The Baby-Step-Giant-Step algorithm.

The Baby-Step-Giant-Step algorithm is an algorithm introduced by Dan Shanks in 1969, which can
be applied to solve the discrete logarithm problem in a cyclic group.

Let G be a cyclic group with n elements, and let a € G be a generator of the group. It means that
G = {a, a?, ..., a® = e}. In particular, every x € G can be written as z = a®, for some s € Z.
The exponent s, which by Lagrange’s theorem it is only well defined modulo n, is by definition the
discrete logarithm of = in base a

s :=log, (z) modn.

The Baby-Step-Giant-Step algorithm is a deterministic algorithm for computing the discrete log-
arithm in an arbitrary finite cyclic group. It exploits the fact that every element x € G can be

written as o
v = oIt (1)

for integers m, i, j satisfying m ~ /n, and 0 < i, j < m. Equation (1) can be rewritten as
a’ = xa~™I. Then the logarithm log, () is obtained by comparing two lists: the baby steps a’ and
the giant steps za=™7, for 0 < i, 5 < m. When a coincidence is found between the two lists, namely
one has a’ = za~"™° for some ig and jo, then

log(x), = i9 + mJjo.
By BSGS, one obtains the desired logarithm by computing at most 2m ~ 2,/p powers modulo
p and comparing the two lists. By the naif method one could possibly have to compute up to p

powers modulo p, before obtaining the desired logarithm.

Example. Fix p =433 and let a = 7 be a primitive root in Z;. We want to calculate the discrete

logarithm of x = 166 in base a. In this case, m = 21 ~ /433.
We first produce the list of the Baby-Steps:

aimodp, for0<i<m-1

CLO

at =7

a? =49
a® = 343
a* = 236
a® = 353
a® = 306
a” =410
a® =272
a? =172
a'® = 338
a'l =201
a'? =108
a'® =323
a'* =96
a'® = 239
a'® =374
at” =20
a'® =140
a? =114
a0 = 365

a™™m =a"? =292

10



Next we produce the list of the Giant-Steps:
za~™ modp, for0<j<m-—1

and each time we check whether the value the new Giant-Step already appears in the list of the
Baby-Steps. When that is the case, we are done.

x-a’ =166
x-a"2 =409
x-a 4 =353

5

We have found a coincidence between the two lists: a® = z - a—*2. This means that

r=0a""2=a"" and log,(166) = 47.

Indeed one can check that 747 = 166 mod 433.

The Pohlig-Hellman algorithm.

Let G be a cyclic group of order N and suppose that N = [], ¢;* is the product of small distinct
primes ¢;, for i =1,...,s. Then G 2 Gy X ... X G4, with

#Gl = q?’ and Gl = Zq? .

By the Chinese Remainder Theorem the discrete logarithm problem in G can be reduced to the
discrete problem in the smaller groups G;. Hence the essential case is G = Zge, for q odd prime
and e > 1.

Let P be a generator of G and let () be a given element. Then @Q = kP, for some integer
k mod ¢¢. We want to determine k, which by definition is the discrete logarithm of ) in base P.
Recall that the subgroups of G are linearly ordered

0=¢°GCq¢'GcC...cqGCQ@G,

where ¢ G is the ¢°~"-torsion subgroup, for m =0,1,...,e.
The Pohlig-Hellman algorithm provides a method to solve the DLP in G. Write k£ in base g,
as k=ko+kig+ ...+ ksq®, for kj € {0,...,¢° — 1}. Then

Q=kP =koP +kigP + ...+ kyq°P, (%)

where the summand k,,¢"" P is an element in the ¢¢~™-torsion subgroup of G, for m =0,1,... e.
In order to determine the coefficients k,,, we precompute the elements of the g-torsion

T={0,¢"P,...,(¢—1)g“ ' P}.

e—1

By multiplying both terms of the equation (x) by ¢~ " we get

qe—lQ — k’oqe_lp,

which is an element in the g-torsion 7. By comparing it with the elements of T, we determine k.
In general, once we have determined ko, ..., k;_1, we obtain k; as follows: we multiply both terms
of the equation

Q — k‘oP — ... j_lqj—lp = k‘]qu 4+ ...+ ]{JSqSP

by ¢°~7~1. The only surviving element on the right hand side is k;¢°~'P. By comparing it with

the elements of T, we determine £;.

11



