SEAMS school HCMC 2023  Course M2 “Elementary Number Theory algorithms”: Exercises

1. Group theory: review exercises

1. Let F:Z,, — Z, be the map T — & mod p. Show that F' is well defined if and only if p divides n.
Sol.: If n = kp, for k € Z, then F(x + sn) = F(x + skp), for all s € Z. This shows that F' is well defined on

the classes of Z,,. Conversely, I' well defined on the classes of Z,, means in particular that F'(n) = F(0) = 0.
In particular n = 0 mod p.

2. (Chinese remainder theorem) Let N = nm, with ged(n,m) = 1.
(a) Show that the map F:Zy — Z, X Z,,, T +— (T modn,T modm) is an isomorphism of additive
groups.
(b) Show that F:Z% — Z} x Z}, is an isomorphism of multiplicative groups.
(¢) Check (a) and (b) for N =15 and for N = 18.

3. Let ¢ denote the Euler -function. Compute o(15%-33-2%.27).
Sol.: One has 153 -33-24.27 =3%.53.3.11.24.3% = 2.37.5% . 11, and

(243753 11) = (2% — 2%)(37 — 35)(5® — 5?) 10.

4. Sia n be a positive integer and let p a prime divisor of n. Verify that:
(a) ¢(p) | ¢(n);
(b) if p* [ n, then o(n) = p(p)e(});
(c) ifp |5, then (3) =2 11,(1 - L), where d varies among the prime divisors of n.
Sol.: One has 1
o) =n- I a-2) (*

d|n, prime
(a) Since ¢(p) = p((1 — I%), it is clear from (*) that ¢(p) divides ¢(n).
(b) if p? ) n, then ged(p,n/p) = 1. Therefore p(n) = e(P)e(3)-

(¢) If p | %, then n and n/p have the same prime divisors. It follows from (*) that ¢(2) = 2 [T,(1 - .
5. (Lagrange’s Theorem). Let G be a finite abelian group of order n.
(a) Show that L,: G — G, defined by L,(g) := ag, for a, g € G, is a bijective map.
(b) Show that for all g € G one has g” = e (here e denotes the identity element).
(c) (Fermat Little Theorem) State Lagrange’s Theorem for Z,, with p prime.
(d) State Lagrange’s Theorem for the following groups

* *
2y, 7y, Ziy, Zy xZi7, 2.

Sol.: (d) For every z € Zq; one has 11 -2 = 0 mod 11;

for every (z,y) € Z11 X Z17 one has 187 - (z,y) = (0, 0);

for every a € Z*, one has 2#(") = 1 mod n.

Since p(100) = p(2%)¢(5?) = 40, in Z3,, the theorem reads

Va € Z3,  #*° =1 mod 100.

6. Let G be a group and let a € G be an element of order k (by definition k is the smallest positive integer
for which a¥ = 1). Prove the following statements:
(a) the powers {a,a?,...,a* = e} of a are all distinct;

(b) a™ = e if and only if k divides n;



(¢) the order of a™ is equal to k if and only if ged(m, k) = 1.
Sol.: (a) Suppose that 2" = z*, for some r < s < k. Then z°~" =, for 0 < s — r < k. Contradiction.
(b) If k|n, then a™ = e. Conversely, suppose by contradiction that a™ = e, with k not dividing n. Then
n = mk 4+ r, for some 0 < r < k and

Contradiction.

(c) Let h be the order of a™. Then h |k, since a™ is an element of the group of order k generated by a. We
are going to show that if ged(m, k) = 1, then also k| h. In particular, h = k.

From ged(m, k) = 1, there exist a, 8 € Z such that am + gk = 1. Now

e = amh _ ahocm _ aham—i—h,@k — ah.

From (b) it follows that k |k, as desired.

7. Prove that the order of an element (x,y) € Zy, X Zy, is the least common multiple of the order of x in
Z,, and the order of x in Z,,.

Sol.: If h is an integer such that h(z,y) = (hz,hy) = (0,0) € Z,, X Z,,, then ord(z)|h and ord(y) | h.
Hence lem(ord(zx),ord(y)) divides h. The integer k = lem(ord(x), ord(y)) is the smallest integer with such
properties. Consequently k = lem(ord(z),ord(y)) is the order of (x,y) in Z,, X Z,,.

8. Let p > 2 be a prime number. Then x> = 1 modp if and only if either x =1 modp or x = —1 mod p.

Sol.: One has 22 = 1 mod p if and only if p| (z + 1)(x — 1) if and only if either p| (z +1) or p| (z — 1) if and
only if either z = 1 modp or x = —1 mod p.

9. Let G be a cyclic group of order n and let s € N. Then the number of solutions of the equation r° = e
is equal to ged(n, ).
Sol.: Let g be a generator of G. Write = g7, for some j. One has

* =g’ =e = ndivides js g divides j%, where d = ged(s, n).
Since ged(%, §) = 1, then % divides j and
n
=k — fork=1,...d.
] d7 or )
Conclusion, there are exacly d = ged(s,n) solutions of the equation z* = e.

10. Determine all the generators of the cyclic group (Zr2,+).

Sol.: The element 1 is a generator (Zr2,+). By Exercise 6(c), the element 0 < k < 71 is a generator if and
only if ged(k,72) = 1. As 72 = 2232, one has ged(k,72) = 1 if and only if k is odd and not divisible by 3.

11. Determine all the generators of the cyclic group (275, -).
Sol.: The element 2 is a generator of group (Z3,, -) of order ¢(11) = 10:

2, 22=4, 22=8, 2t=5 2°=10, 26=9, 27=7 28=3 2°=¢6, 2109=1.
By Exercise 6(c), there are ¢(10) = 4 elements of order 10 in Z3%;, namely
{2™ ged(m,10) =1} = {2, 28 =8, 2" =7, 2° = 6}.

12. Determine which of the following groups is cyclic: Z, Zg, 2%, for k > 3.
Sol.: Zj; = {1,3} is cyclic of order 2.



Since Z§ = {1,3,5,7} and 1% = 3% = 52 = 82 = 1, then the group Zj is isomorphic to the product Zs x Z,.
In particular, it is not cyclic.
For k > 3, the group Z}, is not cyclic: the map

¢ 2y —Zg, x+— xmods§,
is a surjective homomorphism onto a group which is not cyclic. Hence it cannot be cyclic. More precisely,
7y 27, x{zxe€Zy | z=1 mod4},

where Hy, = {z € Z, | z =1 mod4} is a cyclic group of order 2F=2 generated by 1+ 4 = 5.
Conclusion: Z3, is cyclic if and only if k = 1,2.

13. Let n =616 =23-7-11.
(a) Compute p(n);
(b) Write Z? as a product of cyclic groups.
Sol.: One has ¢(n) =4-6-10 = 240 = 2% - 3. 5. By the Chinese Remainder Theorem (Exercise 2(b)), there

is an isomorphism
* AU * * *
2, =75 x 13 x L.

The groups Z3 and Z} are cyclic; the group Z}, = {1,3,5,7,9,11,13,15} is isomorphic to the product of the
cyclic groups Zj and Hy :={z € Z3, | 2 =1 mod4}.
Conclusion: as a product of cyclic groups,

Z) =27, x Hy x 75 x 7.

14. Write Z7, as a product of cyclic groups. (recall that Zy, is cyclic, for all p prime, and Z;k is cyclic, for
all primes p > 2).
Sol.: One has 10! = 28 - 3* .52 . 7. Then ¢(10!) = 2! - 3% . 5. Then as a product of cyclic groups

ZTOI = ZZ X H11 X Zj;j X Z;;27

where Hyy = {z € Z3,, | « =1 mod 4}.



Many of the following exercises require a computer (PARI/GP or SAGEMATH).

5. Pollard p

1. Let n be a composite integer of 200 digits. After 10000 iterations the Pollard p algorithm did not find

any factors. What can we conclude about the size of the prime factors?
Sol.: Recall that a random sequence {z;};=1,.. & in Z, determines a sequence in Z,, for every prime divisor

p of n (cf. Exercisel, n.1). Moreover

.....

pln

ged(x; —x; modn,n) #1 & there exists a prime p such that { 2 = 2; modp.

In other words a coincidence occurs in Z,,.

By the birthday paradox:

e smallest factors are found first: a coincidence is more likely to occur in Z,,, where p is the smallest factor;
e it is unlikely that a coincidence occurs in Z,, (equivalently that ged(x; —x; modn,n) = n): hence ged(z; —
x; modn,n) # 1 is generally a non-trivial factor of n.

e a coincidence is likely to occur in Z,, if k is approximately /p.
Conclusion: if k& = 10000 = 10* iterations produced no factor p of n, probably all factors are > k% = 108,

2. Let n be a composite integer of 200 digits, and let B = 10000. After how many unsuccesful iterations of
the Pollard p algorithm we can conclude that probably n has no factor < B?
Sol.: From the arguments of the previous exercise, after k = v/B = 102 iterations we can conclude that
probably n has no factor < B = 10%.

3. Let n = p- ¢ be an integer, product of two primes p < gq.
(a) Estimate the variation in the amount of calculations to factor n with Pollard p, when the smallest
factor p increases by one digit and ¢ remains the same.
(b) Estimate the variation in the amount of calculations to factor n with Pollard p, when the smallest
factor p remains the same and ¢ increases by one digit.
(¢) Do some experiments with PARI/GP (use pollard2(n)) and time them).

4. (a) (use pollard2(n)) Factor the number n = 2107971466920603317676768413248655563326842644339.

(b) Run the algorithm several times: observe that the initial point changes, while the number of iterates
which produce a given factor remains more or less of the same size.

5. Using the Pollard p algorithm,
(a) factor the Mersenne numbers M,, = 2" — 1 per 1 < n < 20;
(b) factor the Fermat numbers F,, = 22" 41, per 1 <n <8.

6. Factor completely the integers (combine the Pollard p algorithm with the Miller-Rabin test):
ny = 1077471755063687
ng = 10687643000000395442791
ng = 1000587688300000000000000000000000008574912503519308271870011

ng4 = 10760671013000000000000000000000000000000000000000000000000000000000000000000000000000
000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
00824221115473495059110442157250483.

ns = 10000076067099100000000000000000000000000000000000000000000000000000000000000000000000
000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
007659628141113788389728281238427868281.



