
The Pollard p� 1 factoring algorithm.

The Pollard p� 1 algorithm, is a factoring algorithm introduced by John Pollard in 1974. It takes
its name from the fact that it detects the prime factors p of an integer n, with the property that
p � 1 is a smooth number, i.e. it factors into relatively small primes. Equivalently, the group Z

⇤
p

has smooth order.
Despite its limited probability of success, the Pollard p� 1 algorithm is important because in

Lenstra’s elliptic curve method for factoring (ECM), the same principles are applied to the group
of points of an elliptic curve over Zp.

Integers all of whose prime factors are  B, are called B-smooth.

Let n 2 N be the integer to be factored. Fix a smoothness bound B 2 N and define

k :=
Y

pB
p↵B

p↵.

We may think of k as “the mother of all B-smooth numbers”, in the sense that “any” B-smooth
number divides k. The Pollard p � 1 algorithm consists of taking a random class a 2 Z

⇤
n and

computing
gcd(ak � 1 modn, n).

When is the above gcd going to be > 1?

Heuristically, we can say that gcd(ak � 1 modn, n) > 1 if and only if n admits some prime factor

p of n with the property that p� 1 = #Z
⇤
p is B-smooth.

Proof. If p is a prime factor of n with the property that p�1 is B-smooth, then we may assume that
p � 1 divides k. From the Fermat Little Theorem applied to Z

⇤
p, one deduces that ak = 1 mod p

and that p divides gcd(ak � 1 modn, n).
Conversely, if a prime p divides gcd(ak � 1 modn, n), then p is a factor of n and ak = 1 mod p.
This implies that the order of a in Z

⇤
p divides k and therefore it is B-smooth. On the other hand,

in the cyclic group Z
⇤
p, the order of an element is typically given by p�1

r , for some small integer r.
Hence p� 1 is B-smooth.

Remark. If a smoothness bound B is fixed, then the gcd(ak � 1 modn, n) coincides with the

product of all prime factors p of n such that p� 1 is B-smooth.

The complexity of the algorithm is dominated by the complexity of the calculation

ak modn,

which is
O(logk(log n)2) = O(B(log n)2),

since k is roughly expB.

Once a smoothness bound B is fixed, the B-smooth integers become more and more sparse as their
size grows. This means that factors p such that p�1 is B-smooth are rare. If the algorithm fails to
find a factor for a given smoothness bound B, the only option is to increase B. On the other hand
increasing B is very expensive from a computational point of view (the complexity of the algorithm
is exponential in logB). This is why this algorithm has limited probability of success.

Example. Consider n = 11951438413903.
For B = 50 and a = 57, we get gcd(ak � 1, n) = 1;
for B = 100 and a = 57, we get gcd(ak � 1, n) = 1;
for B = 150 and a = 57, we get gcd(ak � 1, n) = 108769.



Indeed n = p ⇤ q, with p = 108769 and q = 109879087, and

p� 1 = 25 · 3 · 11 · 103, q � 1 = 2 · 3 · 29 · 373 · 1693.

Exercise. Consider n = p · q = 687442130387521, where p = 686989 and q = 1000659589.
As p� 1 = 22 · 33 · 6361 and q � 1 = 22 · 3 · 59 · 1413361.
How big should one choose B in order for the algorithm to detect the non-trivial factor p?
What happens if one takes B > 1413361?



The Miller-Rabin theorem and the Miller-Rabin primality test.

Miller-Rabin primality test is a very e�cient algorithm to detect whether a positive integer n 2 N

is composite or it is possibly prime. It is based on the Miller-Rabin Theorem (MRT in short),
which is a refinement of the Fermat Little Theorem (FLT in short).

Theorem. (Fermat Little Theorem). Let n 2 N be a prime number and let a be an integer
satisfying gcd(a, n) = 1. Then

an�1 = 1 modn.

The FLT provides a necessary condition for an integer n to be prime: if an�1
6= 1 modn, then we are

sure that n is composite. On the other hand, if an�1 = 1 modn, then we cannot conclude anything
about the primality of n. Even worse, there infinitely many composite integers, the Carmicheal

numbers, for which an�1 = 1 modn, for every a with gcd(a, n) = 1. The MRT combines the FLT
with the following fact:

Let p be a prime number. If p divides x2
� 1, then either x = 1 mod p or p = �1 mod p.

Theorem. (Miller-Rabin Theorem). Let n 2 N be a prime number and let a be an integer
satisfying gcd(a, n) = 1. Write n � 1 = m2k, for some m odd, and set b := am. Then either

b = 1 modn or there is 1  s  k such that b2
s�1

= �1 modn.

Proof. By FLT one has

an�1 = (am)2
k

= 1 modn.

Now we examine how such a power of a can become to 1, modulo n.
One way is that already b := am = 1 modn.
Otherwise, if b := am 6= 1 modn, then the power an�1 is obtained from b by successive squarings
modulo n

b2 = b · b, b2
2

= b2 · b2, . . . b2
k

= b2
k�1

· b2
k�1

.

Let s be the smallest positive in integer, 1  s  k, for which

b2
s

= b2
s�1

· b2
s�1

= 1.

Then the element b2
s�1

is a zero of the polynomial X2
� 1. Since n is prime, one has that either

b2
s�1

= 1 modn or b2
s�1

= �1 modn. Since s is the smallest integer for which b2
s

= 1 modn, then
necessarily

b2
s�1

= �1 modn,

as claimed.

An integer n is called a-pseudoprime, provided that it satisfies the Miller-Rabin theorem for some
class a 2 Z

⇤
n. Like the FLT, also the MRT only provides a necessary condition for an integer n

to be prime: if an�1
6= 1 modn, then n is certainly composite. On the other hand, given an odd

composite integer n > 9, then

#{a 2 Z
⇤
n | n is a-pseudoprime}  '(n)/4,

where ' denotes the Euler ' function (see Schoof R., Four primality tests).
This means in particular that if n is a-pseudoprime for k di↵erent bases a, the probability that

it is composite is  1/4k. This fact combined with the Prime Number Theorem enables one to
determine integers n, with probability of being primes arbitrarily close to 1, in polynomial time.


