 = Id	 τp = τp−1 , and τpσ = στp.

(ii) τp preserves the real form G of G�.
(iii) The restriction of τp to � is an involution of � commuting with the

Cartan involution θ.
(iv) στp is a conjugation of �� with real form �� =  ⊕ J�, where

� = ⊕ � is the τp-decomposition of �.

Proof. By conditions (2.6), one has that Adp4 = Id on �� and G�. As a
consequence, τpσ = στp and τp�G� = G. Statement (iii) is immediate. (iv)
Since στp = τpσ , one has that στp is a conjugation of �� commuting with
τp. In this way, the τp-decomposition �� = � ⊕ �� is both σ- and στp-
stable. In particular, Fix�στp	 ��� = Fix�στp	 �� ⊕ Fix�στp	 ��� = ⊕ J�.

Corollary 2.12. By Lemma 2.11, one has that

�G��τp = �Gτp�� = AdpK�


Remark 2.13. Let p = eJA0 ∈ exp J	 be a base point for a Cartan subset
C = exp J� · p. Assume p satisfies conditions (2.6). Denote by Gp̄ and
�G��p̄ the isotropy subgroups of the point p̄ ∈ G�/K� in G and G�,
respectively. Then

�G��p̄ = �G��τp = AdpK� and Gp̄ = G ∩ �G��τp = Gτp


In other words, Gp̄ is a (possibly disconnected) real form of �G��p̄. The
G-orbit of p̄ is a semisimple (generally non-Riemannian) symmetric space
G/Gτp of the same dimension and rank as G/K. The map G� → G�	 g �→
g · p induces an identification

G�/K� ∼= G�/�Gτp��	
and the space G/Gτp embeds in G�/�Gτp�� as a totally real submanifold
of maximal dimension. If � =  ⊕ � is the τp-decomposition of �, there is
a canonical identification � ∼= T �G/Gτp�p̄ and the Cartan subspace � is a
maximal abelian subspace of �.

Lemma 2.14. Let p = eJA0 ∈ exp J	 be a point satisfying conditions (2.7).
Then

(i) Adp8 = Id and Adp4 is a complex involution of ��.
(ii) Adp4 commutes with τ	 τp, and σ .
(iii) Adp4 measures the noncommutativity of σ and τp:

στp = τpσ Adp4	 �στp�4 = Id
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Proof. The proof of the lemma is a straightforward application of the
definitions and of the results of Lemma 2.10.

Remark 2.15. Let p = eJA0 ∈ exp J	 be a point satisfying condi-
tions (2.7). In general, under these assumptions, στp �= τpσ and the
τp-decomposition of ��

�� = � ⊕ ��

is not σ-stable. It follows that

dim�� ∩ � < dim�
� and dim�G/Gp > dim�G/K


In this case, the G-orbit of the point p̄ ∈ G�/K� is not a totally real
submanifold of G�/K�.

3. THE CR-STRUCTURE AND THE ORBIT TYPE
OF A GENERIC ORBIT

3.1. Vector Fields Induced by the G-action

Fix the trivialization of the tangent bundle TG� = G� × �� given by the
right-invariant vector fields on G�. A vector in �� and the corresponding
right-invariant vector field on G� are denoted by the same symbol. Let
G� ×K� �� denote the G-equivariant bundle defined as the quotient of
G� × �� by the equivalence relation �x	 v� ∼ �xk−1	Adkv�	 k ∈ K�. The
map

�x̄	 v� �−→ �x	 �Lx�−1∗ v� = �x	Adx−1v�	 x̄ ∈ G�/K�	 v ∈ T �G�/K��x̄	
provides a G-equivariant identification between the tangent bundle
T �G�/K�� and G� ×K� ��. Here �Lx�∗ �= �dLx�e. Under this identi-
fication, the tangent space to G�/K� at x̄ is given by

T �G�/K��x̄ = Adx��	 x ∈ G�	 π�x� = x̄


Left translations by elements of G on G�/K� induce a Lie algebra homo-
morphism associating to X ∈ � the vector field X∗ on G�/K� generated
by the action of the one-parameter subgroup

Lexp tX � x̄ �−→ exp tX · x̄
 (3.1)

By definition, the value X∗�x̄� of X∗ at x̄ is the tangent vector at x̄ to the
curve exp tX · x̄ in G�/K�.
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Lemma 3.1. One has that

X∗�x̄� = >x�X�	
where

>x� �� −→ Adx�
�

is the projection induced by the Lie algebra decomposition �� = Adx�� ⊕
Adx��.

Proof. For x̄ ∈ G�/K�, the isotropy subgroup of x̄ in G� is given by
G�

x̄ = AdxK�, where x ∈ G� and x̄ = π�x�. Therefore the isotropy algebra
is given by ��x̄ = Adx�� and X∗�x̄� coincides with the projection >x�X�.

3.2. Tangent Space, Complex Tangent Space, and Isotropy Subgroup
of a Generic Orbit Lying in �X0

In this section, we calculate the tangent space and the complex tangent
space to a generic orbit in the invariant subset �X0 associated to the fun-
damental Cartan subset A = exp J	. Fix x̄0 ∈ �A for some x0 = eJH0 ∈ A.
Denote by S the G-orbit of x̄0. The tangent space TSx̄0 to S at x̄0 is gener-
ated by the vectors X∗�x̄0� for X ∈ �. By Lemma 3.1, the vectors X∗�x̄0�
are obtained by computing the projection

>x0
� � −→ Adx0�

�
 (3.2)

Let 1	 be the restricted root system of � with respect to 	 and let

� = �0 ⊕ ⊕
α∈1	

�		 �0 = Z��	� = �⊕ 		 � = Z��	�

be the corresponding root decomposition. Since θ�α = �−α, consider the
θ-stable subspace of �

��α� �= �α ⊕ �−α	 α ∈ 1+
	 


For Zα ∈ �α, consider the two-dimensional subspace of ��α�
Z�α� �= span��Zα	 θZα�


If Zα runs through a basis of �α, one has

��α� = ⊕
Zα

Z�α�


Each Z�α� is θ-stable, with Cartan decomposition Z�α� = Z�α�� ⊕ Z�α��,
and a θ-invariant basis is given by

�Kα �= Zα + θZα	 Pα �= Zα − θZα�
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Denote by Z�α�� ⊂ �� the complexification of Z�α�. Define
Eα �= Adx0Kα = cosα�H0�Kα + sinα�H0�JPα	
Fα �= Adx0Pα = cosα�H0�Pα + sinα�H0�JKα


(3.3)

Then

�Eα	 JEα	 Fα	 JFα�

is a real basis of Adx0Z�α�� compatible with the decomposition �� =
Adx0 �

� ⊕Adx0��.
In the next proposition, we explicitly compute the map (3.2). For sim-

plicity, we write X∗ for X∗�x̄0�.
Proposition 3.2. (i) If X ∈ �, then X∗ = 0.
(ii) If X ∈ 	, then X∗ = X.

(iii) If Kα	 Pα ∈ Z�α�, then

K∗
α = − sinα�H0�JFα	 P∗

α = cosα�H0�Fα
 (3.4)

Proof. Statements (i) and (ii) follow directly from the fact that � ⊂
Adx0 �

� and 	 ⊂ Adx0�
�. To prove statement (iii), observe that relations

(3.3) imply that

Kα = − sinα�H0�JFα + cosα�H0�Eα and

Pα = cosα�H0�Fα − sinα�H0�JEα


Therefore K∗
α = − sinα�H0�JFα and P∗

α = cosα�H0�Fα, as requested.
Define

� �= ⊕
α∈1+

	

��α�

and consider the map

∗� 	 ⊕ � −→ 	 ⊕ ⊕
α	Zα

Adx0Z�α��� 	 X �−→ X∗�x̄0�
 (3.5)

Proposition 3.3. The map (3.5) is an isomorphism if and only if x0 sat-
isfies the condition

α�H0� �≡ 0 modπ/2	 ∀α ∈ 1α
 (3.6)
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Proof. By Proposition 3.2, the map (3.5) is the identity on 	. Moreover,
on each subspace Z�α� ⊂ ��α� the restriction of the map ∗

∗�Z�α�� Z�α� −→ Adx0Z�α��� 	
with respect to the real bases �Kα	 Pα� and �Fα	 JFα�, is given by the matrix

Mα =
(

0 − sinα�H0�
cosα�H0� 0

)



Since, for each root α, one has that detMα = sinα�H0� · cosα�H0� �= 0 if
and only if α�H0� �≡ 0 modπ/2, the statement follows.
Denote by Gx̄0

the isotropy subgroup of x̄0 in G, by �x̄0 and ��x̄0 the
isotropy subalgebras of x̄0 in � and ��, respectively. In the next proposition,
we determine the orbit type of the generic orbits in �X0.
Proposition 3.4. Let x0 = eJH0 ∈ exp J	. The point x̄0 ∈ G�/K� lies on

a generic G-orbit if and only if the map (3.5) is an isomorphism. In this case,
the isotropy subgroup of x̄0 is given by the centralizer of 	 in K

Gx̄0
= ZK�	�


Proof. At Lie algebra level, we have

�x̄0 = � ∩Adx0 �� = � ∩Adx0 � ⊕ � ∩ JAdx0 �
 (3.7)

Since

Adx0 � = �⊕ ⊕
α	Zα

Adx0Z�α� and

Adx0Kα = cosα�H0�Kα + sinα�H0�JPα	
the intersection (3.7) has minimal dimension when

� ∩Adx0 � = ���	� and � ∩ JAdx0 � = �0�

This happens when (3.6) holds and the map ∗ in (3.5) is an isomorphism.
In this case, �x̄0 = � ∩Adx0 �� = ���	� and Gx̄0

= ZK�	�.
Remark 3.5. (i) The argument of Proposition 3.4 also shows the fol-

lowing facts:

• The isotropy subgroup Gx̄0
is compact whenever

α�H0� �≡ π/2 mod π	 ∀α ∈ 1	
 (3.8)

It was shown in [AG] that conditions (3.8) define precisely the subset of
�X0 where the G-action is proper. Indeed, if α�H0� ≡ π/2 mod π for some
root α ∈ 1	, the isotropy subgroup Gx̄0

is noncompact.
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• The isotropy subgroup Gx̄0
is maximal if

α�H0� ≡ 0 mod π/2	 ∀α ∈ 1	


In this case, the G-orbit of x̄0 is minimal and by Remark 2.13 is a semisim-
ple symmetric space, embedded in G�/K� as a totally real submanifold.
Two points x̄0 and x̄1 sit on a minimal orbit of the same type if and only
if α�H0 −H1� ≡ 0 mod π	 ∀α ∈ 1	. In particular, the G-orbit of x̄0 is of
type G/K whenever

α�H0� ≡ 0 mod π	 ∀α ∈ 1	


(ii) The set of generic orbits in �X0 is parametrized by the complement
in 	 of the set of hyperplanes⋃

α∈1	

�H ∈ 	 � α�H� ≡ 0 modπ/2�	

modulo the action of the Weyl group WK×K�A�. Generic orbits in �X0 form
an open dense subset and they are all of the same type.

The next remark relates points on generic orbits in �A with regular
semisimple elements G�

rs	 σ	 τ in G
� (cf. Definition 2.2 and [Ma1]).

Remark 3.6. Let x0 = eJH0 be a point in exp J	. Then x̄0 sits on a
generic orbit if and only if x0 ∈ G�

rs	 σ	 τ.

Proof. By Definition 2.2, a point x0 belongs to G�
rs	 σ	 τ if and only if the

intersection ����−σ ∩ �g��−τx0 = J� ∩Adx0�� is abelian. Since
Adx0�

� = 	� ⊕ ⊕
α	Zα

Adx0Z�α���
and

Adx0Pα = cosα�H0�Pα + sinα�H0�JKα	 Pα ∈ Z�α��	
the intersection J� ∩ Adx0�� is abelian if and only if it coincides with J	.
This happens if and only if condition (3.6) holds, and the statement follows
by Proposition 3.4.

Corollary 3.7. The tangent space and the complex tangent space to a
generic orbit S at x̄0 are given by

TSx̄0 = 	 ⊕ ⊕
α	Zα

Adx0Z�α��� and T�Sx̄0 =
⊕
α	Zα

Adx0Z�α��� 	

where Zα runs through a basis of �α for α ∈ 1+
	 . The orbit S is also generic

as a CR-manifold (cf. Definition 1.1).

Remark 3.8. Later on, in the computation of the Levi form of generic
orbits (cf. Lemma 4.3 and Proposition 5.4), we need the inverses of relations
(3.4), namely

�∗�−1Fα = 1
cosα�H0�

Pα and �∗�−1JFα = −1
sinα�H0�

Kα
 (3.9)
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3.3. Tangent Space, Complex Tangent Space, and Isotropy Subgroup
of a Generic Orbit beyond �X0

In this section, we consider the generic orbits outside �X0 in G�/K�,
namely the orbits intersecting a standard Cartan subset �C other than the
fundamental one, where C = exp J� · p is a standard Cartan subset with
� �= 	.
Let p = eJA0 ∈ exp J	 be a base point for C. Let τp be the associated

involution of �� and

�� = � ⊕ ��

the corresponding decomposition, where � = Adp�� and �� = Adp��.
Denote by H� = AdpK� the isotropy subgroup of p̄ ∈ G�/K� in G�.
Then

G�/K� ∼= G�/H�

and the tangent bundle T �G�/K�� can also be identified with G� ×H� ��,
where �� ∼= T �G�/K��p̄.
Fix x0 · p ∈ C, where x0 = eJX0 ∈ exp J�. By Lemma 3.1, the tangent

space TSx0·p and the complex tangent space T�Sx0·p can be determined by
computing the projection

>x0·p� � −→ Adx0�
�

subordinated to the decomposition

�� = Adx0� ⊕Adx0��
 (3.10)

In dealing with generic orbits outside �X0, the restricted root system 1	 is
replaced by the restricted root system 1� determined by the adjoint action
of �� on ��.
Observe that, by Lemma 2.10(iii), the standard Cartan subspace � is con-

tained in � ∩ ��. Since � is θ-stable, it decomposes as � = �� ⊕ ��, where
�� ⊂ � and �� ⊂ �. Since �� and �� are commuting abelian subspaces consist-
ing of semisimple elements, � is an abelian semisimple subspace of �. By
the same argument, its complexification �� is a maximal abelian semisim-
ple subspace of ��. Denote by 1� the set of nonzero roots of �� under the
adjoint action of ��, and let

�� = �0 ⊕ ⊕
α∈1�

�α	 �0 = �� ⊕ ��	 �� = ������ (3.11)

be the corresponding root decomposition of ��. One can verify that 1� is a
root system, possibly nonreduced. One has that dim �α ≥ 1 and τp�α = �−α.



642 laura geatti

Moreover, since �� is σ-stable, there is an induced action of σ on 1� given
by

ᾱ�H� �= α�σ�H�� and σ��α� = �ᾱ


Recall that, by Lemma 2.9, the base point p can be assumed to satisfy
either conditions (2.6) or (2.7). As we already saw in Lemmas 2.10, 2.11,
and 2.14, these conditions have important implications for the behavior of
the involution τp with respect to the conjugation σ .

Lemma 3.9. Let C = exp J� · p be a standard Cartan subset. Assume the
base point p satisfies either conditions (2.6) or (2.7). If α ∈ 1�, then

Adp4 � �α −→ �α

is either the identity (under conditions (2.6)) or a semisimple involution of �α

(under conditions (2.7)). Let �α = �α+ ⊕ �α− be the decomposition of �α into
the corresponding ±1-eigenspaces and consider the map στp� �α → �−ᾱ. Then
στp = τpσ on �α+, while στp = −τpσ on �α−.

Proof. By Lemma 2.10(iii), one has that Adp4 �� = Id�. Hence Adp4�α =
�α. Moreover, by Lemmas 2.11 and 2.14, one has that �Adp4�2 = Id. If Zα ∈
�α+, then Adp4Zα = τp−1τpZα = Zα. Hence στpZα = στp−1Zα = τpσZα.
If Zα ∈ �α−, then Adp4Zα = τp−1τpZα = −Zα. Hence στpZα = −στp−1Zα

= −τpσZα.
For α ∈ 1+

� , define

��α� �= �α ⊕ �ᾱ ⊕ �−α ⊕ �−ᾱ


Since the involution Adp4 is semisimple, there exists a basis of �α consisting
of ±1-eigenvectors. For each such Zα ∈ �α, define

Z�α� �= span��Zα	 σZα	 τpZα	 τpσZα�
and write Z�α�+ or Z�α�− to emphasize that the generator Zα belongs to
�α+ or to �α−, respectively. Both ��α� and Z�α� are Adp4 , τp, and σ-stable.
If Zα runs through a suitable basis of �α consisting of Adp4 -eigenvectors,
then

��α� = ⊕
Zα

Z�α�+ ⊕⊕
Zα

Z�α�−


Let

Z�α� = Z�α�� ⊕ Z�α��� = ReZ�α� ⊕ J ImZ�α� (3.12)

be the decompositions of Z�α� with respect to τp and σ . Observe that on
Z�α�+ the involutions τp and σ commute. Hence there exists a σ-invariant
basis of Z�α�+ which is also τp-stable. On Z�α�−, the involutions τp and σ
anticommute. So there exists a σ-invariant basis of Z�α�−, but it cannot be
τp-stable.
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Remark 3.10. Our next goal is to explicitly exhibit a σ-invariant basis of
each Z�α�+ and Z�α�−. In order to compute the projection (3.10), we also
want such a basis to be as close as possible to a τp-stable one. Subdivide
the roots in 1� into real, imaginary, and complex roots, depending on their
behavior on �:

1r
� = �α ∈ 1� � α�H� ∈ �	H ∈ ��	

1i
� = �α ∈ 1� � α�H� ∈ i�	H ∈ ��	

1c
� = �α ∈ 1� � α�H� /∈ �	 i�	H ∈ ��


We need to distinguish several cases.

(1) If α ∈ 1c
� is a complex root, then each Z�α� is a four-dimensional

space and a τp-stable basis of Z�α� is given by

Hα = Zα + τpZα	 Hᾱ = σZα + τpσZα	

Qα = Zα − τpZα	 Qᾱ = σZα − τpσZα


(i) Assume Zα ∈ �α+. Then σHα = Hᾱ and σQα = Qᾱ. A
σ-invariant basis of Z�α�+, which is also τp-stable, is given by

ReHα = 1
2
�Hα + σHα� = 1

2
�Hα +Hᾱ�	

ImHα = −1
2
J�Hα − σHα� = −1

2
J�Hα −Hᾱ�	

ReQα = 1
2
�Qα + σQα� = 1

2
�Qα +Qᾱ�	

ImQα = −1
2
J�Qα − σQα� = −1

2
J�Qα −Qᾱ�


(3.13)

(ii) Assume Zα ∈ �α−. Then σHα = Qᾱ and σQα = Hᾱ. A
σ-invariant basis of Z�α�− is given by

ReHα = 1
2
�Hα + σHα� = 1

2
�Hα +Qᾱ�	

ImHα = −1
2
J�Hα − σHα� = −1

2
J�Hα −Qᾱ�	

ReQα = 1
2
�Qα + σQα� = 1

2
�Qα +Hᾱ�	

ImQα = −1
2
J�Qα − σQα� = −1

2
J�Qα −Hᾱ�


(3.14)
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(2) If α ∈ 1r
� is a real root, then ��α� = �α ⊕ �−α and both �α and �−α

are σ-stable. Since Adp4 and σ commute (Lemma 2.14(ii)), there exists a
σ-invariant basis �Zα� of �α of Adp4 -eigenvectors. For each such Zα,

Z�α� = span�Zα	 τpZα�

(i) If Zα ∈ �α+, then σQα = Qᾱ = Qα and σHα = Hᾱ = Hα. A

σ-invariant basis of Z�α�+, which is also τp-stable, is given by
�Hα	Qα�


(ii) If Zα ∈ �α−, then σQα = Hᾱ = Hα and σHα = Qᾱ = Qα. A
σ-invariant basis of Z�α�− is given by{

ReHα = 1
2
�Hα +Qα�	 ImHα = −1

2
J�Hα −Qα�

}



(3) If α ∈ 1i
� is an imaginary root, then ��α� = �α ⊕ �−α and

στp� �α → �α is a complex antilinear map preserving both �α+ and �α− (see
Lemma 2.14(ii)).

(i) Observe that �στp�2 = Id on �α+; in other words, στp��α+ is a
conjugation of �α+. In particular, �

α
+ admits a στp-invariant basis, whose

elements satisfy the condition στpZα = Zα. For each such Zα ∈ �α+,

Z�α�+ = span�Zα	 τpZα�

Since σHα = Hᾱ = Hα and σQα = Qᾱ = −Qα, a σ-invariant basis of
Z�α�+, which is also τp-stable, is given by

�ReHα = Hα	 ImQα = −JQα�

(ii) On �α−, one has that �στp�2 = −Id. It follows that �α− is even

dimensional and admits a basis consisting of pairs �Zα	 στpZα�. For each
such Zα ∈ �α−, the space Z�α�− is four dimensional and formulas (3.14)
hold.

For the zero root space, one has

�0 = ��0� = �� ⊕ �� = �0+ ⊕ �0−	 �� = ������

By Lemma 2.10(iii), one has that �� ⊂ �0+ and therefore

�0+ = �� ⊕��
+ and �0− = ��

−


Lemma 3.11. One has that ��
− = �0�. In particular, �� is σ-stable.

Proof. Let M ∈ ��
−. Since τp�σ�M�� = −σ�τp�M�� = −σ�M�, one

has that σ�M� ∈ ��. On the other hand, �� is σ-stable and consequently
M = σ�σ�M�� ∈ �� ∩ �� = �0�. It follows that ��

− = �0� and �� = ��
+.

This means that τp and σ commute on ��. In particular, �� is σ-stable.
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Consider the decomposition of �:

� = ����� ⊕
⊕
α	Zα

Z�α� ∩ �	 ����� = � ∩�� ⊕ �


Then a basis of � compatible with the above decomposition can be obtained
from a σ-invariant basis of �0, compatible with the τp-decomposition �0 =
�� ⊕ ��, and a σ-invariant basis of each subspace Z�α�.
For α ∈ 1+

� and Zα ∈ �α, define

Eα �= Adx0Hα = cosα�X0�Hα + sinα�X0�JQα	

Fα �= Adx0Qα = cosα�X0�Qα + sinα�X0�JHα

(3.15)

Then

�Eα	 JEα	Eᾱ	 JEᾱ	 Fα	 JFα	 Fᾱ	 JFᾱ�

is a real basis of Adx0Z�α� compatible with the decomposition (3.10).
For real or imaginary roots, some of the above vectors may coincide (cf.
Remark 3.10).
For simplicity, we write

cosα�X0� = A+ iB and sinα�X0� = C + iD (3.16)

for A = Re cosα�X0�	 B = Im cosα�X0�	 C = Re sinα�X0�	 D = Im
sinα�X0�. The next proposition is an analogue of Proposition 3.2 and com-
putes the vector fields induced by the G-action on S at a reference point.
It is obtained by analyzing the restrictions of the map ∗ to the different
components of �. We write X∗ for X�x0 · p�.
Proposition 3.12. (i) If X ∈ �� ∩ �, then X∗ = 0.
(ii) If X ∈ �, then X∗ = X.

(iii) If Zα ∈ �α+ and �ReHα	 ImHα	ReQα	 ImQα� is the basis of
Z�α�+ ∩ � given in (3.13), then

ReH∗
α = 1

2
�DFα − CJFα −DFᾱ − CJFᾱ�	

ImH∗
α = 1

2
�−CFα −DJFα + CFᾱ −DJFᾱ�	

ReQ∗
α = 1

2
�AFα + BJFα +AFᾱ − BJFᾱ�	

ImQ∗
α = 1

2
�BFα −AJFα + BFᾱ +AJFᾱ�


(3.17)
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(iv) If Zα ∈ �α− and �ReHα	 ImHα	ReQα	 ImQα� is the basis of
Z�α�− ∩ � given in (3.14), then

ReH∗
α = 1

2
�DFα − CJFα +AFᾱ − BJFᾱ�	

ImH∗
α = 1

2
�−CFα −DJFα + BFᾱ +AJFᾱ�	

ReQ∗
α = 1

2
�AFα + BJFα −DFᾱ − CJFᾱ�	

ImQ∗
α = 1

2
�BFα −AJFα + CFᾱ −DJFᾱ�


(3.18)

Proof. The proof consists of long but straightforward computations and
it is omitted.

Remark 3.13. For simplicity, we have stated the result for four-
dimensional spaces Z�α�. Formulas (3.17) and (3.18) simplify in the
cases of real and imaginary roots discussed in Remark 3.10 (2)(i), (2)(ii),
(3)(i) and respectively become

H∗
α = ReH∗

α = − sinα�X0�JFα	 Q∗
α = ReQ∗

α = cosα�X0�Fα	

ReH∗
α = cosα�X0�

2
Fα − sinα�X0�

2
JFα	

ImH∗
α = − sinα�X0�

2
Fα + cosα�X0�

2
JFα	

ReH∗
α = − sinα�X0�JFα	 ImQ∗

α = − cosα�X0�JFα

Define

� �= ⊕
α	Zα

Z�α� ∩ �

and consider the map

∗� � ⊕ � −→ � ⊕ ⊕
α	Zα

Adx0Z�α���	 X �−→ X∗�x0 · p�
 (3.19)

Proposition 3.14. (i) If the base point p satisfies conditions (2.6), the
map (3.19) is an isomorphism if and only if x0 satisfies the conditions

sin 2α�X0� �= 0	 ∀α ∈ 1�


(ii) If the base point p satisfies conditions (2.7), the map (3.19) is an
isomorphism if and only if x0 satisfies the conditions

sin 2α�X0� �= 0	 ∀α ∈ 1� such that �
α
− = �0�	

cos 2α�X0� �= 0	 ∀α ∈ 1� such that �
α
+ = �0�	

cos 2α�X0� sin 2α�X0� �= 0	 ∀α ∈ 1� such that �
α
+	 �

α
− �= �0�
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Proof. By Proposition 3.12, the map ∗ is the identity on �. On each
four-dimensional subspace subspace Z�α� ∩ � the restriction

∗�Z�α� ∩ �� Z�α� ∩ � −→ Adx0Z�α���	
with respect to the real bases

�ReHα	 ImHα	ReQα	 ImQα� and �Fα	 JFα	 Fᾱ	 JFᾱ�	
is given by one of the following matrices

M+ =


D −C −D −C
−C −D C −D
A B A −B
B −A B A

 	 Zα ∈ �α+	

M− =


D −C A −B
−C −D B A
A B −D −C
B −A C −D

 	 Zα ∈ �α−


Computing the determinants of these matrices and substituting relations
(3.16), one gets

detM+ = 1
4
� sin 2α�X0��2 and detM− = � cos 2α�X0��2


The same formulas hold as well in the special cases of real and imaginary
roots discussed in Remarks 3.10 and 3.13. Hence the statement follows.

Proposition 3.15. Let x0 · p = eJX0 · p ∈ exp J� · p. The point x0 · p ∈
G�/K� lies on a generic G-orbit if and only if the map (3.19) is an isomor-
phism. Then the isotropy subgroup is given by

Gx0·p = G ∩ ZH�����	 where H� = AdpK�


Proof. The isotropy subalgebra of x0 · p in � is given by

�x0·p = � ∩Adx0� = Ker�∗� � −→ Adx0�
��	

where

Adx0
� = ������ ⊕

⊕
α	Zα

Adx0Z�α�� 


By the results of Proposition 3.12 and 3.14, the kernel of the map ∗ has
minimal dimension when the map (3.19) is an isomorphism. In this case,
the isotropy subalgebra is given by �x0·p = � ∩ ������ and the isotropy
subgroup is given by Gx0·p = G ∩ ZH�����.
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Remark 3.16. (i) By the above proposition, closed generic orbits inter-
secting �C are all of the same type. By Lemma 3.11, the group ZH����� is
σ-stable and dimG ∩ ZH����� = dimZK�	�, as expected. Closed generic
orbits in G · �C form an open sense subset of G · �C. By proposition 3.14(i)–
(ii), they are parametrized by the complement in � of the set⋃

α∈1r�
�α−=�0�

�α�X� ≡ 0 mod π/2� ⋃
α∈1r�

�α+=�0�

�α�X� ≡ π/4 mod π/2�

⋃
α∈1r�

�α−	 �
α
+�=�0�

�α�X� ≡ 0 mod π/4� ⋃
α∈1i�

�α+�=�0�

�α�X� = 0�

⋃
α∈1c�

�α−=�0�

{{
Imα�X� = 0
Reα�X� ≡ 0 mod π/2

}

⋃
α∈1c�

�α+=�0�

{{
Imα�X� = 0
Reα�X� ≡ π/4 mod π/2

}

⋃
α∈1c�

�α−	 �
α
+�=�0�

{{
Imα�X� = 0
Reα�X� ≡ 0 mod π/4

}
	

modulo the action of the Weyl group. Observe that only the hyperplanes
in � defined corresponding to real or imaginary roots in 1�, disconnect the
above set.

(ii) A point x0 · p ∈ �C sits on a generic orbit if and only if x0 · p ∈
G�
rs	 σ	 τ (cf. Definition 2.2). In this case,

����−σ ∩ ����−τx0p = J� ∩Adx0�� = J�


The proof is similar to that of Remark 3.6 and follows from Proposition 3.14
and the decomposition

Adx0�
� = �� ⊕ ⊕

α	Zα

Adx0Z�α��� 


(iii) Properness of action. There are cases when the G-action is proper
also on some subset of G�/K� outside �X0 (cf. Remark 3.5). This can be
checked directly in Example 6.8. In general, this happens when G is a
Hermitian Lie group andG�/K� is also the complexification of a compactly
causal symmetric space of G (cf. Section 6).
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Corollary 3.17. The tangent space and the complex tangent space to a
generic orbit S at x0 · p are given by

TSx0·p = � ⊕ ⊕
α	Zα

Adx0Z�α��� and T�Sx0·p = ⊕
α	Zα

Adx0Z�α��� 


The orbit S is also generic as a CR-manifold (cf. Definition 1.1).

Remark 3.18. Later on, in the computation of the Levi form of a generic
orbit S (cf. Lemma 4.3 and Propositions 5.14–5.16), we need the inverses
of relations (3.17) and (3.18), namely for Zα ∈ �α+,

�∗�−1Fα = 1
2

(
1

cosα
Qα + 1

cos ᾱ
Qᾱ + 1

sinα
JHα − 1

sin ᾱ
JHᾱ

)
	

�∗�−1Fᾱ = 1
2

(
1

cosα
Qα + 1

cos ᾱ
Qᾱ − 1

sinα
JHα + 1

sin ᾱ
JHᾱ

)
	

�∗�−1JFα = 1
2

(
1

cosα
JQα − 1

cos ᾱ
JQᾱ − 1

sinα
Hα − 1

sin ᾱ
Hᾱ

)
	

�∗�−1JFᾱ = 1
2

(
− 1
cosα

JQα + 1
cos ᾱ

JQᾱ − 1
sinα

Hα − 1
sin ᾱ

Hᾱ

)
	

(3.20)

and for Zα ∈ �α−,

�∗�−1Fα = cosα
cos 2α

Qα + sin ᾱ
cos 2ᾱ

JQᾱ − sinα
cos 2α

JHα + cos ᾱ
cos 2ᾱ

Hᾱ	

�∗�−1Fᾱ = sinα
cos 2α

JQα + cos ᾱ
cos 2ᾱ

Qᾱ + cosα
cos 2α

Hα − sin ᾱ
cos 2ᾱ

JHᾱ	

�∗�−1JFα = cosα
cos 2α

JQα + sin ᾱ
cos 2ᾱ

Qᾱ + sinα
cos 2α

Hα − cos ᾱ
cos 2ᾱ

JHᾱ	

�∗�−1JFᾱ = sinα
cos 2α

Qα + cos ᾱ
cos 2ᾱ

JQᾱ − cosα
cos 2α

JHα + sin ᾱ
cos 2ᾱ

Hᾱ


(3.21)

Let α ∈ 1r
� . For Zα ∈ �α+, satisfying σZα = Zα, one has

�∗�−1Fα = 1
cosα

Qα	 �∗�−1JFα = − 1
sinα

Hα


For Zα ∈ �α−, satisfying σZα = Zα, one has

�∗�−1Fα = cosαQα + sinα JQα

cos 2α
+ cosαHα − sinα JHα

cos 2α
	

�∗�−1JFα = sinαQα + cosα JQα

cos 2α
Qα + sinαHα − cosα JHα

cos 2α



Let α ∈ 1i
�. If Zα ∈ �α+ satisfies στpZα = Zα, then

�∗�−1Fα = 1
sinα

JHα	 �∗�−1JFα = 1
cosα

JQα
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If Zα ∈ �α−, then Z�α� is four dimensional and formulas (3.21) become
�∗�−1Fα = cosα

cos 2α
�Qα +Hᾱ� −

sinα
cos 2α

J�Hα +Qᾱ�	

�∗�−1Fᾱ = sinα
cos 2α

J�Qα +Hᾱ� +
cosα
cos 2α

�Hα +Qᾱ�	

�∗�−1JFα = cosα
cos 2α

J�Qα −Hᾱ� +
sinα
cos 2α

�Hα −Qᾱ�	

�∗�−1JFᾱ = sinα
cos 2α

�Qα −Hᾱ� +
cos ᾱ
cos 2ᾱ

J�Qᾱ −Hα�


4. THE LEVI FORM OF A GENERIC ORBIT:
GENERAL FORMULAS

In this section, we establish the general formulas for the Levi form
of a generic orbit S at a base point x̄0. Given arbitrary tangent vectors
Z	W ∈T�Sx̄0 , it is necessary to extend them to local sections of the sub-
bundle T�S of the tangent bundle TS and to compute their brackets at x̄0
(see Definition 1.2).

4.1. Extending Vector Fields

Let C = exp J� · p be a Cartan subset. In particular, if p = e and � = 	,
then C is the fundamental Cartan subset. Let x0 ·p = exp JX0 ·p be a point
in C. Let x0 · p be the corresponding point in G�/K� and S the G-orbit
of x0 · p. Let �� = � ⊕ �� be the decomposition of �� induced by the
involution τp. The complex tangent space to S at x0 · p is given by

T��S�x0·p = ⊕
α	Zα

Adx0Z�α��� ⊂ Adx0��


Let Z ∈ T�Sx0·p. We need to extend Z to a local vector field in a neigh-
borhood of x0 · p in S. If the G-orbit of x0 · p is generic, a neighborhood
Ux0·p of x0 · p in S can be parametrized by a suitable neighborhood V0 of
zero in

�⊕�⊂�	 � �= ⊕
α	Zα

Z�α�∩�	 Z�α� = span�ReHα	ImHα	ReQα	ImQα�

(cf. Propositions 3.3 and 3.14), via the map

V0 −→ Ux0·p = expV0 · x0 · p	 X �−→ x̄ = expX · x0 · p

Here the vector X = X�x̄� ∈ V0 and the group element γ = γ�x̄� =
expX�x̄� ∈ G, satisfying

x̄ = expX · x0 · p = γ · x0 · p	
are uniquely determined by the point x̄ ∈ Ux0·p.
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Lemma 4.1. A vector field on Ux0·p extending Z can be defined by

Ẑ�x̄� �= �dLγ�x0·pZ = AdγZ

Proof. The above extension is well defined. If x̄ ∈ Ux0·p, then Ẑ�x̄� is a

local section of T�Sx̄. In fact,

�dLγ�x0·p� TSx0·p −→ TSx̄ and �dLγ�x0·p� T�Sx0·p −→ T�Sx


It follows that Ẑ�x̄� ∈ T�Sx̄.

4.2. The Calculation of the Brackets

Let Z	W ∈ T�Sx0·p and let Ẑ	 Ŵ be the extensions defined in Lemma 4.1.
In order to calculate the brackets �Ẑ	 Ŵ �, choose a complex basis of ��
compatible with the decomposition

�� = � ⊕ ��	

namely {�Hj�	 �Ml�	 �Ei
α�	 �Fi

α�
}
	

where �Hj�j=1	


	dim �� is an orthonormal basis of �� = �H ∈ �� �
α�H� ∈ �	 ∀α ∈ 1��	 �Ml�l=1	


	dim �� is a basis of ��, and, for
α ∈ 1+

� , �Fi
α�i=1	


	dim �α and �Ei

α�i=1	


	dim �α are bases of Adx0��α��� and
Adx0��α�� , respectively (cf. Sections 3.2 and 3.3). Write

Ẑ�x̄� = ml�x̄�Ml + hj�x̄�Hj + eiα�x̄�Ei
α + f iα�x̄�Fi

α

and

Ŵ �x̄� = m′
l�x̄�Ml + h′

j�x̄�Hj + �eiα�′�x̄�Ei
α + �f iα�′�x̄�Fi

α	

with the summation convention. When x̄ varies in a neighborhood of
x0 · p in S, the vector fields Ẑ	 Ŵ are vectors in �� whose coefficients are
complex-valued functions of x̄. Since Ẑ�x0 · p�	 Ŵ �x0 · p� ∈ span�Fi

α�i	 α,
the coefficients satisfy the relations

mi�x0 ·p�=m′
i�x0 ·p�=hj�x0 ·p�=h′

j�x0 ·p�= eα�x0 ·p� = e′α�x0 ·p�=0

Calculating the brackets by the formula �fX	 gY � = fg�X	Y � + fX�g�Y −
gY �f �X and observing that brackets of tangent vector fields are tangent
vector fields, one obtains

�Ẑ	 Ŵ �x0·p = ∑
j

(
Z�h′

j� −W �hj�
)
Hj mod T�Sx0·p


It remains to calculate the first derivatives Z�h′
j� and W �hj� of the coeffi-

cient functions hj	 h
′
j with respect to the tangent vectors Z and W at x0 · p.

Let B denote the Killing form of ��.
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Lemma 4.2. One has

Z�h′
j� = B���∗�−1Z	W �	Hj�	 W �hj� = B���∗�−1W	Z�	Hj�	

where �∗�−1� TSx0·p → � ⊕ � is the inverse of the map defined in (3.5) and
(3.19).

Proof. Consider the curve c�t� �= exp t�∗�−1Z · x0 · p. Since �∗�−1Z
belongs to �⊕ � ⊂ �, the curve c�t� is all contained in the G-orbit of x0 · p,
has initial point c�0� = x0 · p, and has initial tangent vector c′�0� = Z. In
this way,

Z�h′
j� = d

dt

∣∣∣∣
t=0

h′
j

(
exp

(
t�∗�−1Z) · x0 · p)
 (4.1)

The functions h′
j�x̄� can be expressed as
h′
j�x̄� = B�Ŵ �x̄�	Hj� = B�Adγ�x̄�W	Hj�


If x̄ = exp(�∗�−1Z) · x0 · p for some Z ∈ T�Sx0·p, then

γ
(
exp

(�∗�−1Z) · x0 · p) �= exp(�∗�−1Z)

If follows that

Z�h′
j� = d

dt

∣∣∣∣
t=0

h′
j

(
exp

(
t�∗�−1Z) · x0 · p) = B

(
d

dt

∣∣∣∣
t=0
Adexp��∗�−1tZ�W	Hj

)
= B���∗�−1Z	W �	Hj�


The second identity is obtained in a similar way.
The following bracket formulas are now immediate:

�Ẑ	 Ŵ �x0 ·p =��∗�−1Z	W � − ��∗�−1W	Z�
mod T�Sx0 ·p
�Ẑ	 ĴW �x0 ·p =��∗�−1Z	 JW � − ��∗�−1JW	Z�

(4.2)

4.3. The Levi Form: General Formulas

Recall that

T�Sx0 ·p = ⊕
α	Zα

Adx0Z�α���

(cf. Sections 3.2 and 3.3) and observe that the map X ⊗ 1+ Y ⊗ i �→ X +
JY provides the identification

�TSx0 ·p��/�T�Sx0 ·p�� ∼= �� = � ⊕ J�


In particular, the quadratic Levi form L�Z	Z� is valued in � and is given by

L�Z	Z� = −1
2
�Ẑ	 ĴZ�x0 mod T�Sx0 ·p


Denote by �∗�−1 the inverse of the map ∗ defined in (3.5) and (3.19).
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Lemma 4.3. Let Z	W ∈ T�Sx0 ·p. Then

L�Z	W � = 1
2
[�∗�−1JW	Z]− i

2
[�∗�−1W	Z] mod T�Sx0 ·p	

L�Z	Z� = 1
2
[�∗�−1JZ	Z]− i

2
[�∗�−1Z	Z] mod T�Sx0 ·p


Proof. The above formulas follow directly from the bracket formulas
(4.2).

5. CALCULATION OF THE LEVI FORM AND THE LEVI
CONE OF A GENERIC ORBIT

5.1. The Calculation in �X0
In this section, we compute the Levi form and the Levi cone of the

generic orbits intersecting �A, where A �= exp J	 is the fundamental Cartan
subset. We resume the notation introduced in Section 3.2
Recall that by Corollary 3.7 the complex tangent space to a generic orbit

S at a base point x̄0 ∈ �A, where x0 = eJH0 , H0 ∈ 	, is given by

T�Sx̄0 =
⊕
α∈1+

	

Adx0��α��� 	 where Adx0��α��� = ⊕
Zα

Adx0Z�α��� (5.1)

and Zα runs through a basis of �α for every α ∈ 1+
	 .

In order to compute the Levi form by the formulas developed in Section
4, we explicitly construct a basis of T�Sx̄0 where the calculations turn out
particularly simple. Such a basis depends on the choice of a convenient
basis �α = �Zα� for each restricted root space �α ⊂ �.
Extend 	 to a θ-invariant Cartan subalgebra  = � ⊕ 	 of �, with � ⊂ �.

Let 1 be the root system of �� with respect to � and let

�� = � ⊕ ⊕
λ∈1

�λ

be the corresponding root decomposition. Since  is both θ- and σ-invariant,
there are induced actions of θ and σ on 1, defined by

θλ�H� �= λ�θ�H��	 λ̄�H� �= λ�σ�H��	 H ∈ �


One has that
θλ̄ = θλ and θλ̄ = −λ


Observe that, if λ is a root in 1, then λ+ θλ is not a root (cf. [He, p. 530]).
For α ∈ 1	, define

1α �= �λ ∈ 1�λ�	 = α�
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Then

λ ∈ 1α %⇒ λ̄ ∈ 1α	 θλ	 θλ̄ ∈ 1−α


If 0 �= α ∈ 1	, the complexified restricted root space ��α�� decomposes as

��α�� = ⊕
λ∈1α
λ�=λ̄

�λ ⊕ �λ̄ or ��α�� = ⊕
λ∈1α
λ�=λ̄

�λ ⊕ �λ̄ ⊕ �µ	 µ ∈ 1α	 µ = µ̄	

where the root spaces on the right-hand side are ordinary root spaces in
��. (The roots λ ∈ 1α are chosen so that each summand appears precisely
once in the above decomposition.) For the complexified restricted zero-
root space, one has ��0�� = �� ⊕ 	�, where �� = ����	��. Observe that
�� is a reductive subalgebra containing the ordinary root spaces �λ, with
λ�	� ≡ 0.
Starting from the above decomposition, for each α ∈ 1	, we construct a

basis �α of the restricted root space �α ⊂ �. In order to do this, fix a set
of root vectors �Wλ�λ∈1, with Wλ ∈ �λ, normalized as follows

B�Wλ	W−λ� = 1	 B�Wλ	Wµ� = 0	 λ+ µ �= 0


(Here B denotes the Killing form of ��.) In addition, if λ = λ̄ is a real
root, we also assume σWλ = Wλ. Then

�α =
{
�Wλ + σWλ	−J�Wλ − σWλ�� λ∈1α

λ�=λ̄
	 �Wλ� λ∈1α

λ=λ̄

}
(5.2)

is a σ-invariant basis of ��α�� ⊂ �� and hence a basis of �α ⊂ �.
For λ ∈ 1, let hλ ∈ � = �H ∈ � � λ�H� ∈ �	∀λ ∈ 1� be the vector

defined by

λ�H� = B�H	hλ�	 H ∈ �	

and for α ∈ 1	, let hα ∈ 	 be the vector defined by

α�H� = B�H	hα�	 H ∈ 	�


Then hα = 1
2 �hλ − θhλ�.

Lemma 5.1. Let α ∈ 1	 and let �α be the basis of �α defined in (5.2).
The following relations hold:

(i) Let Zα ∈ �α. Then �Zα	 θZα� = B�Zα	 θZα�hα ∈ 	, where
B�Zα	 θZα� is a negative real constant.

(ii) For Zα �= Z′
α ∈ �α, one has that �Zα	 θZ

′
α� ∈ � �.
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Proof. (i) If Zα ∈ �α, then θZα ∈ �−α and �Zα	 θZα� ∈ �0 = ���	�. On
the other hand, θ�Zα	 θZα� = −�Zα	 θZα�. Hence �Zα	 θZα� ∈ � ∩ ���	� =
	. For all H ∈ 	, one has

B�H	 �Zα	 θZα�� = B�H	B�Zα	 θZα�hα�	
and by the nondegeneracy of B�	 × 	, it follows that �Zα	 θZα� = B�Zα,
θZα�hα. Since B�X	θY � is negative definite on �, the statement follows.

(ii) Let λ	µ ∈ 1α, with λ �= µ	 µ̄. Calculating

�Wλ ± σWλ	 θ�Wµ ± σWµ��
= �Wλ	 θWµ� ± �Wλ	 θσWµ� ± �σWλ	 θWµ� ± �σWλ	 θσWµ�	

one has that all the brackets on the right-hand side belong to root spaces
�γ, where γ ∈ 1 is a nonzero root which vanishes identically on 	�. Such
root spaces are contained in �� and the statement follows.

Lemma 5.2. (i) Let α �= β ∈ 1+
	 . Let Zα ∈ �α and Zβ ∈ �β. Then

B
(�Zα ± θZα	Zβ ± θZβ�	 	�

) = 0

(ii) Let Zα	Z

′
α be distinct elements of the basis �α of �α defined in

(5.2). Then

�Zα − θZα	Zα + θZα� = 2�Zα	 θZα�	 B
(�Zα ± θZα	Z

′
α ± θZ′

α�	 	�
) = 0


Proof. The lemma follows by direct computations and Lemma 5.1(ii).

Corollary 5.3. Let α ∈ 1	 and let �α be the basis of �α defined in (5.2).
Only the brackets of the form �Zα − θZα	Zα + θZα� give some contribution
in the 	 direction.

For α ∈ 1+
	 , fix the basis �α of �α defined in (5.2). Recall from Section

3.2 that to each Zα ∈ �α there are associated Kα ∈ Z�α��, Pα ∈ Z�α��,
and Fα = Adx0Pα in Adx0Z�α��� and recall the decomposition (5.1) of the
complex tangent space T�Sx̄0 . We calculate the Levi form with respect to
the basis ��Fα�Zα∈�α�α∈1+

	
of T�Sx̄0 .

Proposition 5.4. For the Levi form one has:

�a� L�Fα	 Fα� = 2
sin 2α�H0�

�Zα	 θZα� =
2B�Zα	 θZα�
sin 2α�H0�

hα

for α ∈ 1+
	 .

�b� L�Fα	 F ′
α� = 0 for all Fα	 �= F ′

α	 when dim �α > 1


�c� L�Fα	 Fβ� = 0 for all α �= β ∈ 1+
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Proof. We compute the Levi form by the formulas of Lemma 4.3
together with the identities of Remark 3.8, Lemmas 5.1 and 5.2, and
Corollary 5.3. For example, writing α for α�H0� and computing modulo
T�Sx̄0 , we have

L�Fα	 Fα� = 1
2
[
ĴFα	 F̂α

]
x0

= 1
2
([�∗�−1JFα	 Fα]− [�∗�−1Fα	 JFα])

= 1
2

([
1
sinα

Kα	 cosαPα + sinαJKα

]
−
[
1

cosα
Pα	 cosαJPα − sinαKα

])
= 1
2

(
sinα
cosα

+ cosα
sinα

)
�Pα	Kα�

= 1
sin 2α

�Pα	Kα� =
2

sin 2α
�Zα	 θZα� =

2B�Zα	 θZα�
sin 2α

hα


The other identities follow in a similar way.

We conclude this section by computing the Levi cone of the generic orbits
in �X0.

Remark 5.5. Denote by >	 = �α1	 
 
 
 	 αr� the set of simple roots in 1	.
Consider the intersection points of the hyperplanes⋂

αi∈>	

�H ∈ 	 � αi�H� = miπ�	 mi ∈ 
	

and call them vertices. To each such vertex V , we can associate a cell

ωV = �H ∈ 	� �αi�H� − αi�V �� < π/2�


When V = O ∈ 	, we denote

ω0 = �H ∈ 	� �αi�H�� < π/2	∀αi ∈ >	�


By Remark 3.5(ii), the union of such cells contains the parameter space of
generic orbits in �X0, and the union of the closures of such cells exhausts
the whole 	. By Remark 3.5(i), the point v̄ ∈ G�/K� corresponding to a
vertex V sits on a minimal orbit of type G/K. By Remark 3.5(ii), there are
finitely many G-orbits of type G/K in �X0.
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Definition. Given a set of vectors �X1	 
 
 
 	Xk� in a real vector space
W , the cone generated by �X1	 
 
 
 	Xk� is by definition the set of lin-
ear combinations with nonnegative coefficients of �X1	 
 
 
 	Xk� and it is
denoted by

cone�X1	 
 
 
 	Xk�

Proposition 5.6. Let S be a generic G-orbit in �X0. Let x̄0 be a base point

of S, where x0 = exp JH0 ∈ exp J	. Assume H0 ∈ ωV0
for some vertex V0 ∈ 	

defined by the conditions αi�V0� ≡ 0 mod π for all αi ∈ >	. Then there are
the following possibilities.

(i) If �α�H0� − α�V0�� < π/2 for all α ∈ 1	, then the Levi cone �x̄0
�S�

has nonempty interior and it is sharp.
(ii) If �α�H0� − α�V0�� > π/2 for some α ∈ 1	\>	, then the Levi cone

is given by �x̄0
�S� = 	.

Proof. The proposition follows from the formulas of Proposition 5.4.
Since B�Zα	 θZα� < 0 for all Zα ∈ �α, the Levi cone is given by

�x̄0
�S� = cone

{ −1
sin 2α�H0�

hα

}
α∈1+

	

⊂ 	
 (5.3)

Hence it has nonempty interior. By Remark 5.5, expression (5.3), and
the periodicity of the sin function, it is sufficient to consider H0 ∈ ω0.
Moreover, by Remark 2.6(ii), there is no loss in generality in assuming
0 < αi�H0� < π/2 for all αi ∈ >	.
Then

(i) is obvious.
(ii) Assume α�H0� > π/2 for some α ∈ 1	\>	. We claim that � ·

hαj ⊂ �x̄0
�S� for every simple root αj ∈ >	.

Let J = ∑r
j=1mjαj be the highest root in 1	. Observe that J has all the

coefficients mj ∈ 
>0 and can be obtained from an arbitrary simple root αi
by adding simple roots. Since α�H0� > π/2, also J�H0� > π/2. Then, for
every simple root αi ∈ >	, there exists a root λ = ∑r

j=1 njαj , with coefficient
ni ∈ 
 > 0, such that λ�H0� ∈�π/2	 π� and λ− αj�H0� ∈�0	 π/2�, whenever
λ− αj ∈ 1	. Now fix αi ∈ >	 and λ as above and let αj ∈ >	 be a simple
root such that λ− αj ∈ 1	. Then consider the triplet of roots λ− αj	 αj	 λ.
Since αj�H0�, λ− αj�H0� ∈�π/2�, and λ�H0� ∈�π/2	 π�, by (5.3)

−hλ−αj 	−hαj 	 hλ ∈ �x̄0
�S� and span��hαj 	 hλ� ⊂ �x̄0

�S�

Similarly, if αk ∈ >	 is a simple root such that λ− αj − αk ∈ 1	, consider
the triple of roots λ− αj − αk	 αk	 λ− αj . By the result of the previous step
and by (5.3),

−hλ−αj−αk	−hαk	±hλ−αj ∈ �x̄0
�S� and span ��hλ−αj 	 hαk� ⊂ �x̄0

�S�
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Iterating this argument, one obtains that ±hαi ∈ �x̄0
�S� for every simple

root αk appearing in λ with nonzero coefficient. In particular, this holds
for αi. Since αi was arbitrary, the claim follows. Since 1	 is irreducible, the
proof of the proposition is complete.

5.2. The Calculation beyond �X0
In this section, we compute the Levi form and the Levi cone of the

generic orbits intersecting �C, where C = exp J� · p is a standard Cartan
subset different from the fundamental Cartan subset A. We resume the
notations introduced in Section 3.3. By Corollary 3.17, the complex tangent
space T�Sx0 ·p to a generic orbit S at a base point x0 · p ∈ �C, where x0 =
eJX0 , X0 ∈ �, is given by

T�Sx0 ·p = ⊕
α∈1+

�

Adx0��α���	 where Adx0��α��� = ⊕
Zα

Adx0Z�α��� (5.4)

and Zα runs through a basis of �α ⊂ �� for each α ∈ 1+
� .

As in the previous case (cf. Section 5.1), we explicitly construct a basis of
T�Sx0 ·p where the calculation of the Levi form turns out particularly simple.
This depends on the choice of a convenient basis �α of each restricted root
space �α ⊂ ��.
Recall that, by Lemma 2.9, the base point p of the Cartan subset C =

exp J� · p can be assumed to satisfy either conditions (2.6) or (2.7). As a
consequence, Adp4 is either the identity or an involution of �� commuting
with τp and σ . Also recall that Adp4 preserves each restricted root space
�α and acts as the identity on �0 = �� ⊕ �� (cf. Lemmas 2.14, 3.9, and
3.11).

Lemma 5.7. There exists a Cartan subalgebra �� of ��, extending ��, of
the form

�� = �� ⊕ ��	 �� ⊂ �	

which is stable under Adp4 , τp, &, and σ . In particular, if � = �� ∩ �, then
� = �⊕ � is a θ-stable Cartan subalgebra of �.

Proof. Since τp and & commute (cf. Lemma 2.10(ii)), the subspace �

is &-stable. Since �� and � are &-stable, the complex reductive subalgebra
�� = ������ is &-stable as well. By Lemma 3.11, �� is also σ-stable. Let
�� be a σ and &-stable Cartan subalgebra of ��. Since Adp4 and τp act
on �� as the identity, �� = �� ⊕ �� is a Cartan subalgebra of �� with the
required properties and the corresponding real form � = �⊕ � is a θ-stable
Cartan subalgebra of �.
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Every θ-stable Cartan subalgebra in � = �� ∩ � provides an extension
of � with the required properties. In general, not all θ-stable Cartan subal-
gebras � = �⊕ � obtained as above are conjugate in �, unless � is compact.
In that case, � is compact as well.
Let 1 be the root system of �� with respect to �� and let

�� = �� ⊕ ⊕
λ∈1

�λ

be the corresponding root decomposition. The roots in 1� are restrictions
to �� of the roots in 1. Observe that �� consists of the root spaces �λ,
where λ ∈ 1 is a nonzero root such that λ��� ≡ 0. Since �� is both σ and
τp-stable, there are induced actions of σ and τp on 1 defined by

λ̄�H� �= λ�σ�H��	 τpλ�H� �= λ�τp�H��	 H ∈ ��


Since σ and τp commute on ��, one has that

τpλ = τpλ̄


Observe that, for every root λ ∈ 1,

λ+ τpλ /∈ 1


Since Adp4 acts trivially on ��, it acts as plus or minus the identity on each
root space �λ, λ ∈ 1. Moreover, since Adp4 preserves the Killing form and
commutes with both σ and τp, it acts in the same way on all the root spaces
�±λ, �±λ̄, �±τpλ, and �±τpλ̄.
For α ∈ 1�, define

1α �= �λ ∈ 1 � λ��� = α�

Then

λ ∈ 1α %⇒ −τpλ ∈ 1α

and each restricted root space �α decomposes as

�α = ⊕
λ∈1α

λ�=−τpλ

�λ ⊕ �−τpλ or �α = ⊕
λ∈1α

λ�=−τpλ

�λ ⊕ �−τpλ ⊕ �µ	

µ ∈ 1α	 µ = −τpµ

The root spaces appearing on the right-hand side are ordinary root spaces
in ��. (The roots λ ∈ 1α are chosen so that each summand appears pre-
cisely once in the above decomposition.)
For each restricted root space �α, we use the above decomposition to

construct a basis �α compatible with the decomposition �α = �α+ ⊕ �α−. If
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the root α is either real or imaginary, we also require the elements Zα ∈ �α

to satisfy the properties stated in parts (2) and (3) of Remark 3.10: if α is
real, �α consists of σ-invariant elements; if α is imaginary, �α consists of
στp-invariant elements generating �α+ and of pairs of elements �Zα	 στpZα�
generating �α−.
Fix a set of root vectors �Wλ�λ∈1, with Wλ ∈ �λ, satisfying

B�Wλ	W−λ� = 1	 B�Wλ	Wµ� = 0	 λ+ µ �= 0


Then �Wλ	W−λ� = hλ, where hλ ∈ �� = �h ∈ �� � λ�H� ∈ � ∀λ ∈ 1� is the
element defined by λ�H� = B�H	hλ�, H ∈ ��.
In addition, for every real root λ ∈ 1, the vectors Wλ are assumed to be

σ-invariant, i.e., σ�Wλ� = Wλ, while for every imaginary root λ ∈ 1, the
vectors Wλ are assumed to satisfy

σ�Wλ� = ±W−λ	

depending on whether the real form of the complex three-dimensional σ-
stable subalgebra generated by �hλ	Wλ	W−λ� is isomorphic to ���2	 �� or
to ���2�. Imaginary roots with such properties are called “noncompact”
and “compact,” respectively.
We write �λ = �λ+, or �

λ = �λ−, depending on whether Adp4 acts as plus
or minus the identity on �λ.

Remark 5.8. For each root α ∈ 1�, the basis �α is given as follows.

(1) Let α ∈ 1+
� be a real root.

(i) If λ ∈ 1α is a root satisfying λ �= λ̄ and τpλ �= −λ	 λ̄, then
λ	−τpλ	 λ̄	−τpλ̄ are distinct roots in 1α and the restricted root space �α

contains the four-dimensional subspace

�λ ⊕ �−τpλ ⊕ �λ̄ ⊕ �−τpλ̄
 (5.5)

If �λ = �λ+, then a σ-invariant basis of subspace (5.5) is given by the vectors

Re�Wλ + τpW−λ�=
1
2
��Wλ + σWλ� + τp�W−λ + σW−λ��	

Im�Wλ + τpW−λ�=
−1
2
J��Wλ − σWλ� + τp�W−λ − σW−λ��	

Re�Wλ − τpW−λ�=
1
2
��Wλ + σWλ� − τp�W−λ + σW−λ��	

Im�Wλ − τpW−λ�=
−1
2
J��Wλ − σWλ� − τp�W−λ − σW−λ��


(5.6)
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If �λ = �λ−, then a σ-invariant basis of subspace (5.5) is given by the vectors

Re�Wλ + JτpW−λ�=
1
2
��Wλ + σWλ� + Jτp�W−λ + σW−λ��	

Im�Wλ + JτpW−λ�=
−1
2
J��Wλ − σWλ� + Jτp�W−λ − σW−λ��	

Re�Wλ − JτpW−λ�=
1
2
��Wλ + σWλ� − Jτp�W−λ + σW−λ��	

Im�Wλ − JτpW−λ�=
−1
2
J��Wλ − σWλ� − Jτp�W−λ − σW−λ��


(5.7)

(ii) If λ ∈ 1α is a root satisfying λ = λ̄ and τpλ = −λ, subspace
(5.5) reduces to �λ and a σ-invariant basis of �λ is given by

Wλ
 (5.8)

(iii) If λ ∈ 1α is a root satisfying λ = λ̄ and τpλ �= −λ, subspace
(5.5) reduces to �λ ⊕ �−τpλ and a σ-invariant basis of is given by

�Wλ + τpW−λ	Wλ − τpW−λ� if �λ = �λ+ (5.9)

or by
�Wλ + JτpW−λ	Wλ − JτpW−λ� if �λ = �λ−
 (5.10)

(iv) If λ ∈ 1α is a root satisfying λ �= λ̄, −τpλ, and −τpλ = λ̄,
subspace (5.5) reduces to �λ ⊕ �−τpλ = �λ ⊕ �λ̄ and a σ-invariant basis is
given by

�Wλ + σWλ	−J�Wλ − σWλ��
 (5.11)

(2) Let α ∈ 1+
� be an imaginary root.

(i) If λ ∈ 1α satisfies λ �= −λ̄ and τpλ �= −λ	 λ̄, then λ	−τpλ	−λ̄,
τpλ̄ are all distinct roots in 1α, the restricted root space �α contains the
four-dimensional subspace

�λ ⊕ �−τpλ ⊕ �−λ̄ ⊕ �τpλ̄	 (5.12)

and the vectors

Z1α = 1
2
��Wλ + τpσWλ� + τp�W−λ + τpσW−λ��	

Z2α = 1
2
��Wλ + τpσWλ� − τp�W−λ + τpσW−λ��	

Z3α = 1
2
��Wλ − τpσWλ� + τp�W−λ − τpσW−λ��	

Z4α = 1
2
��Wλ − τpσWλ� − τp�W−λ − τpσW−λ��

(5.13)
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are linearly independent. If �λ = �λ+, then στp is a conjugation of subspace
(5.12) and the elements �Z1α	Z2α	 JZ3α	 JZ4α� form a στp-invariant basis. If
�λ = �λ−, the elements �Z1α	Z2α	Z3α	Z4α� are a basis of subspace (5.12) sat-
isfying the conditions

στpZ
1
α = Z4α	 στpZ

2
α = Z3α
 �5
13�′

(ii) If λ ∈ 1α satisfies λ �= −λ̄, τpλ �= −λ, τpλ = λ̄, subspace (5.12)
reduces to �λ ⊕ �−τpλ. Since στp is a complex antilinear endomorphism of
�λ, it follows that �λ = �λ+. A στp-invariant basis of �λ ⊕ �−τpλ is given by
the following vectors from (5.13)

�Z1α	Z2α� if τpσWλ +Wλ �= 0	
�JZ3α	 JZ4α� if τpσWλ +Wλ = 0


(5.14)

(iii) If λ ∈ 1α satisfies λ̄ = τPλ = −λ, subspace (5.12) reduces to
�λ. In particular, �λ = �λ+. If λ is noncompact, a στp-invariant basis of �

λ

is given by

Z1α	=
1
2
�Wλ + τpW−λ� if Wλ + τpW−λ �= 0	

JZ4α = JWλ if Wλ + τpW−λ = 0

(5.15)

If λ is compact, a στp-invariant basis of �λ is given by

JZ3α = 1
2
J�Wλ + τpW−λ� if Wλ + τpW−λ �= 0	

Z2α =Wλ if Wλ + τpW−λ = 0

�5
15�′

(iv) If λ ∈ 1α satisfies λ = −λ̄ and τpλ �= −λ	 λ̄, subspace (5.12)
reduces to �λ ⊕ �−τpλ. The vectors in (5.13) become

Z1α = Wλ + τpW−λ	 Z4α = Wλ − τpW−λ for λ noncompact	

Z3α = Wλ + τpW−λ	 Z2α = Wλ − τpW−λ for λ compact


Assume �λ = �λ+. Then a στp-invariant basis of �
λ ⊕ �−τpλ is given by

�Z1α	 JZ4α� for λ noncompact	

�Z2α	 JZ3α� for λ compact

(5.16)

Assume now �λ = �λ−. Then a basis of �
λ ⊕ �−τpλ is given by

�Z1α	Z4α�	 στpZ
1
α = Z4α for λ noncompact	

�Z2α	Z3α�	 στpZ
2
α = Z3α for λ compact


(5.17)
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(3) Let α ∈ 1� be a complex root. Then a basis of �α, compatible
with the decomposition �α = �α+ ⊕ �α−, is given by

�Wλ + τpW−λ	Wλ − τpW−λ� λ∈1α
λ�=−τpλ

	 �Wλ� λ∈1α
λ�=−τpλ


 (5.18)

Remark 5.9. For α ∈ 1�, let hα ∈ �� be the vector defined by α�H� =
B�H	hα� for H ∈ ��. Then

hα = 1
2
�hλ − τphλ� ∈ ��	 λ ∈ 1α


Observe that �� = �� ⊕ ��, where �� = J�� ⊕ �� and �� = J�� ⊕ ��.

Lemma 5.10. Let α ∈ 1�. Let �α be the basis of �α defined in Remark 5.8.
The following relations hold:

(i) If Zα ∈ �α, then �Zα	 τpZα� = B�Zα	 τpZα�hα ∈ ��.
(ii) Let Zα	Z

′
α be distinct elements in �α. Then

�Zα	 τpZ
′
α� ∈ �


Proof. The proof of (i) is similar to the proof of the corresponding
statement in Lemma 5.1, and it is based on the nondegeneracy of the Killing
form restricted to �� × ��.
The proof of (ii) consists of direct computations.

Lemma 5.11. (i) Let α �= β ∈ 1+
� . Let Zα ∈ �α and Zβ ∈ �β. Then

B��Zα ± τpZα	Zβ ± τpZβ�	 ��� = 0

(ii) Let Zα	Z

′
α ∈ �α be distinct elements of the basis �α defined in

Remark 5.8. Then

�Zα − τpZα	Zα + τpZα� = 2�Zα	 τpZα�	
B��Zα ± τpZα	Z

′
α ± τpZ

′
α�	 ��� = 0


Proof. The lemma follows from direct computations and Lemma
5.10(ii).

Corollary 5.12. Let α ∈ 1� and let �α be the basis of �α defined in
Remark 5.8. Only the brackets of the form �Zα − τpZα	Zα + τpZα� give some
contribution in the �� direction.

For α ∈ 1+
� fix the basis �α of �α constructed in Remark 5.8. Recall from

Section 3.3 that to each Zα ∈ �α there are associated Hα ∈ Z�α�� , Qα ∈
Z�α��� , and Fα = Adx0Qα in Adx0Z�α��� and also recall the decomposition
(5.4) of the complex tangent space T�Sx0 ·p. We calculate the quadratic Levi
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form with respect to this basis of T�Sx0 ·p. By Remark 3.10, one has that

Adx0Z�α��� = span��Fα�, for α real, or for α imaginary and Zα ∈ �α+.
Adx0Z�α��� = span��Fα	 Fᾱ�, for α complex, or for α imaginary and

Zα ∈ �α−.

The proofs of Propositions 5.13–5.16 follow from direct computations
using the formulas of Lemma 4.3 and Remark 3.18 together with the results
of Lemmas 5.10 and 5.11 and Corollary 5.12.

Proposition 5.13. Let α �= β, β̄ ∈ 1+
� . Then

L�Fα	 Fβ� = L�Fα	 Fβ̄� = L�Fᾱ	 Fβ� = L�Fᾱ	 Fβ̄� = 0

Let α ∈ 1+

� with dim �α > 1. Let Zα	Z
′
α be distinct elements of the basis �α

such that Z�α� ∩ Z′�α� = �0�. Let Fα	 F ′
α be the corresponding elements in

Adx0��α��� . Then
L�Fα	 F ′

α� = L�Fᾱ	 F ′
α� = L�Fα	 F ′

ᾱ� = L�Fᾱ	 F ′
ᾱ� = 0


Proposition 5.14. Let α ∈ �1+
� �r be a real root. Let Zα ∈ �α be a root

vector satisfying σ�Zα� = Zα.

(i) If Zα ∈ �α+, then

L�Fα	 Fα� = 2
sin 2α�X0�

�Zα	 τpZα�


(ii) If Zα ∈ �α−, then

L�Fα	 Fα� = 2
cos 2α�X0�

J�Zα	 τpZα�


Proposition 5.15. Let α ∈ �1+
� �i be an imaginary root.

(i) If Zα ∈ �α+ and στpZα = Zα, then

L�Fα	 Fα� = − 2
sinh 2 Imα�X0�

J�Zα	 τpZα�


(ii) Let Zα ∈ �α−. Then dim� Z�α� = 4 and

L�Fα	 Fα� = L�Fᾱ	 Fᾱ� = 0	 L�Fα	 Fᾱ� = 2
cosh 2 Imα�X0�

J�Zα	 τpZα�


In particular, for zα	 zᾱ ∈ �, one has

L�zαFα + zᾱFᾱ	 zαFα + zᾱFᾱ� = 2Re�zαzᾱL�Fα	 Fᾱ��

Proposition 5.16. Let α ∈ �1+

� �c be a complex root.



invariant domains 665

(i) If Zα ∈ �α+, then

L�Fα	 Fα� = L�Fᾱ	 Fᾱ� = 0	 L�Fα	 Fᾱ� = 2
sin 2α�X0�

�Zα	 τpZα�


(ii) If Zα ∈ �α−, then

L�Fα	 Fα� = L�Fᾱ	 Fᾱ� = 0	 L�Fα	 Fᾱ� = 2
cos 2α�X0�

J�Zα	 τpZα�


In particular, for zα	 zᾱ ∈ �, one has

L�zαFα + zᾱFᾱ	 zαFᾱ + zᾱFᾱ� = 2Re�zαzᾱL�Fα	 Fᾱ��

Now we are ready to compute the Levi cone of generic orbits.

Definition 5.17. For α ∈ 1� denote by mα the cardinality of the set 1α

or, equivalently, the complex dimension of the restricted root space �α.

Lemma 5.18. Let S be a generic orbit with base point x0 · p, where
x0 ·p = eJX0 · p ∈ C = exp J� · p. Let � = �� ⊕ �� be the Cartan decomposi-
tion of �. The Levi cone ��S�x0·p at x0 · p is the cone in � generated by the
following vectors:

(1) ±Rehα	 ±Imhα ∈ � for all α ∈ �1+
� �c .

�2� − 1
sinh 2 Imα�X0�

Jhα ∈ ��

for all α ∈ �1+
� �i for which �α = �α+	mα ≥ 1, and all roots λ ∈ 1α are

noncompact imaginary roots.

�3� 1
sinh 2 Imα�X0�

Jhα ∈ ��

for all α ∈ �1+
� �i for which �α = �α+	mα ≥ 1, and all roots λ ∈ 1α are compact

imaginary roots.
(4) ±Jhα ∈ �� for all other α ∈ �1+

� �i, with mα > 1.
(5) Either hα or −hα ∈ �� for all roots α ∈ �1+

� �r .
In particular, ��S�x0·p has nonempty interior.
Proof. Statements (1)–(5) of the proposition follow by applying Propo-

sitions 5.13–5.16 to the basis �α defined in Remark 5.8 for α ∈ 1�. We
examine the various cases.
Let α ∈ 1c

� be a complex root. One can easily check that, for all the
vectors Zα in (5.18), one has

�Zα	 τpZα� = Chα	
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where C is a nonzero complex number. Together with Proposition 5.16, this
proves (1).
Let α ∈ 1i

� be an imaginary root. If dim �α = 1, then �α = �α+ (cf.
Remark 3.8(2) (iii)). Let Zα ∈ �α be one of the vectors in (5.15) or in
�5
15�′. Then

�Zα	 τpZα� = ±hα	

depending on whether α is a noncompact or a compact imaginary root.
Assume now dim �α > 1. The vectors in (5.16) in Remark 3.8 (2)(iv) satisfy

�Z1α	 τpZ1α� = �JZ4α	 τpJZ4α� = hα

and

�Z2α	 τpZ2α� = �JZ3α	 τpJZ3α� = −hα	

respectively. This proves (2) and (3). It remains to show that ±hα ∈ � in
all other cases, when dim �α > 1. If �α+ contains the subspace (5.12), the
vectors �Z1α	Z2α� in (5.13) are a pair of vectors Zα �= Z′

α ∈ �α such that

�Zα	 τpZα� = −�Z′
α	 τpZ

′
α� = Chα	

where C is a nonzero real constant. The same is true for the vectors
�Z1α	Z2α� or �JZ3α	 JZ4α� in (5.14). If �α− contains the subspace (5.12), the
vectors �Z1α	Z4α� and �Z2α	Z3α� in (5.13) satisfy conditions �5
13�′ and the
spaces Z1�α� and Z2�α� are four dimensional. By Proposition 5.15(iii), one
has that ±Jhα ∈ �. The same is true for the vectors given in (5.17). The
spaces Z1�α� and Z2�α� are four dimensional and, by Proposition 5.15(iii),
one has that ±Jhα ∈ �. This concludes the proof of (4).
Let α ∈ 1r

� be a real root. If Zα ∈ �α is a σ-invariant element, then
B�Zα	 τpZα� is either a real or a purely imaginary number, depending on
whether Zα ∈ �α+ or Zα ∈ �α−. One can check that for each α ∈ �1+

� �r there
exists an element Zα for which B�Zα	 τpZα� �= 0 (cf. Remark 5.8(1)(i)–
(1)(iv)). By Lemma 5.10(ii), this proves (5).
Since 1� is a root system, it follows from (1)–(5) that the cone ��S�x0·p

has nonempty interior.

Before proving the next proposition, we need to quickly review the def-
inition of a compactly causal symmetric space and the properties of the
associated symmetric algebra. We take as references [FO, HO, KN].

Definition 5.19. Compactly causal symmetric spaces.
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Let G/H be a semisimple pseudo-Riemannian symmetric space, i.e., a
triple �G	H	 τ�, where G is a real semisimple Lie group, τ is an involution
of G (commuting with the Cartan involution), and H is an open subgroup
of the fixed point subgroup of τ in G. Let �� =  ⊕ �	 τ� be the corre-
sponding symmetric algebra. The space G/H is called “compactly causal”
if � contains AdH-stable regular convex cones V consisting of elliptic ele-
ments (regular means V ∩ −V = �0� and  V ! = �).

Remark 5.20.

• If G/H is irreducible, it is compactly causal if and only if G/K is a
bounded symmetric domain and the induced involution τ� G/K → G/K is
antiholomorphic.

• The symmetric Lie algebras arising from irreducible compactly
causal symmetric spaces are precisely the ones where � is simple hermi-
tian and ���� is contained in �. In particular, � admits an elliptic maximal
abelian subpace � ⊂ � and ���� is compactly embedded in �.

In the proof of the next proposition, we need a characterization of com-
pactly causal symmetric Lie algebras in terms of the restricted root system
1�. This was essentially done in [KN].

• Let � = � ⊕ � ⊕ �� ⊕ �� be the combined decomposition of � with
respect to both τ and the Cartan involution θ (here � �=  ∩ � etc.). Con-
sider the Lie subalgebra � = �� ⊕ ���	 ��� ⊂ �. Let 1� be the restricted
root system of �� with respect to ��. A root α ∈ 1� is called compact if
�α ∩ �� �= �0�, and noncompact otherwise. If α is a noncompact root, then
�α is contained in ��. Denote by �1��k and �1��n the compact and noncom-
pact roots in 1�, respectively. The root system 1� is called split if �α ⊂ ��

for all compact roots α ∈ �1��k. The Weyl group WH��� = NH���/ZH��� is
isomorphic to the group Wk generated by the reflections in the compact
roots ([KN, Definition III.9 and Proposition V.2.i]). If the positive noncom-
pact roots �1+

� �n are stable under the Weyl group, the system 1+
� is called

�-adapted.
Define the following cones in ��:

Cmin �= cone(�hα�α∈�1+
� �n

)
	

Cmax = �Cmin�∗ �= {
X ∈ �� � B�X	hα� ≥ 0	 α ∈ �1+

� �n
}



The symmetric algebra ��	 τ� is compactly causal if and only if � is her-
mitian, there exists an elliptic maximal abelian subspace � ⊂ �, and the
restricted root system 1� (with respect to �) is split and admits an �-adapted
positive system. In particular, Cmax is Wk-stable (cf. [KN, Proposition V.10]).
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• In the special case when the abelian subspace � ⊂ � is also a com-
pact Cartan subalgebra of �, one has that the symmetric algebra ��	 τ� is
compactly causal if and only if � is hermitian. The root system 1� coincides
the ordinary root system 1; compact roots 1k (resp. noncompact roots 1n)
are the ones for which the corresponding root space is contained in ��

(resp. ��). An �-adapted positive system is the usual �-adapted positive sys-
tem for which the positive noncompact roots 1+

n are stable under Wk, i.e.,
the reflections in the compact roots 1k (equivalently, every positive non-
compact root is larger than an arbitrary compact root).

Proposition 5.21. Let S be a generic G-orbit in G�/K�, intersecting a
standard Cartan subset

�C = exp J� · p
different from the fundamental Cartan subset (i.e., � �= 	). Let x0 · p ∈ S be a
base point, where x0 · p = exp JX0 · p ∈ C. Then

��S�x0·p = �

in all cases with only one possible exception: assume that the Cartan subspace
� is compact, the base point p satisfies conditions (2.6), and the G-orbit of
p is a compactly causal pseudo-Riemannian symmetric space. Then, if X0 ∈
±JCmax ⊂ �, the Levi cone ��S�x0·p is sharp.
Proof. Identify � with �� = J�k ⊕ �p via the map �T	A� �→ �−JT	A�.

Consider the image of the cone ��S�x0·p in �� under this map and denote
it by �. Denote by  −	−! the restriction of the Killing form to �� × ��.
Observe that the restricted root system 1� is always connected. When �
admits a complex structure, 1� is isomorphic to the ordinary root system 1.
We need to distinguish several cases.

• Assume that � is a noncompact Cartan subspace, � �= 	. By
Lemma 5.18, the cone � contains � · hα for every complex root α. We
want to show that � contains � · hα, for every simple root α. Since real
and imaginary simple roots are strongly orthogonal, there exists a simple
complex root α ∈ 1�. Let β be a real (resp. imaginary) simple root such
that α+β ∈ 1� for some complex simple root α. Then  α	β! < 0. If α+β
is complex, then from � · hα	� · hα+β ⊂ �, one obtains � · hβ ⊂ �. If
α + β is imaginary (resp. real), then  α + β	β! = 0 and the Cartan inte-
ger aαβ is equal to −2. At this point, there are two possibilities: either
�α� > �β� or �α� < �β�. In the first case, α+ 2β is a root, while, in the sec-
ond case, 2α+ β is a root. Both α+ 2β and 2α+ β are complex roots, so
either � · hα+2β or � · h2α+β is contained in �. It follows that � · hβ ⊂ �.
If γ is a simple real (resp. imaginary) root such that β+ γ is a root, then
α+ β+ γ is also a root and it is complex. It follows that � · hγ ⊂ �. Iter-
ating these arguments we exhaust all simple roots and obtain � = ��. It
follows that ��S�x0·p = �.
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• Assume that � is a compact Cartan subspace and that there exists
a noncompact Cartan subalgebra � of � extending � (see Lemma 5.7). All
roots in 1� are imaginary.
We claim that there exists a simple root α0 ∈ 1� which is the restriction of

a complex root λ ∈ 1 = 1���	 ���. Let λ1	 
 
 
 	 λn be the simple roots in
1. Recall that the restrictions of the simple roots in 1 form a basis of 1�

and that the root system 1 contains a complex simple root. If none of the
simple roots in 1 vanishes on �, the claim is immediate. Assume now that
some simple roots in 1 vanish on � and that all the simple roots which do
not vanish on � are purely imaginary. Then in 1 there exist simple roots
λk1 �� ≡ 0	 
 
 
 	 λks �� ≡ 0 and λm�� �≡ 0 such that λ0 = λk1 + · · · + λks + λm ∈
1 is a complex root restricting to a simple root α0 ∈ 1�. This concludes the
proof of the claim.
By Lemma 5.18(4), one has that � · hα0 ⊂ �. Consider now the root

λ1 = λ0 + λh1 + λht + λp, where �λh1	 
 
 
 	 λht� is a (possibly empty) set of
simple roots in 1 vanishing on � and λp is a simple root in 1 such that
α1 = λp�� �≡ 0 is a simple root in 1�. If α1 �= α0, then α0 + α1 ∈ 1� and
either α1 or α0 + α1 is the restriction of a complex root. In both cases,
� · hα1 ⊂ �. If α1 = α0, then 2α0 ∈ 1�. In this case, consider the root
λ2 = λ1 + λu1 + λun + λq, where �λu1	 
 
 
 	 λun� is a (possibly empty) set
of simple roots in 1 vanishing on � and λq is a simple root in 1 such that
α2 = λq�� �≡ 0 is a simple root in 1�. Then α2 �= α1 = α0 and either α2
or α0 + α2 is the restriction of a complex root. In both cases � · hα2 ⊂ �.
Iterating this argument, we obtain that � · hαi ⊂ �, for all simple roots in
1�. Hence, � = �� and ��S�x0·p = �.

• Assume that � is a compact Cartan subspace and that every Car-
tan subalgebra of � extending � is compact. It follows that the Lie algebra
� is equal-rank and that the base point p satisfies conditions (2.6) (see
Remark 3.10(3)(ii)). In particular, the G-orbit of p is a semisimple sym-
metric space G/H and ���� is compact. We claim that:

if G/H is compactly causal, then

• ��S�x0·p = � for all X0 �∈ ±JCmax,
• ��S�x0·p is sharp for all X0 ∈ ±JCmax;

if G/H is not compactly causal, then ��S�x0·p = �.

We first deal with the case when � itself is a compact Cartan subalgebra of
�. Later we reduce the general case to this case.
If � is a compact Cartan subalgebra of �, then by Remark 5.20 we have

to show that:
if � is hermitian, then

(a) ��S�x0·p = � for all X0 �∈ ±JCmax,



670 laura geatti

(b) ��S�x0·p is sharp for all X0 ∈ ±JCmax;
if � is not hermitian, then ��S�x0·p = �.
Simple “equal-rank” real Lie algebras admit a set of simple roots

> = >k ∪ >n with a unique noncompact root (cf. [W], Lemma 4, [Kn2],
Appendix C).
Let �Zα�α∈1, Zα ∈ �α, be a σ-stable set of root vectors. After a normal-

ization we can assume

�Zα	 σZα� = hα	 α ∈ 1+
n and �Zα	 σZα� = −hα	 α ∈ 1+

k 


Let Wk be the Weyl group generated by the reflections in the compact roots.
Since 1k and 1n are Wk-stable, by Remark 2.6 the base point x0 · p can be
assumed to satisfy:

Im α�X0� > 0 for all α ∈ 1+
k 


Then, by Lemma 5.18, the cone � is the cone in �� generated by the vectors{
− 1
sinh 2 Im α�X0�

hα

}
α∈1+

n

	 �hα�α∈1+
k

 (5.19)

Hermitian case. Fix a �-adapted positive system 1+ (cf. Remark 5.20).
Denote by J the corresponding highest root. Without loss of generality, we
may assume ImJ�X0� > 0 and only consider the cone −Cmax.

(a) If X0 ∈ −JCmax, then Imα�X0� > 0 for all roots α ∈ 1+. In this
case, the cone � is sharp. It is in fact the image of the dual of the positive
Weyl chamber, under the reflections with respect to the highest roots of the
simple factors of �.

(b) If X0 �∈ −JCmax, then Imα�X0� < 0, where α is the sim-
ple noncompact root. Since 1+ is �-adapted, all positive noncompact
roots are obtained from α by adding simple compact roots. Since J is
noncompact and ImJ�X0� > 0, there exists a noncompact root µ such that
Imµ�X0� > 0. Assume µ is a root of minimal order with this property.
Write

µ = α+
p∑
s=1

nsβs	 ns > 0	 (5.20)

with βs ∈ >k. Let β be a root in >k such that µ − β is a noncompact
root, with negative imaginary part on X0. Consider the triplet of roots
β	µ− β	µ. By (5.19),

hµ	−hβ	−hµ−β ∈ � and span��hµ	 hβ� ⊂ �
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Next take γ ∈ >k such that µ− β− γ is a noncompact root, with negative
imaginary part on X0. By the result of the previous step and the same
argument, one has that

� · hγ	� · hµ−β	� · hµ−β−γ ⊂ �


Subtracting simple roots from µ in this way, we finally obtain that �� ·
hβs

	� · hα� are contained in � for all simple roots which appear in (5.20).
To obtain the same result for the remaining simple roots, we add them one
by one to µ, until we obtain the highest root. Observe that the noncompact
roots obtained in this way all have positive imaginary part on X0. If γ is a
root in >k, such that µ + γ ∈ 1, consider the triplet of roots γ	µ	µ + γ.
By the results of the previous steps, we have that

� · hγ	� · hµ	� · hµ+γ ⊂ �


Iterating this argument until all simple roots are exhausted, we obtain state-
ment (b).
Non-hermitian case. Fix 1+ a positive system with a unique noncompact

simple root α ∈ >n. In this case, the highest root J is compact and the
coefficient in J of the root α is equal to 2 (cf. [Kn2, Appendix C]).
Assume first that all noncompact roots have positive imaginary part on

X0. Since the coefficient of α in J is equal to 2, there exists a compact root
ν which is a sum of precisely two noncompact roots: ν = λ + µ. Observe
that

−hν	 hλ	 hµ ∈ � and span�hλ	 hµ� ⊂ �


The root λ (resp. µ) contains α with coefficient one and from λ one can
construct the highest root by adding simple roots. If λ + β ∈ 1 for some
β ∈ >k, then

± · hλ	−hβ	 hλ+β ∈ � and span�hλ	 hβ� ⊂ �


When the noncompact root α is added, yielding a compact root, we obtain
� · hα ⊂ �.

Claim. If � · hα ∈ �, then � = �� and ��S�x0·p = �.

Let β be a root in >k such that α + β ∈ 1. For the triplet of roots
α	β	 α+ β, we have that

±hα	−hβ	 hα+β ∈ � and span��hα	 hβ� ⊂ �


If γ is a root in >k such that α + β + γ ∈ 1, then consider the triplet of
roots α + β	 γ	 α + β + γ. By the previous step and the same argument,
one has that

±hα+β	−hγ	 hα+β+γ ∈ � and span��hα+β	 hγ� ⊂ �
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By iterating this argument until all the simple roots are exhausted, the claim
follows.
Assume now that α ∈ >n has negative imaginary part on X0. Since there

exists a compact root which is sum of noncompact roots, there exists a
noncompact root with positive imaginary part on X0. Let λ be a root of
minimal order with this property. Then λ is of the form

λ = α+
p∑
s=1

nsβs	 ns > 0	

i.e., it is obtained by adding simple compact roots to α. From now on the
proof continues as in case (b).
Finally, assume that � is a compact Cartan subspace, but not a Cartan

subalgebra of �. Let � = �⊕ �, for some � ⊂ , be a compact Cartan subal-
gebra of � extending � and let 1 be the corresponding root system. Let

π�� �� −→ ��	 π��X� = X − τpX

be the projection of �� on to ��. Since hα = hλ − τphλ and α�X0� = λ�X0�
for all λ ∈ 1α, the cone � is the π�-projection of an appropriate cone
�� ⊂ ��.
Assume that the G-orbit of p is a compactly causal symmetric space

G/H. Fix an �-adapted positive system in 1� and compatible orderings for
1+ and 1+

� . Since �1+
� �n is Wk-stable, without loss of generality, X0 may be

assumed to satisfy

Im α�X0� > 0 for all α ∈ �1+
� �k


By Lemma 5.18, then � is the cone in �� generated by the vectors{
− 1
sinh 2 Im α�X0�

hα

}
α∈�1+

� �n
	 �hα�α∈�1+

� �k 
 (5.21)

Since the root system 1� is split, given α ∈ 1�, the corresponding root space
�α can be assumed to be contained either in �� or in �� (cf. Remark 5.20)
and �� ⊂ �� is the cone generated by the vectors{{

− 1
sinh 2 Im λ�X0�

hλ

}
λ∈1α

α∈�1+
� �n
	 �hλ� λ∈1α

α∈�1+
� �k

}

=
{{

− 1
sinh 2 Im λ�X0�

hλ

}
λ∈1+

n

	 �hλ�λ∈1+
k

}



If X0 ∈ −JCmax, then Imα�X0� > 0 for all positive noncompact roots in 1�,
and

�� = cone
(
�−hλ�λ∈1+

n
	 �hλ�λ∈1+

k

)
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The cone �� ⊂ �� is sharp, by (a), and �−τp�-stable (in particular has inter-
section with �� equal to �0�). It follows that � and ��S�x0·p are sharp as
well.
If X0 �∈ −JCmax, then there exists a noncompact root α0 ∈ �1+

� �n such
that Im α0�X0� < 0. In this case,

�� = cone
(
�−cλhλ�λ∈1+

n
	 �hλ�λ∈1+

k

)
⊂ ��	

where at least the coefficients cλ, λ ∈ 1α0
, are negative. By (b), one has

that �� = �� and therefore ��S�x0·p = �.
Assume now that G/H is not compactly causal. If 1� is spilt, then

�� = cone
(
�hλ�λ∈1+

k
	

{
− 1
sinh 2 Im λ�X0�

hλ

}
λ∈1+

n

)

 (5.22)

One has that �� = �� and ��S�x0·p = �. If 1� is not split,

�� ⊇ cone
(
�hλ�λ∈1+

k
	

{
− 1
sinh 2 Im λ�X0�

hλ

}
λ∈1+

n

)



Hence �� = �� and ��S�x0·p = �.

6. APPLICATIONS TO INVARIANT DOMAINS

In this section, we apply the calculation of the Levi cone of the generic
orbits obtained in Section 5 to the study of invariant domains in G�/K�

and their invariant plurisubharmonic functions. The results of Propositions
5.6 and 5.21 are summarized in Proposition 6.1. For simplicity, the result is
stated in the irreducible case. Remark 6.2 deals with the general case.

Proposition 6.1. LetG/K be an irreducible Riemannian symmetric space
of the noncompact type. Let S be a generic G-orbit in G�/K� intersecting �C,
where C = exp J� ·p is a Cartan subset. Let x0 · p ∈ �C be a reference point for
S, where x0 · p = exp JX0 · p, with X0 ∈ �. Let ��S�x0·p be the corresponding
Levi cone. Then

��S�x0·p = �

in all cases with the following exceptions:

(i) �C = �A is the fundamental Cartan subset and X0 satisfies the con-
ditions �α�X0� − α�V0�� < π/2 for all α ∈ 1	, for some vertex V0 ∈ 	 defined
by α�V0� ≡ 0 modπ	∀α ∈ >	 (cf. Remark 5.5).
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(ii) � is a compact Cartan subspace, � is a hermitian simple Lie algebra,
�� = ⊕ �	 τp� is a compactly causal symmetric pair, and X0 ∈ ±JCmax ⊂ �
(cf. Remark 5.20).

In cases (i) and (ii) the cone ��S�x0·p has nonempty interior and it is sharp.

Remark 6.2. If G/K is not irreducible, there is a decomposition G/K =
G1/K1 × · · · ×Gn/Kn into irreducible factors, where each Gi is a real or
complex simple Lie group. Likewise, there is a decomposition of the com-
plexification G�/K� and of the G-orbits in G�/K�. One has that the Levi
cone of a generic orbit S = S1 × · · · × Sn is isomorphic to the direct sum
of the Levi cones of the orbits Si. In particular, it is sharp if and only if all
summands are.

Combining Proposition 6.1 with Theorem 1.5, we obtain the main results
of the paper.

Corollary 6.3. An invariant domain � ⊂ G�/K�, which contains in its
boundary a generic orbit S with Levi cone ��S�x0·p = �, cannot be Stein. In
other words, only the generic orbits satisfying condition (i) or condition (ii)
in Proposition 6.1 can be contained in the boundary of an invariant Stein
domain.

Proof. By Theorems 2.8 and 1.5, a generic orbit S satisfying ��S�x0·p = �
admits an invariant tubular neighborhood U�S� with the following proper-
ties: U�S� consists of generic orbits and every smooth CR-function on S
extends to a holomorphic function on U�S�. It is important to observe
that the size of U�S� does not depend on the function to be extended,
but depends continuously on the CR-structure of S. In our case, the CR-
structure of S depends in a real analytic way on the reference point x0 · p ∈
�C (see Corollaries 3.7 and 3.17). By the above facts, if a domain � con-
tains S in its boundary, all holomorphic functions on � extend to a larger
domain. In particular, � is not Stein. For more details, we refer to Corol-
laries 5.6 and 5.7 in [FG].

Corollary 6.4. A generic orbit S with Levi cone ��S�x0·p = � cannot
be contained in the level set of a nonconstant invariant plurisubharmonic
function.

The above results show that when G/K is a noncompact Riemannian
symmetric space, invariant Stein domains in G�/K� cannot be arbitrarily
large, but have to lie in some distinguished regions. We hereby describe
them.
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The region �X0 = G ·A associated to the fundamental Cartan subset

The region �X0 associated to the fundamental Cartan subset coincides
with the region introduced and studied in [AG]. It is constructed as fol-
lows. Denote by G ×K � the G-equivariant bundle over G/K defined as
the quotient of G× � by the equivalence relation �g	 v� ∼ �gk−1	Adkv� for
k ∈ K. The bundle G ×K � is equivariantly diffeomorphic to the tangent
bundle T �G/K� of G/K. Consider the G-equivariant map

φ� G×K � −→ G�/K�	 �g	 v� �−→ g exp Jv · e

The map φ is singular on the G-invariant subset � intersecting 	 in the
family of hyperplanes �H ∈ 	 � α�H� ≡ π/2modπ�α∈1	

. The restriction of
φ to each connected component of G×K � \ � is a diffeomorphism, onto
its image. The map φ is not surjective. The region �X0 is by definition the
image of φ and coincides with the set of G-orbits intersecting the compact
dual symmetric space U/K, embedded in G�/K� as the U-orbit of the base
point ē. In general, the region �X0 contains several copies of the symmetric
space G/K. One is the G-orbit of the base point ē; the other ones are the
G-orbits of the (finitely many) points �v̄1	 
 
 
 	 v̄m� forming the image under
φ of the set � = �V ∈ 	 � α�V � ≡ 0modπ	∀α ∈ 1	� (cf. Remark 3.5).
Consider the bounded WK�	�-invariant convex set in 	

ω0 = �H ∈ 	 � �α�H�� < π/2	∀α ∈ 1	�
and define �0 �= G ×K AdKω0. Then D0 �= φ��0� = G · exp Jω0 is an
open G-invariant domain in �X0 containing G/K and diffeomorphic to a
tubular neighborhood of G/K. By construction, D0 is the largest connected
invariant domain in G�/K� admitting a retraction to G/K. Similarly, each
copy of G/K is contained in a G-invariant domain in G�/K� diffeomorphic
to D0, namely Dj = G · exp Jωj , where ωj = �H ∈ 	 � �α�H� − α�Vj�� <
π/2	∀α ∈ 1	� for some Vj ∈ 	.
The boundaries of D0	 
 
 
 	Dm are contained in � and entirely consist

of nongeneric orbits. In general, the complement of D0 ∪ · · · ∪Dm in �X0
has nonempty interior.
The results of Proposition 5.6 imply that, among the generic orbits in

�X0, only the ones contained in D0 ∪ · · · ∪Dm can lie in the boundary of an
invariant Stein domain or on a level set of an invariant plurisubharmonic
function.

The region �Xcaus = G · C associated to a Cartan subset
with a compactly causal minimal orbit

Let C = exp J� · p be a Cartan subset, where � is a compact Cartan
subspace and the G-orbit G/H of the base point p is a compactly causal



676 laura geatti

symmetric space. This only occurs when G is of hermitian type and, in addi-
tion, the involution τp is an antiholomorphic automorphism of the hermi-
tian symmetric space G/K (cf. Remark 5.20). When this is the case, let
W (resp. −W ) be the maximal AdH-invariant regular elliptic cone in the
tangent space T �G/H�p ∼= �. Consider then the G-equivariant map

ψ� G×H W −→ G�/H�	 �g	 v� �−→ g · exp iv · p


The image of ψ is an invariant domain SW in the region �Xcaus = G · C,
containing the symmetric space G/H in its boundary.
The results of Proposition 5.21 imply that, among the generic orbits in

�Xcaus, only the ones contained in SW or in S−W can lie in the boundary of an
invariant Stein domain or on a level set of an invariant plurisubharmonic
function. The Stein domains in SW (resp. in S−W ) have been characterized
in [Ne], as well as their invariant plurisubharmonic functions. In particular,
the domains SW and S−W have been proved to be Stein. In general, there
may be several Cartan subsets C1	 
 
 
 	 Cs with the above properties and
likewise domains S±W1	 
 
 
 	 S±Ws

.
Another way of formulating the results of Corollaries 6.3 and 6.4 is the

following.

Corollary 6.5. Let � be an invariant Stein domain in G�/K�, contain-
ing a generic orbit S in its boundary. Then S satisfies either condition (i) or
condition (ii) in Proposition 6.1 and � is contained either in �X0 or in one of
the regions �Xcaus. More precisely, � is contained either in one of the domains
D0	 
 
 
 	Dm or in one of the domains S±W1	 
 
 
 	 S±Ws

. The same holds for a
domain � admitting nonconstant invariant plurisubharmonic functions.

We illustrate the above results by analyzing the rank-1 case.

Example 6.6 (The rank-1 case). A complete list of rank-1 noncompact
Riemannian symmetric spaces G/K is the following:

Hn��� = SO0�n	 1�/SO�n�	 n ≥ 1	 Hn��� = SU�n	 1�/U�n�	 n ≥ 2	
Hn��� = Sp�n	 1�/Sp�n� × Sp�1�	 n ≥ 1	 H2��ay� = F∗

4 /Spin�9�
SL�2	��/SU�2�


In this case, the generic G-orbits in G�/K� are real hypersurfaces.
The space H1��� ∼= SO0�1	 1� is one dimensional, so every invariant

domain in G�/K� is automatically Stein.
The space H2��� ∼= H1��� ∼= SL�2	��/SO�2� is two dimensional. This

case will be studied separately in Example 6.8.
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(1) Let G/K be one of the spaces Hn���	 n ≥ 3, SL�2��/SU�2�.
The restricted root system of � is reduced and consists of two roots

1	 = �±α�. There are two Cartan subspaces in �: the fundamental Cartan
subspace 	 ⊂ � and a compact Cartan subspace � = ��Xα + θXα�, Xα ∈ �α,
corresponding to the orthogonal system �α� ⊂ 1	.
The generic orbits intersecting the fundamental Cartan subset �A are

parametrized by the set

�T ∈ 	 � α�T � ∈ �0	 π/2�∪�π	 3π/2�� ⊂ 	


By Remark 5.5 and Proposition 5.6, the Levi cone of these orbits is sharp.
Define the following invariant domains in �X0

D0 = G exp JT · e and D1 = G exp JT · p1	 (6.1)

where α�T � ∈ �0	 π/2� and the point p1 = eJP1 satisfies α�P1� = π. In
particular, the G-orbit or p̄1 is of type G/K. The domains D0 and D1 are
connected tubular neighborhoods of the symmetric space G/K, given as
the G-orbit of ē and of p̄1, respectively. Each generic orbit in D0 or D1
bounds an invariant Stein subdomain containing G/K. Both D0 and D1 are
Stein. Moreover, they admit invariant plurisubharmonic functions [LS].
To the compact Cartan subspace �, there corresponds the Cartan subset

�C = exp J� · p2	 where p2 = eJP2 is defined by the condition α�P2� = π/2.
The G-orbit G/H of p̄2 has minimal dimension and is a non-Riemannian
symmetric space. In none of the cases considered here is G/H compactly
causal. For example, if G/K = Hn���, the space G/H is isomorphic to
SO0�n	 1�/SO�n− 1	 1�. The Levi cone of all the generic orbits intersecting
�C coincides with �. As a consequence, the invariant region �X1 = G · C
contains no proper invariant Stein subdomains and admits no nonconstant
invariant plurisubharmonic functions.

(2) Let G/K be one of the spaces Hn���	 n ≥ 2	Hn���	H2��ay�.
The restricted root system of these spaces is nonreduced and consists

of four roots 1	 = �±α	±2α�. There are three Cartan subspaces in �:
the fundamental Cartan subspace 	 ⊂ � and two compact standard Cartan
subspaces � and �′, corresponding to the orthogonal system �α� and �2α�,
respectively.
The generic orbits intersecting the fundamental Cartan subset �A are

parametrized by the subset

�T ∈ 	 � α�T � ∈ �0	 π/4�∪�π/4	 π/2�� ⊂ 	


By Proposition 5.6, the Levi cone of these orbits is sharp when α�T � ∈
�0	 π/4�, while it coincides with 	 when α�T � ∈ �π/4	 π/2�. Define D0 as in
(6.1) for α�T � ∈ �0	 π/4�. The domain D0 is a connected tubular neighbor-
hood of the symmetric space G/K, and each generic orbit in D0 bounds an
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invariant Stein subdomain containing G/K. The domain D0 is itself Stein.
Moreover, D0 admits invariant plurisubharmonic functions [LS]. In contrast
with the previous case, the complement of D0 in �X0 has nonempty interior
and admits no nonconstant invariant plurisubharmonic functions or Stein
subdomains.
To the Cartan subspace � there corresponds the Cartan subset �C =

exp J� · p2, where p2 = eJP2 satisfies α�P2� = π/2. The G-orbit G/H of
p̄2 has minimal dimension and is a non-Riemannian symmetric space.
To the Cartan subspace �′ there corresponds a Cartan subset �C ′ =

exp J�′ · p3, with p3 = eJP3 satisfying α�P3� = π/4. The G-orbit of the
point p̄3 is not totally real and has only locally minimal dimension. The
Levi cone of the generic G-orbits intersecting the Cartan subset �C and the
ones intersecting �C ′ coincide with � and �′, respectively. As a consequence,
none of the corresponding invariant regions in G�/K� admits invariant
plurisubharmonic functions nor invariant Stein subdomains.

Example 6.7 (The space X = SL�2	��/SO�2	�)). The manifold X has
complex dimension 2 and can be identified with the space of complex sym-
metric unimodular matrices

X ∼=
{
Z =

(
z1 z3
z3 z2

)
∈ M�2	 2	�� � Z = Zt	 detZ = 1

}
	

where SL�2	�� acts by �g	Z� �→ gZgt . Generic orbits in G�/K� are non-
degenerate real hypersurfaces of CR-dimension equal to 1 and their Levi
cone is always sharp. As a consequence, they bound invariant Stein domains
in X. We use the G-invariant function

F � X−→�	 F�Z� �=−det Re�Z�=−1
4
��z1+ z̄1��z2+ z̄2�−�z3+ z̄3�2�

to determine such domains explicitly. The level sets of F are in fact
G-invariant hypersurfaces in X consisting of finitely many G-orbits. Denote
by FR = �Z ∈ X � F�Z� = R� the R-level set of F . For every R �= −1	 0,
the set FR is a regular hypersurface. Observe that the complex Hessian of
F is everywhere given by

−1
4

 0 1 0
1 0 0
0 0 −2

 


If −1 < R < 0, the level set FR is disconnected and consists of two G-orbits,
S0 with base point

x0=
(
cos t+i sin t 0

0 cos t−i sin t

)
	 satisfying cos2 t=−R	t∈�0	π/2�	
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and S1 with base point

x1=
(
cos t+i sin t 0

0 cos t−i sin t

)
	 satisfying cos2 t=−R	t∈�π	3π/2�


These are generic orbits intersecting the fundamental Cartan subset �A,
where A = exp J

(
t 0
0 −t

)
	 t ∈ �. Call f �Z� = det�Z�. The complex tangent

space to S0 at x0 is given by

T��S0�x0 =�Z = �z1	 z2	 z3� � ∂fx0 ·Z = 0	 ∂Fx0 ·Z = 0� = �Z = �0	 0	 z3��	
and the Levi form at x0 is given by L�Z	Z� = 1

2 �z3�2 > 0. The same result
holds for S1. The domain

�−
R = �Z ∈ X � F�Z� − R < 0�	 R = F�x0� = F�x1� < 0	

is Stein and consists of two connected components bounded by S0 and S1,
respectively; each of them is a tubular neighborhood of a minimal orbit of
type G/K.
If R > 0, the level set FR is disconnected and consists of two G-orbits S0

and S1, with base points

x0 =
(
i cosh t sinh t
sinh t −i cosh t

)
	 sinh2 t = R	 t ∈ �+	

x1 =
(
i cosh t sinh t
sinh t −i cosh t

)
	 sinh2 t = R	 t ∈ �−	

respectively. These are generic orbits intersecting the Cartan subset �C,
where C = exp J

( 0 t
−t 0

) · ( i 0
0 −i

)
	 t ∈ �. The complex tangent space to the

orbit at x0 is given by

T��S0�x0 =�Z = �z1	 z2	 z3� � ∂fx0 · Z= 0	 ∂Fx0 · Z = 0�=�Z=�z1	 z1	 0��	
and the Levi form at x0 is given by L�Z	Z� = −�z1�2 < 0. The same result
holds for S1. The domain

�+
R = �Z ∈ X � F�Z� − R > 0�	 R = F�x0� = F�x1� > 0	

is Stein and consists of two connected components, bounded by S0 and S1,
respectively. Observe that the orbit of the base point p = (

i 0
0 −i

)
is the non-

Riemannian symmetric space G/H = SL�2	��/SO�1	 1�. The space G/H
is compactly causal and contains proper AdH-invariant regular elliptic con-
vex cones in its tangent space �. Denote by ±W the maximal ones among
such cones. Then one of the connected components of �+

R is contained in
SW = G · exp JW , and the other one in S−W = G · exp J�−W �
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Our techniques do not apply to domains whose boundary entirely consists
of nongeneric orbits. The domains D0 
 
 
 	Dm are among them and at the
moment their Steinness remains an open question. We want to give a bound
on the number of invariant domains D ⊂ X, whose boundary ∂D contains
no generic orbits and which are possibly Stein. In order to do this, we need
to analyze the complement in G�/K� of the union of all generic orbits.
The G-action on X = G�/K� fits in the framework of [Lu]: consider

the complex affine algebraic variety X� �= G�/K� ×G�/K� with the real
structure given by

∑�x1	 x2� �= �σ�x2�	 σ�x1��. The action of the complex
algebraic group G� on X�, given by g · �x1	 x2� �= �gx1	 gx2�, is defined
over �. The restricted action of G on the set of real points ��x	 σ�x�� ∈
X�� ∼= G�/K� corresponds to the left translation action of G on X =
G�/K�.
In this framework, one can consider the map p� X → X)G, which asso-

ciates to each point x ∈ X the unique closed orbit in the closure of G · x.
Here X)G denotes the set of closed G-orbits in X. Each fiber of p contains
a unique closed orbit, which is also the unique orbit of minimum dimension
in the fiber.
A subset of X is said to be G-saturated, if it is the counterimage of a

subset of X)G. Let x ∈ X be a point on a closed G-orbit S. Then the
isotropy subgroup Gx is reductive and there exists a G-saturated neighbor-
hood of x in X which is real-analytically diffeomorphic to G×Gx

W , where
W is some open Gx-stable neighborhood of 0 in a complement Wx̄ of TSx
in TXx (see [Br, Lu]).
Let H be the G-isotropy subgroup of some point on a closed G-orbit.

By definition, the H-stratum X�H� in X consists of the points in X having
in their p-fiber a minimal closed orbit of type H.
It turns out that X�H� is a locally closed subset of X, and the smooth

points of X�H� form a dense subset. Let x ∈ X�H� be a nonsingular point
on a closed G-orbit. Then there exists a G-saturated neighborhood of x
in X�H� which is G-equivariantly diffeomorphic to G×H �W H × � �, where
W H denotes the fixed point set of H on W , and � denotes the null cone
of the H-action on a complement of W H in W (see [BF, Br]).
In our particular situation, let x̄ ∈ G�/K� be a point sitting on a closed

G-orbit. To the point x̄ there is associated the symmetric pair ��G��στx	 σ�
(see [Ma1]). Observe that the fixed point subgroup of σ in �G��στx is pre-
cisely the isotropy subgroup of x̄ in G, namely Gx̄ = G ∩AdxK�. Let

�����στx	 σ� = �����σ ∩ ����τx ⊕ ����−σ ∩ ����−τx	 σ�
= �� ∩Adx�� ⊕ J� ∩Adx��	 σ� (6.2)

be the corresponding symmetric algebra. Then the subgroup Gx̄ acts on the
vector space ����−σ ∩ ����−τx by the adjoint representation.
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Lemma 6.8. Let x̄ ∈ G�/K� be a point on a closed G-orbit S. Then
Wx̄ = ����−σ ∩ ����−τx = J� ∩Adx�

� is a Gx̄-stable complement of TSx̄ in
T �G�/K��x̄, whereGx̄-action on Wx̄ coincides with the adjoint representation.

Proof. We need to show that

T �G�/K��x̄ = TSx̄ ⊕Wx̄
 (6.3)

As we just observed, both terms of the above decomposition are stable
under the adjoint representation of Gx̄.
Consider a point on the fundamental Cartan subset x̄0 ∈ �A, where x0 =

eJH0 ∈ A = exp J	. If the G-orbit of x̄0 is generic, then by Remark 3.6 and
Corollary 3.7,

J� ∩Adx0�� = J	 and T �G�/K��x̄0 = Adx0�� = TSx̄0 ⊕ J	


Hence (6.3) holds. Assume that the G-orbit of x̄0 is nongeneric. Resume
the notation of Section 3.2 and let α ∈ 1	 be a root such that α�H0� ≡
0modπ/2 (cf. Remark 3.5(ii)). By formulas (3.3) and (3.4), one has that{

cosα�H0� = 0
sinα�H0� = ±1 %⇒

{
JFα = ±Kα = ±K∗

α ∈ TSx̄0
Fα = ±JKα ∈ J� ∩ Adx0�

� = Wx0




In the same way, one has that{
sinα�H0� = 0
cosα�H0� = ±1 %⇒

{
Fα = ±Pα = ±P∗

α ∈ TSx̄0
JFα = ±JPα ∈ J� ∩ Adx0�

� = Wx0




Since Adx0�
� = 	� ⊕⊕

α	Zα
Adx0Z�α��� , the above statements prove (6.3).

Consider now a point on a standard Cartan subset x0 · p ∈ �C for x0 · p
= eJX0 · p ∈ C = exp J� · p. If the G-orbit of x0 · p is generic, then by
Remark 3.16(ii) and Corollary 3.17,

J� ∩ Adx0�
� = J� and T �G�/K��x0·p = Adx0�� = TSx0·p ⊕ J�


Hence (6.3) holds. Assume that the G-orbit of x0 · p is nongeneric. Resume
the notation in Section 3.3 and let α ∈ 1c

� be a complex root such that{
Im α�X0� = 0	
Re α�x0� ≡ 0	 mod π/2

(cf. Remark 3.16(i)). If
Im α�X0� = 0	
cosRe α�X0� = 0	 sinRe α�X0� = ±1,
Zα ∈ �α+	

combining (3.15) and (3.17) one has
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JFα+JFᾱ	Fα−Fᾱ∈TSx0·p	 Fα+Fᾱ	 JFα−JFᾱ∈Wx0·p=J�∩ Adx0��

If 

Im α�X0� = 0	
cosRe α�X0� = ±1	 sinRe α�X0� = 0,
Zα ∈ �α+	

combining (3.15) and (3.17) one has

JFα−JFᾱ	Fα+Fᾱ∈TSx0·p	 JFα+JFᾱ	Fα−Fᾱ∈Wx0·p=J�∩ Adx0��

Similarly, for all roots α satisfying the conditions of Remark 3.16(i) and
Zα ∈ �α, by formulas (3.15), Proposition 3.12, and Remark 3.13, one has
that Adx0Z�α��� admits a basis consisting of pairs �Sα	 JSα�, where Sα ∈
TSx0·p and JSα ∈ Wx0·p
 Since Adx0�

� = �� ⊕⊕
α	Zα

Adx0Z�α��� , decompo-
sition (6.3) holds and the lemma follows.

Corollary 6.9. Let x̄ ∈ G�/K� be a point sitting on a closed G-orbit S,
with isotropy subgroup L. Let �G�/K���L� be the L-stratum in G�/K�. Then,
at all smooth points z ∈ �G�/K���L�,

dim�T ��G�/K���L��z �= 2 dim� T���G�/K���L��z

Lemma 6.10. Let D ⊂ G�/K� be a G-invariant domain with boundary

∂D consisting of nongeneric orbits. If D is Stein, then it coincides with the
interior of the closure of a connected component of the set of generic orbits.
The domains D1	 
 
 
 	Dm ⊂ �X0 are of this kind.
Proof. Observe that every relatively closed subset of real codimension

greater than or equal to 3 in a complex manifold M is removable [Sh]. The
same is true for a locally closed subset � ⊂ M , of real codimension 2, such
that dim� T�z �= 2 dim� T��z for all z ∈ � (cf. [St]). These facts together
with Corollary 6.9 and Remark 3.5 prove the lemma.

Lemma 6.11. Let C = exp J� · p be a Cartan subset. The set of regular
semisimple elements with respect to σ	 τ in C consists of finitely many con-
nected components.

Proof. By Remark 3.16(i), we need to show that the exponential in G�

of the set ⋃
α∈1r

�

�H ∈ � � α�H� ≡ 0 mod π/4�

consists of the union of a finite number of subsets. Assume first that the
base point p satisfies conditions (2.6). The G-orbit of p is a semisimple
symmetric space G/H and the symmetric algebra associated to p is given
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by ��c = ⊕ J�	 σ� (cf. (6.2)). The Cartan subspace � = �� ⊕ �� is a τp-stable
and θ-stable maximal abelian subspace in �.
Let

�⊕ � = �� ⊕ �� ⊕ �� ⊕ ��

be a τp- and θ-stable Cartan subalgebra of � extending � (cf. Lemma 5.7).
Then � �= �� ⊕ J�� ⊕ �� ⊕ J�� is a Cartan subalgebra of the compact real
form � of ��. Let 1 = 1���	 ��� be the corresponding root system. Since
G� and hence U are simply connected, the kernel of the exponential map
exp � � → U is given by the fundamental lattice

/ = ∑
λ∈1
2πi
Hλ	 Hλ = 2hλ

B�hλ	 hλ�
∈ i�	 λ�Hλ� = 2


For α ∈ 1r�, consider the hyperplane in �

πk =
{
H ∈ � � α�H� = k

π

2
	 k ∈ 


}
	

perpendicular to Hα ∈ �� (normalized so that α�Hα� = 2) and passing
through the point P = kπ

4Hα ∈ ��.
Given two such hyperplanes πk1

	 πk2
, passing through P1 = k1

π
4Hα and

P2 = k2
π
4Hα, respectively, then Jπk1

	 Jπk2
have the same image under the

exponential map exp � J� → G� if and only if JP1 and JP2 have the same
image in U , if and only if P1 − P2 = �k1 − k2�π4Hα belongs to the lattice /.
This happens for sufficiently large �k1 − k2� ∈ 
 if and only if Hα ∈ �� ⊂

J� can be written as a linear combination with integer coefficients of the
vectors �Hλ�λ∈1.
The map λ �→ 1

2 �λ− τλ� is a surjective map of 1 onto the restricted root
system 1�. Observe that Hτλ = τHλ and that λ + τλ �∈ 1 implies that the
Cartan integers cλ	 τλ = cτλ	 λ are either 0 or 1. Then

Hα =

Hλ	 τλ = −λ,
Hλ −Hτλ	 cλ	 τλ = cτλ	 λ = 0,
2�Hλ −Hτλ�	 cλ	 τλ = cτλ	λ = 1,

as requested. If the base point p satisfies conditions (2.7), we can apply the
above arguments to the symmetric pair �����στp	 σ�, where ����στp is a real
form of the &-stable complex subalgebra �����στp�2 of ��. This concludes
the proof of the lemma.

Recall that there are finitely many WK×K�A�-equivalence classes of
Cartan subsets in G� and every connected component of closed generic
orbits meets precisely one Cartan subset C in some connected components
of the regular semisimple elements with respect to σ	 τ in C (cf. [Ma1,
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Theorem 3]). By Lemma 6.11, in each Cartan subset C the set of regular
semisimple elements with respect to σ	 τ consists of finitely many con-
nected components. From all these facts it follows that there are finitely
many connected components of closed generic G-orbits in G�/K�. By
Lemma 6.10 and Lemma 6.11, we conclude that

Proposition 6.12. There are finitely many G-invariant domains D ⊂
G�/K�, with boundary ∂D consisting of nongeneric orbits, which are possibly
Stein.
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[Lu] D. Luna, Sur certaines opérations différentiables des groupes de Lie, Amer. J. Math.
97 (1975), 172–181.

[Ma1] T. Matsuki, Double coset decomposition of reductive Lie groups arising from two
involutions, J. Algebra 197 (1997), 49–91.

[Ma2] T. Matsuki, The orbits of affine symmetric spaces under the action of minimal
parabolic subgroups, J. Math. Soc. Japan 31 (1979), 331–357.

[Ne] K. H. Neeb, On the complex geometry of invariant domains in complexified symmet-
ric spaces, Ann. Inst. Fourier (Grenoble) 49 (1999), 177–225.

[Sh] B. Shiffman, On the removal of singularities of analytic sets, Michigan Math. J. 15
(1968), 111–120.

[S] R. Steinberg, Endomorphisms of real algebraic groups, Mem. Amer. Math. Soc. 80
(1968).

[St] E. L. Stout, A note on removable singularities, Boll. Un. Mat. Ital. A (7) 5 (1991),
237–243.

[Su] M. Sugiura, Conjugate classes of Cartan subalgebras in real semisimple Lie algebras,
J. Math. Soc. Japan 11 (1959), 374–434.
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