
SEAMS school HCMC 2023 Course M2 “Elementary Number Theory algorithms”: Exercises

1. Group theory: review exercises

1. Let F :Zn ! Zp be the map x̄ 7! x̄ mod p. Show that F is well defined if and only if p divides n.

Sol.: If n = kp, for k 2 Z, then F (x+ sn) = F (x+ skp), for all s 2 Z. This shows that F is well defined on
the classes of Zn. Conversely, F well defined on the classes of Zn means in particular that F (n) = F (0) = 0.
In particular n ⌘ 0 mod p.

2. (Chinese remainder theorem) Let N = nm, with gcd(n,m) = 1.
(a) Show that the map F :ZN ! Zn ⇥ Zm, x̄ 7! (x̄ modn, x̄ modm) is an isomorphism of additive

groups.
(b) Show that F :Z⇤

N ! Z⇤
n ⇥ Z⇤

m is an isomorphism of multiplicative groups.
(c) Check (a) and (b) for N = 15 and for N = 18.

3. Let ' denote the Euler '-function. Compute '(153 · 33 · 24 · 27).

Sol.: One has 153 · 33 · 24 · 27 = 33 · 53 · 3 · 11 · 24 · 33 = 24 · 37 · 53 · 11, and

'(24 · 37 · 53 · 11) = (24 � 23)(37 � 36)(53 � 52) 10.

4. Sia n be a positive integer and let p a prime divisor of n. Verify that:
(a) '(p) | '(n);
(b) if p2 6 | n, then '(n) = '(p)'(np );

(c) if p |
n
p , then '(np ) =

n
p

Q
d(1�

1
d ), where d varies among the prime divisors of n.

Sol.: One has

'(n) = n ·

Y

d|n, prime

(1�
1

d
). (⇤)

(a) Since '(p) = p((1� 1
p ), it is clear from (*) that '(p) divides '(n).

(b) if p2 6 | n, then gcd(p, n/p) = 1. Therefore '(n) = '(p)'(np ).

(c) If p |
n
p , then n and n/p have the same prime divisors. It follows from (*) that '(np ) =

n
p

Q
d(1�

1
d ).

5. (Lagrange’s Theorem). Let G be a finite abelian group of order n.
(a) Show that La:G ! G, defined by La(g) := ag, for a, g 2 G, is a bijective map.
(b) Show that for all g 2 G one has gn = e (here e denotes the identity element).
(c) (Fermat Little Theorem) State Lagrange’s Theorem for Zp, with p prime.
(d) State Lagrange’s Theorem for the following groups

Z11, Z12, Z⇤
100, Z11 ⇥ Z17, Z⇤

73 .

Sol.: (d) For every x 2 Z11 one has 11 · x = 0 mod 11;
for every (x, y) 2 Z11 ⇥ Z17 one has 187 · (x, y) = (0, 0);
for every a 2 Z⇤

n, one has x'(n) = 1 modn.
Since '(100) = '(22)'(52) = 40, in Z⇤

100 the theorem reads

8a 2 Z⇤
100 x

40 = 1 mod 100.

6. Let G be a group and let a 2 G be an element of order k (by definition k is the smallest positive integer
for which a

k = 1). Prove the following statements:
(a) the powers {a, a

2
, . . . , a

k = e} of a are all distinct;
(b) a

n = e if and only if k divides n;
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(c) the order of am is equal to k if and only if gcd(m, k) = 1.

Sol.: (a) Suppose that xr = x
s, for some r < s  k. Then x

s�r = e, for 0 < s� r < k. Contradiction.
(b) If k |n, then a

n = e. Conversely, suppose by contradiction that a
n = e, with k not dividing n. Then

n = mk + r, for some 0  r < k and
e = a

n = a
km

a
r = a

r
.

Contradiction.
(c) Let h be the order of am. Then h | k, since a

m is an element of the group of order k generated by a. We
are going to show that if gcd(m, k) = 1, then also k |h. In particular, h = k.
From gcd(m, k) = 1, there exist ↵, � 2 Z such that ↵m+ �k = 1. Now

e = a
mh = a

h↵m = a
h↵m+h�k = a

h
.

From (b) it follows that k |h, as desired.

7. Prove that the order of an element (x, y) 2 Zn ⇥ Zm is the least common multiple of the order of x in
Zn and the order of x in Zm.

Sol.: If h is an integer such that h(x, y) = (hx, hy) = (0, 0) 2 Zn ⇥ Zm, then ord(x) |h and ord(y) |h.
Hence lcm(ord(x), ord(y)) divides h. The integer k = lcm(ord(x), ord(y)) is the smallest integer with such
properties. Consequently k = lcm(ord(x), ord(y)) is the order of (x, y) in Zn ⇥ Zm.

8. Let p > 2 be a prime number. Then x
2
⌘ 1 mod p if and only if either x ⌘ 1 mod p or x ⌘ �1 mod p.

Sol.: One has x2
⌘ 1 mod p if and only if p | (x+ 1)(x� 1) if and only if either p | (x+ 1) or p | (x� 1) if and

only if either x ⌘ 1 mod p or x ⌘ �1 mod p.

9. Let G be a cyclic group of order n and let s 2 N. Then the number of solutions of the equation x
s = e

is equal to gcd(n, s).

Sol.: Let g be a generator of G. Write x = g
j , for some j. One has

x
s = g

js = e ) n divides js ,
n

d
divides j

s

d
, where d = gcd(s, n).

Since gcd(nd ,
s
d ) = 1, then n

d divides j and

j = k
n

d
, for k = 1, . . . d.

Conclusion, there are exacly d = gcd(s, n) solutions of the equation x
s = e.

10. Determine all the generators of the cyclic group (Z72,+).

Sol.: The element 1 is a generator (Z72,+). By Exercise 6(c), the element 0 < k  71 is a generator if and
only if gcd(k, 72) = 1. As 72 = 22 · 32, one has gcd(k, 72) = 1 if and only if k is odd and not divisible by 3.

11. Determine all the generators of the cyclic group (Z⇤
11, · ).

Sol.: The element 2 is a generator of group (Z⇤
11, · ) of order '(11) = 10:

2, 22 = 4, 23 = 8, 24 = 5, 25 = 10, 26 = 9, 27 = 7, 28 = 3, 29 = 6, 210 = 1.

By Exercise 6(c), there are '(10) = 4 elements of order 10 in Z⇤
11, namely

{2m, gcd(m, 10) = 1} = {2, 23 = 8, 27 = 7, 29 = 6}.

12. Determine which of the following groups is cyclic: Z⇤
4, Z⇤

8, Z⇤
2k , for k > 3.

Sol.: Z⇤
4 = {1, 3} is cyclic of order 2.
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Since Z⇤
8 = {1, 3, 5, 7} and 12 = 33 = 52 = 82 = 1, then the group Z⇤

8 is isomorphic to the product Z2 ⇥ Z2.
In particular, it is not cyclic.
For k > 3, the group Z⇤

2k is not cyclic: the map

�:Z⇤
2k ! Z⇤

8, x 7! x mod8,

is a surjective homomorphism onto a group which is not cyclic. Hence it cannot be cyclic. More precisely,

Z⇤
2k

⇠= Z⇤
4 ⇥ {x̄ 2 Z⇤

2k | x̄ ⌘ 1̄ mod 4},

where Hk = {x̄ 2 Z⇤
2k | x̄ ⌘ 1̄ mod 4} is a cyclic group of order 2k�2, generated by 1̄ + 4̄ = 5̄.

Conclusion: Z⇤
2k is cyclic if and only if k = 1, 2.

13. Let n = 616 = 23 · 7 · 11.
(a) Compute '(n);
(b) Write Z⇤

n as a product of cyclic groups.

Sol.: One has '(n) = 4 · 6 · 10 = 240 = 24 · 3 · 5. By the Chinese Remainder Theorem (Exercise 2(b)), there
is an isomorphism

Z⇤
n
⇠= Z⇤

24 ⇥ Z⇤
3 ⇥ Z⇤

5.

The groups Z⇤
3 and Z⇤

5 are cyclic; the group Z⇤
24 = {1, 3, 5, 7, 9, 11, 13, 15} is isomorphic to the product of the

cyclic groups Z⇤
4 and H4 := {x̄ 2 Z⇤

24 | x̄ ⌘ 1̄ mod 4}.
Conclusion: as a product of cyclic groups,

Z⇤
n
⇠= Z⇤

4 ⇥H4 ⇥ Z⇤
3 ⇥ Z⇤

5.

14. Write Z⇤
10! as a product of cyclic groups. (recall that Z⇤

p is cyclic, for all p prime, and Z⇤
pk is cyclic, for

all primes p > 2).

Sol.: One has 10! = 28 · 34 · 52 · 7. Then '(10!) = 211 · 33 · 5. Then as a product of cyclic groups

Z⇤
10!

⇠= Z⇤
4 ⇥H11 ⇥ Z⇤

33 ⇥ Z⇤
52 ,

where H11 = {x 2 Z⇤
211 | x ⌘ 1 mod 4}.
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Many of the following exercises require a computer (PARI/GP or SAGEMATH).

5. Pollard ⇢

1. Let n be a composite integer of 200 digits. After 10000 iterations the Pollard ⇢ algorithm did not find
any factors. What can we conclude about the size of the prime factors?

Sol.: Recall that a random sequence {xj}j=1,...,k in Zn determines a sequence in Zp, for every prime divisor
p of n (cf. Exercise1, n.1). Moreover

gcd(xi � xj modn, n) 6= 1 , there exists a prime p such that

⇢
p |n

xi = xj mod p.

In other words a coincidence occurs in Zp.

By the birthday paradox:

• smallest factors are found first: a coincidence is more likely to occur in Zp, where p is the smallest factor;

• it is unlikely that a coincidence occurs in Zn (equivalently that gcd(xi�xj modn, n) = n): hence gcd(xi�

xj modn, n) 6= 1 is generally a non-trivial factor of n.

• a coincidence is likely to occur in Zp if k is approximately
p
p.

Conclusion: if k = 10000 = 104 iterations produced no factor p of n, probably all factors are > k
2 = 108.

2. Let n be a composite integer of 200 digits, and let B = 10000. After how many unsuccesful iterations of
the Pollard ⇢ algorithm we can conclude that probably n has no factor  B?

Sol.: From the arguments of the previous exercise, after k =
p
B = 102 iterations we can conclude that

probably n has no factor  B = 104.

3. Let n = p · q be an integer, product of two primes p ⌧ q.
(a) Estimate the variation in the amount of calculations to factor n with Pollard ⇢, when the smallest

factor p increases by one digit and q remains the same.
(b) Estimate the variation in the amount of calculations to factor n with Pollard ⇢, when the smallest

factor p remains the same and q increases by one digit.
(c) Do some experiments with PARI/GP (use pollard2(n)) and time them).

4. (a) (use pollard2(n)) Factor the number n = 2107971466920603317676768413248655563326842644339.

(b) Run the algorithm several times: observe that the initial point changes, while the number of iterates
which produce a given factor remains more or less of the same size.

5. Using the Pollard ⇢ algorithm,
(a) factor the Mersenne numbers Mn = 2n � 1 per 1  n  20;
(b) factor the Fermat numbers Fn = 22

n

+ 1, per 1  n  8.

6. Factor completely the integers (combine the Pollard ⇢ algorithm with the Miller-Rabin test):

n1 = 1077471755063687

n2 = 10687643000000395442791

n3 = 1000587688300000000000000000000000008574912503519308271870011

n4 = 10760671013000000000000000000000000000000000000000000000000000000000000000000000000000
000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
00824221115473495059110442157250483.

n5 = 10000076067099100000000000000000000000000000000000000000000000000000000000000000000000
000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
007659628141113788389728281238427868281.
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