The Pollard p-1 factoring algorithm.

The Pollard p-1 algorithm, is a factoring algorithm introduced by John Pollard in 1974. It takes its name from the fact that it detects the prime factors p of an integer n, with the property that p-1 is a *smooth number*, i.e. it factors into relatively small primes. Equivalently, the group \mathbf{Z}_p^* has *smooth* order.

Despite its limited probability of success, the Pollard p-1 algorithm is important because in Lenstra's elliptic curve method for factoring (ECM), the same principles are applied to the group of points of an elliptic curve over \mathbf{Z}_p .

Integers all of whose prime factors are $\leq B$, are called *B*-smooth.

Let $n \in \mathbf{N}$ be the integer to be factored. Fix a smoothness bound $B \in \mathbf{N}$ and define

$$\mathbf{k} := \prod_{\substack{p \le B\\p^{\alpha} \le B}} p^{\alpha}.$$

We may think of **k** as "the mother of all *B*-smooth numbers", in the sense that "any" *B*-smooth number divides **k**. The Pollard p - 1 algorithm consists of taking a random class $a \in \mathbf{Z}_n^*$ and computing

$$gcd(a^{\mathbf{k}} - 1 \mod n, n).$$

When is the above gcd going to be > 1?

Heuristically, we can say that $gcd(a^{\mathbf{k}} - 1 \mod n, n) > 1$ if and only if n admits some prime factor p of n with the property that $p - 1 = \# \mathbf{Z}_p^*$ is B-smooth.

Proof. If p is a prime factor of n with the property that p-1 is B-smooth, then we may assume that p-1 divides **k**. From the Fermat Little Theorem applied to \mathbf{Z}_p^* , one deduces that $a^{\mathbf{k}} = 1 \mod p$ and that p divides $gcd(a^{\mathbf{k}} - 1 \mod n, n)$.

Conversely, if a prime p divides $gcd(a^{\mathbf{k}} - 1 \mod n, n)$, then p is a factor of n and $a^{\mathbf{k}} = 1 \mod p$. This implies that the order of a in \mathbf{Z}_{p}^{*} divides \mathbf{k} and therefore it is B-smooth. On the other hand, in the cyclic group \mathbf{Z}_{p}^{*} , the order of an element is typically given by $\frac{p-1}{r}$, for some small integer r. Hence p-1 is B-smooth.

Remark. If a smoothness bound B is fixed, then the $gcd(a^{\mathbf{k}} - 1 \mod n, n)$ coincides with the product of all prime factors p of n such that p - 1 is B-smooth.

The complexity of the algorithm is dominated by the complexity of the calculation

$$a^{\mathbf{k}} \mod n$$
.

which is

$$\mathcal{O}(\log \mathbf{k}(\log n)^2) = \mathcal{O}(B(\log n)^2),$$

since \mathbf{k} is roughly exp B.

Once a smoothness bound B is fixed, the B-smooth integers become more and more sparse as their size grows. This means that factors p such that p-1 is B-smooth are rare. If the algorithm fails to find a factor for a given smoothness bound B, the only option is to increase B. On the other hand increasing B is very expensive from a computational point of view (the complexity of the algorithm is exponential in $\log B$). This is why this algorithm has limited probability of success.

Example. Consider n = 11951438413903. For B = 50 and a = 57, we get $gcd(a^{\mathbf{k}} - 1, n) = 1$; for B = 100 and a = 57, we get $gcd(a^{\mathbf{k}} - 1, n) = 1$; for B = 150 and a = 57, we get $gcd(a^{\mathbf{k}} - 1, n) = 108769$. Indeed n = p * q, with p = 108769 and q = 109879087, and

$$p-1 = 2^5 \cdot 3 \cdot 11 \cdot 103, \qquad q-1 = 2 \cdot 3 \cdot 29 \cdot 373 \cdot 1693.$$

Exercise. Consider $n = p \cdot q = 687442130387521$, where p = 686989 and q = 1000659589. As $p - 1 = 2^2 \cdot 3^3 \cdot 6361$ and $q - 1 = 2^2 \cdot 3 \cdot 59 \cdot 1413361$. How big should one choose B in order for the algorithm to detect the non-trivial factor p?

What happens if one takes B > 1413361?

The Miller-Rabin theorem and the Miller-Rabin primality test.

Miller-Rabin primality test is a very efficient algorithm to detect whether a positive integer $n \in \mathbf{N}$ is composite or it is possibly prime. It is based on the Miller-Rabin Theorem (MRT in short), which is a refinement of the Fermat Little Theorem (FLT in short).

Theorem. (Fermat Little Theorem). Let $n \in \mathbf{N}$ be a prime number and let a be an integer satisfying gcd(a, n) = 1. Then

$$a^{n-1} = 1 \mod n.$$

The FLT provides a necessary condition for an integer n to be prime: if $a^{n-1} \neq 1 \mod n$, then we are sure that n is composite. On the other hand, if $a^{n-1} = 1 \mod n$, then we cannot conclude anything about the primality of n. Even worse, there infinitely many composite integers, the *Carmicheal numbers*, for which $a^{n-1} = 1 \mod n$, for every a with gcd(a, n) = 1. The MRT combines the FLT with the following fact:

Let p be a prime number. If p divides $x^2 - 1$, then either $x = 1 \mod p$ or $p = -1 \mod p$.

Theorem. (Miller-Rabin Theorem). Let $n \in \mathbf{N}$ be a prime number and let a be an integer satisfying gcd(a, n) = 1. Write $n - 1 = m2^k$, for some m odd, and set $b := a^m$. Then either $b = 1 \mod n$ or there is $1 \le s \le k$ such that $b^{2^{s-1}} = -1 \mod n$.

Proof. By FLT one has

$$a^{n-1} = (a^m)^{2^k} = 1 \mod n$$

Now we examine how such a power of a can become to 1, modulo n.

One way is that already $b := a^m = 1 \mod n$.

Otherwise, if $b := a^m \neq 1 \mod n$, then the power a^{n-1} is obtained from b by successive squarings modulo n

 $b^{2} = b \cdot b,$ $b^{2^{2}} = b^{2} \cdot b^{2},$... $b^{2^{k}} = b^{2^{k-1}} \cdot b^{2^{k-1}}.$

Let s be the smallest positive in integer, $1 \le s \le k$, for which

$$b^{2^s} = b^{2^{s-1}} \cdot b^{2^{s-1}} = 1.$$

Then the element $b^{2^{s-1}}$ is a zero of the polynomial $X^2 - 1$. Since *n* is prime, one has that either $b^{2^{s-1}} = 1 \mod n$ or $b^{2^{s-1}} = -1 \mod n$. Since *s* is the *smallest* integer for which $b^{2^s} = 1 \mod n$, then necessarily

$$b^{2^{s-1}} = -1 \mod n,$$

as claimed.

An integer n is called *a*-pseudoprime, provided that it satisfies the Miller-Rabin theorem for some class $a \in \mathbb{Z}_n^*$. Like the FLT, also the MRT only provides a necessary condition for an integer n to be prime: if $a^{n-1} \neq 1 \mod n$, then n is certainly composite. On the other hand, given an *odd* composite integer n > 9, then

$$\#\{a \in \mathbf{Z}_n^* \mid n \text{ is } a \text{-pseudoprime}\} \leq \varphi(n)/4,$$

where φ denotes the Euler φ function (see Schoof R., Four primality tests).

This means in particular that if n is a-pseudoprime for k different bases a, the probability that it is composite is $\leq 1/4^k$. This fact combined with the Prime Number Theorem enables one to determine integers n, with probability of being primes arbitrarily close to 1, in polynomial time.