HYPERBOLIC MANIFOLDS WHOSE ENVELOPES OF HOLOMORPHY ARE NOT HYPERBOLIC

L. GEATTI, A. IANNUZZI, AND J.-J. LOEB

ABSTRACT. We present a family of examples of two dimensional, hyperbolic complex manifolds whose envelopes of holomorphy are not hyperbolic.

In this note we present a family of hyperbolic complex manifolds whose envelopes of holomorphy are not hyperbolic. Here we consider hyperbolicity in the sense of Kobayashi. In Isaev's classification [2] of two-dimensional hyperbolic manifolds with three-dimensional automorphism group, these manifolds appear as subdomains of $\Delta \times \mathbb{P}^1$, with Δ the unit disk in \mathbb{C} and \mathbb{P}^1 the one-dimensional complex projective space. Here we consider their realizations as SU(1,1)-invariant domains in the Lie group complexification $SL(2,\mathbb{C})/U(1)^{\mathbb{C}}$ of the symmetric space SU(1,1)/U(1). Then, by applying the univalence results for Stein, equivariant Riemann domains over Lie group complexifications of rank-one, Riemannian symmetric spaces obtained in [1], we can explicitly determine their envelopes of holomorphy. Such envelopes turn out to be all biholomorphic to $\Delta \times \mathbb{C}$. In particular, they are not hyperbolic.

Let G be the Lie group SU(1,1). Consider the holomorphic action of its universal complexification $G^{\mathbb{C}} = SL(2,\mathbb{C})$ on $\mathbb{P}^1 \times \mathbb{P}^1$ defined by

(1)
$$g \cdot ([z_1 : z_2], [w_1 : w_2]) := (g \cdot [z_1 : z_2], \overline{\sigma(g)} \cdot [w_1 : w_2]),$$

where $\sigma(g) = I_{1,1} {}^t \bar{g}^{-1} I_{1,1}$ denotes the conjugation of $G^{\mathbb{C}}$ relative to G (here $I_{1,1}$ the diagonal matrix representing the standard hermitian form of signature (1,1)). Denote by K a maximal compact subgroup of G and by $K^{\mathbb{C}}$ its complexification. The quotient $G^{\mathbb{C}}/K^{\mathbb{C}}$ can be identified with the unique open $G^{\mathbb{C}}$ -orbit in $\mathbb{P}^1 \times \mathbb{P}^1$ given by

$$G^{\mathbb{C}} \cdot ([1:0], [1:0]) = \{ ([z_1:z_2], [w_1:w_2]) \in \mathbb{P}^1 \times \mathbb{P}^1 : z_1w_1 - z_2w_2 \neq 0 \}.$$

 $Mathematics\ Subject\ Classification\ (2000):\ 32\text{Q}45,\ 32\text{D}10,\ 32\text{M}05.$

Key words: hyperbolic manifold, envelope of holomorphy, symmetric space.

A global slice for the G-action on $G^{\mathbb{C}}/K^{\mathbb{C}}$ by left translations is represented by the following diagram (cf. [1], Sect. 4.1)

All elements in the diagram, except for z_1 , z_2 and z_3 , lie on hypersurface G-orbits. The points $z_1 := ([1:0], [1:0])$ and $z_3 := ([0:1], [0:1])$ lie on G-orbits diffeomorphic to the symmetric space G/K. The point $z_2 := ([1:i], [1:i])$ lies on a G-orbit diffeomorphic to a pseudo-Riemmanian symmetric space of the same dimension as G/K. The slices ℓ_1, \ldots, ℓ_4 are defined by

$$\ell_1(t) = \left(\left[\cos \frac{\pi}{4} (1-t) : i \sin \frac{\pi}{4} (1-t) \right], \left[\cos \frac{\pi}{4} (1-t) : i \sin \frac{\pi}{4} (1-t) \right] \right),$$

$$\ell_3(t) = \left(\left[\cos \frac{\pi}{4} (1+t) : i \sin \frac{\pi}{4} (1+t) \right], \left[\cos \frac{\pi}{4} (1+t) : i \sin \frac{\pi}{4} (1+t) \right] \right),$$

for 0 < t < 1, and by

$$\ell_2(s) = ([e^s : ie^{-s}], [e^{-s} : ie^s]),$$

$$\ell_4(s) = ([e^{-s} : ie^s], [e^s : ie^{-s}]),$$

for s > 0. Note that z_2 is the limit point of ℓ_1 , ℓ_2 , ℓ_3 and ℓ_4 for values of the parameters approaching zero. Similarly one has $\ell_1(1) = z_1$ and $\ell_3(1) = z_3$. The points

$$w_1 := ([1:0], [1:i]), \quad w_2 := ([1:i], [0:1]),$$

 $w_3 := ([1:i], [1:0]), \quad w_4 := ([0:1], [1:i]).$

represent the four non-closed hypersurface G-orbits containing $G \cdot z_2$ in their closure.

Consider the family of G-invariant domains in $G^{\mathbb{C}}/K^{\mathbb{C}}$ defined by

$$D_{\beta} = G \cdot (z_1 \cup \ell_1((0,1)) \cup w_1 \cup \ell_2((0,\beta)))$$
 for $0 < \beta < \infty$.

By the classification of Stein, G-invariant domains in $G^{\mathbb{C}}/K^{\mathbb{C}}$ (cf. Thm. 6.1 in [1]), none of the domains D_{β} is Stein. Each of them contains a unique Levi-flat orbit given by

$$G \cdot w_1 = \{ ([1:z], [1:w]) \in \mathbb{P}^1 \times \mathbb{P}^1 : z \in \Delta, w \in \partial \Delta \} \cong \Delta \times \partial \Delta,$$

and a unique totally-real orbit given by

$$G \cdot z_1 = \{ ([1:z], [1:\bar{z}]) \in \mathbb{P}^1 \times \mathbb{P}^1 : z \in \Delta \}.$$

Denote by W the limit domain

$$W = G \cdot (z_1 \cup \ell_1(0,1) \cup w_1 \cup \ell_2(0,\infty)).$$

By construction W contains every domain D_{β} . One can check that W coincides with the domain

$$\{([1:z],[w_1:w_2]) \in \mathbb{P}^1 \times \mathbb{P}^1 : z \in \Delta, w_1 - zw_2 \neq 0\}.$$

It follows that W is biholomorphic to $\Delta \times \mathbb{C}$ via the map

$$\Delta \times \mathbb{C} \to W, \quad (u, v) \to ([1:u], [1+uv:v]).$$

In particular, it is Stein and is not hyperbolic.

Proposition 0.1. For every $0 < \beta < \infty$ the G-invariant domain D_{β} is hyperbolic. The envelope of holomorphy of D_{β} is the domain W, which is not hyperbolic.

Proof. The fact that D_{β} is hyperbolic follows from Isaev's classification of twodimensional hyperbolic manifolds with three dimensional automorphism group. Indeed note that for $g \in G$ one has $\overline{\sigma(g)} = \overline{g}$. Thus the restriction to G of the $G^{\mathbb{C}}$ -action defined in (1) agrees with the G-action given in [2], p. 22. As a consequence, D_{β} coincides with an element of the family denoted there by

$$\widehat{\mathfrak{D}}_t^{(1)}$$
 for $1 < t < \infty$

and it is hyperbolic.

Denote by $E(D_{\beta})$ the envelope of holomorphy of D_{β} . Since $G^{\mathbb{C}}/K^{\mathbb{C}}$ is Stein, the inclusion of D_{β} in $G^{\mathbb{C}}/K^{\mathbb{C}}$ extends to a local biholomorphism p from $E(D_{\beta})$ to $G^{\mathbb{C}}/K^{\mathbb{C}}$ (cf. [3]). Note that the center $\Gamma = \{\pm Id_2\}$ of G acts ineffectively on $G^{\mathbb{C}}/K^{\mathbb{C}}$ and that G/Γ is isomorphic to $SO_0(2,1)$. Then the $SO_0(2,1)$ -action on D_{β} extends to $E(D_{\beta})$ and the map p is equivariant, i.e. $p: E(D_{\beta}) \to G^{\mathbb{C}}/K^{\mathbb{C}}$ is a Stein, $SO_0(2,1)$ -equivariant Riemann domain.

By Theorem 7.5 in [1], the map p is necessarily injective. Hence $E(D_{\beta})$ coincides with the smallest, Stein, G-invariant domain in $G^{\mathbb{C}}/K^{\mathbb{C}}$ containing D_{β} . Since each D_{β} contains the Levi-flat orbit $G \cdot w_1$, from the classification of Stein, G-invariant domains in $G^{\mathbb{C}}/K^{\mathbb{C}}$ given in Theorem 6.1 of [1], it follows that the envelope of holomorphy of D_{β} is the domain W.

Remark. Similarly one can show that W is the envelope of holomorphy of every element in the family of hyperbolic, G-invariant subdomains of W denoted in [2], p. 22, by

$$\mathfrak{D}_{s,t}^{(1)} \quad \text{for} \quad -1 \le s < 1 < t \le \infty,$$

where s=-1 and $t=\infty$ do not hold simultaneously. In terms of diagram (2) the elements of the family $\mathfrak{D}_{s,t}^{(1)}$ correspond to the domains

$$G \cdot (\ell_1((0,\alpha)) \cup w_1 \cup \ell_2((0,\beta)))$$
 for $0 < \alpha \le 1$ and $0 < \beta \le \infty$.

References

- [1] L. Geatti, A. Iannuzzi, On univalence of equivariant Riemann domains over a complex semisimple Lie group. arXiv: math.CV/0612169
- [2] A. V. ISAEV, Hyperbolic 2-Dimensional Manifolds with 3-Dimensional Automorphism Group. arXiv: math CV/0509030 v6
- [3] H. Rossi, On envelopes of holomorphy. Commun. Pure Appl. Math. 16 (1963) 9–17

Laura Geatti and Andrea Iannuzzi: Dip. di Matematica, II Università di Roma "Tor Vergata", Via della Ricerca Scientifica, I-00133 Roma, Italy.

E-mail address: geatti@mat.uniroma2.it, iannuzzi@mat.uniroma2.it

Jean-Jacques Loeb, Département de Mathématiques et Informatiques, Université d'Angers, 2 Boulevard Lavoisier, 49045 Angers cedex 01

E-mail address: Jean-Jacques.Loeb@univ-angers.fr