
The Baby-Step-Giant-Step algorithm.

The Baby-Step-Giant-Step algorithm is an algorithm introduced by Dan Shanks in 1969, which can
be applied to solve the discrete logarithm problem in a cyclic group.

Let G be a cyclic group with n elements, and let a 2 G be a generator of the group. It means that
G = {a, a2, . . . , an = e}. In particular, every x 2 G can be written as x = as, for some s 2 Z.
The exponent s, which by Lagrange’s theorem it is only well defined modulo n, is by definition the
discrete logarithm of x in base a

s := loga(x) modn.

The Baby-Step-Giant-Step algorithm is a deterministic algorithm for computing the discrete log-
arithm in an arbitrary finite cyclic group. It exploits the fact that every element x 2 G can be
written as

x = aj+mi, (1)

for integers m, i, j satisfying m ⇠
p
n, and 0  i, j  m. Equation (1) can be rewritten as

ai = xa�mj . Then the logarithm loga(x) is obtained by comparing two lists: the baby steps ai and
the giant steps xa�mj , for 0  i, j  m. When a coincidence is found between the two lists, namely
one has ai0 = xa�mj0 for some i0 and j0, then

log(x)a = i0 +mj0.

By BSGS, one obtains the desired logarithm by computing at most 2m ⇠ 2
p
p powers modulo

p and comparing the two lists. By the naif method one could possibly have to compute up to p
powers modulo p, before obtaining the desired logarithm.

Example. Fix p = 433 and let a = 7 be a primitive root in Z
⇤
p. We want to calculate the discrete

logarithm of x = 166 in base a. In this case, m = 21 ⇠
p
433.

We first produce the list of the Baby-Steps:

ai mod p, for 0  i  m� 1

a0 = 1
a1 = 7
a2 = 49
a3 = 343
a4 = 236
a5 = 353
a6 = 306
a7 = 410
a8 = 272
a9 = 172
a10 = 338
a11 = 201
a12 = 108
a13 = 323
a14 = 96
a15 = 239
a16 = 374
a17 = 20
a18 = 140
a19 = 114
a20 = 365

a�m = a�21 = 292

10



Next we produce the list of the Giant-Steps:

xa�mj mod p, for 0  j  m� 1

and each time we check whether the value the new Giant-Step already appears in the list of the
Baby-Steps. When that is the case, we are done.

x · a0 = 166
x · a�21 = 409
x · a�42 = 353 !!!

We have found a coincidence between the two lists: a5 = x · a�42. This means that

x = a5+42 = a47 and log7(166) = 47.

Indeed one can check that 747 = 166 mod 433.

The Pohlig-Hellman algorithm.

Let G be a cyclic group of order N and suppose that N =
Q

i q
ei
i is the product of small distinct

primes qi, for i = 1, . . . , s. Then G ⇠= G1 ⇥ . . .⇥Gs, with

#Gi = qeii and Gi
⇠= Zq

ei
i
.

By the Chinese Remainder Theorem the discrete logarithm problem in G can be reduced to the
discrete problem in the smaller groups Gi. Hence the essential case is G = Zqe , for q odd prime

and e � 1.
Let P be a generator of G and let Q be a given element. Then Q = kP , for some integer

k mod qe. We want to determine k, which by definition is the discrete logarithm of Q in base P .
Recall that the subgroups of G are linearly ordered

0 = qeG ⇢ qe�1G ⇢ . . . ⇢ qG ⇢ G,

where qmG is the qe�m-torsion subgroup, for m = 0, 1, . . . , e.
The Pohlig-Hellman algorithm provides a method to solve the DLP in G. Write k in base q,

as k = k0 + k1q + . . .+ ksqs, for kj 2 {0, . . . , qe � 1}. Then

Q = kP = k0P + k1qP + . . .+ ksq
sP, (⇤)

where the summand kmqmP is an element in the qe�m-torsion subgroup of G, for m = 0, 1, . . . , e.
In order to determine the coe�cients km, we precompute the elements of the q-torsion

T = {0, qe�1P, . . . , (q � 1)qe�1P}.

By multiplying both terms of the equation (⇤) by qe�1 we get

qe�1Q = k0q
e�1P,

which is an element in the q-torsion T . By comparing it with the elements of T , we determine k0.
In general, once we have determined k0, . . . , kj�1, we obtain kj as follows: we multiply both terms
of the equation

Q� k0P � . . .� kj�1q
j�1P = kjq

jP + . . .+ ksq
sP

by qe�j�1. The only surviving element on the right hand side is kjqe�1P . By comparing it with
the elements of T , we determine kj .

11


